JPS6374527A - Electric discharge machining method - Google Patents

Electric discharge machining method

Info

Publication number
JPS6374527A
JPS6374527A JP21727486A JP21727486A JPS6374527A JP S6374527 A JPS6374527 A JP S6374527A JP 21727486 A JP21727486 A JP 21727486A JP 21727486 A JP21727486 A JP 21727486A JP S6374527 A JPS6374527 A JP S6374527A
Authority
JP
Japan
Prior art keywords
machining
electrode
diameter
pipe electrode
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21727486A
Other languages
Japanese (ja)
Inventor
Shiro Sasaki
史朗 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21727486A priority Critical patent/JPS6374527A/en
Publication of JPS6374527A publication Critical patent/JPS6374527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To improve the machining accuracy and machining speed by lowering an electrode while rotating it around the Z axis, increasing the rotating radius as it is lowered, making the rotating radius value at the completion of machining the discharge gap value or less at the machining. CONSTITUTION:Optimum values for the diameter (d) of a pipe electrode 1 machining feed distance (1), rotating speed, rotating radius (r) at the completion of machining in response to the material, thickness (t), and hole diameter of a work 2 are determined before machining and inputted and set into a control unit. Next, the said electrode 1 is lowered while being rotated, with the rotating radius increased gradually, based on commands of the control unit, and discharge machining is completed when the electrode 1 is lowered to the predetermined machining feed distance (1). Accordingly, the shrunk quantity of the diameter d1 at the tip 1a of the electrode 1 where the wearout by discharge is the largest is compensated, the remaining quantity at the center of the machined hole is small, thus the machining accuracy and machining speed can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、パイプ電極を使用して被加工物に穴を貫通
する放電加工方法に関し、特に微小径の穴を貫通する場
合に有効な放電加工方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrical discharge machining method for penetrating a hole in a workpiece using a pipe electrode, and in particular an electrical discharge machining method that is effective when penetrating a hole with a minute diameter. This relates to processing methods.

(従来の技術) 第6図は通常のパイプ電極によって被加工物に微小径の
穴を貫通加工する放電加工装置において、加工が行なわ
れる要部を示す断面図であり、(1)はパイプ電極、(
2)はこのパイプ電極(1)によって加工が行なわれた
後の被加工物、CD)は被加工物(2)の加工穴の径、
(d)はパイプ電極の径、(g)は放電ギャップ、(t
)は被加工物(2)の板厚、矢印は被加工物(りに対す
るパイプ電極(1)の加工時における移動方向を示す。
(Prior Art) Fig. 6 is a cross-sectional view showing the main parts where machining is performed in an electric discharge machining device that perforates a micro-diameter hole in a workpiece using a normal pipe electrode. ,(
2) is the workpiece after being machined by this pipe electrode (1), CD) is the diameter of the machined hole in the workpiece (2),
(d) is the diameter of the pipe electrode, (g) is the discharge gap, (t
) indicates the thickness of the workpiece (2), and the arrow indicates the direction of movement of the pipe electrode (1) relative to the workpiece (2) during processing.

上記のようなパイプ電極による放電加工においては、被
加工物(2)の加工穴径(D)に対して放電ギャップ(
g)を勘案したパイプ電極径(d)のパイプ電極(1)
を選定し、このパイプ電極(1)を矢印方向へ2軸を中
心として回転させながら移動させ、被加工物(りに微小
径の放電加工を行う。この場合、パイプ電極(1)を通
常は加工開始位置より被加工物(りの板厚(1)の3倍
程度の長さでZ @I+方向へ下降させ、加工中におけ
るバイブ電極径(d)の消耗によって生じる加工穴径(
D)の加工開始位置と終了位置との差を極力少なくする
ようにしている。
In electrical discharge machining using a pipe electrode as described above, the discharge gap (
Pipe electrode (1) with pipe electrode diameter (d) considering g)
is selected, and this pipe electrode (1) is moved in the direction of the arrow while rotating around two axes to perform electrical discharge machining of a minute diameter on the workpiece.In this case, the pipe electrode (1) is usually Lower the workpiece from the machining start position in the Z @I+ direction with a length approximately three times the thickness (1) of the workpiece, and measure the machined hole diameter (
D) The difference between the machining start position and end position is minimized.

〔発明が解決しようとする問題、幾〕[How many problems does the invention try to solve?]

上記のような従来のパイプ電極(1)による加工方法で
は、バイブ電極(1)が加工中の消耗によって生じる加
工穴径(D)の誤差を補完するようにしてはいるが、第
7図における加工開始穴径(D、)と加工終了穴孔(D
2)とは、例えばバイブ電極径(d) 0 、25mm
、被加工物′(2)の板厚(tH,23mmの加工を行
なうと、DI −D2415μmの誤差が生じる。また
、同図において、交差斜線で示す加工終了直前の残存部
07)によって加工精度および加工速度に悪影響を及ぼ
し、特に多数取り加工における1個あたりの加工速度に
バラツキが生じてしまうなどの問題があった。
In the conventional machining method using the pipe electrode (1) as described above, the vibrator electrode (1) compensates for the error in the machined hole diameter (D) caused by wear during machining, but the Machining start hole diameter (D, ) and machining end hole diameter (D
2) means, for example, the diameter of the vibrator electrode (d) 0, 25 mm.
, When machining the plate thickness (tH, 23 mm) of the workpiece' (2), an error of DI -D of 2415 μm will occur. In addition, in the same figure, the machining accuracy is This has a negative effect on the machining speed, and there are problems such as variations in the machining speed per piece, especially in multi-chip machining.

この発明はかかる問題点を解消するためになされたもの
で、加工精度に優れ、特に加工終了直前の被加工物の残
存部によって生じる悪影響がないfa /J1径の放電
加工方法を得ることを目的とする。
This invention has been made to solve these problems, and its purpose is to provide a method for electrical discharge machining of fa/J1 diameter, which has excellent machining accuracy and does not have any adverse effects caused by the remaining part of the workpiece immediately before the end of machining. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るパイプ電極による放電加工方法は、パイ
プ電極をZ軸を中心として旋回させながら下降させ、こ
の下降とともに旋回半径を徐々に増加するようにしたも
のである。
In the electric discharge machining method using a pipe electrode according to the present invention, the pipe electrode is lowered while rotating around the Z-axis, and the turning radius is gradually increased as the pipe electrode descends.

〔作用] この発明においては、パイプ電極を旋回半径を増しなが
ら9動させるので、被加工物の加工開始穴径と加工終了
穴径、すなわち貫通穴の両端における直径差が縮小され
、また加工終了直前における加工穴中央部の残存部が少
なくなるために加工の不安定度が低減される。
[Operation] In this invention, since the pipe electrode is moved 9 times while increasing the turning radius, the diameter difference between the machining start hole diameter and the machining end hole diameter of the workpiece, that is, the diameter difference at both ends of the through hole, is reduced, and the machining end hole diameter is reduced. The instability of machining is reduced because the remaining part at the center of the immediately preceding machining hole is reduced.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の一実施例による放電加工方法を模式
的に示した説明図で、(a)は加工部分を示し、各部分
の符号は第3図における同部分と同じである。また(b
)はパイプ電極(1)が厚さく1)の被加工物(2)を
加工径(D)  に加工するために、パイプ電極(1)
が加工開始時より徐々にスパイラル状に旋回半径を増し
ながら距離(Ω)だけ下降し、加工終了時の旋回半径が
(r)であるスパイラル状軌跡(11)を微視的に示す
斜面図および上面図である。
FIG. 1 is an explanatory diagram schematically showing an electric discharge machining method according to an embodiment of the present invention, in which (a) shows a machined part, and the reference numerals of each part are the same as those of the same part in FIG. Also (b
) is a thick pipe electrode (1) in order to process the workpiece (2) of 1) to the processing diameter (D).
is a slope diagram microscopically showing a spiral trajectory (11) in which the turning radius gradually increases in a spiral manner from the start of machining and descends by a distance (Ω), and the turning radius at the end of machining is (r); FIG.

次にこの発明の放電加工方法による動作およびその実験
結果について説明する。先ず、加工開始前に被加工物(
2)の材質、板厚(1)および加工穴径(D)等に応じ
たパイプ電極(1)の直径(d)、加工送りの距離(Ω
)、旋回速度、加工終了時の旋回半径(r)等を実験な
どによって最適の値を求め、これによって得られた距離
(幻、旋回速度、旋回半径(r)等の値を制御装置に人
力して設定する。
Next, the operation of the electrical discharge machining method of the present invention and its experimental results will be explained. First, before starting machining, the workpiece (
2) The diameter (d) of the pipe electrode (1) and the machining feed distance (Ω) according to the material, plate thickness (1), and machining hole diameter (D), etc.
), turning speed, turning radius (r) at the end of machining, etc., to find the optimal values through experiments, etc., and then manually controlling the control device with the values of the distance (illustration), turning speed, turning radius (r), etc. and set.

次いで、上記によって選定したパイプ電極(1)を制御
装置の指令に基づいて、旋回させながら徐々にこの旋回
半径を増して下降させ、所定の加工送り距離(Q) ま
で下降したら放電を停止して加工を終了する。
Next, based on the command from the control device, the pipe electrode (1) selected above is rotated while gradually increasing the radius of rotation and lowered, and when it has lowered to a predetermined machining feed distance (Q), the discharge is stopped. Finish processing.

このようにパイプ電極(1)が旋回半径を漸増しながら
加工送りを行う動作により、加工の進行にともなって放
電による消耗が最も多いパイプ電極(1)の先端部(l
a)の直径(dl)の縮減分を、徐々に増すパイプ電極
(1)の旋回半径により補完するので、被加工物(2)
の加工開始位置(2a)と、加工終了位置(2b)とに
おける加工穴径(D)の差を僅小にすることができる。
As the pipe electrode (1) feeds machining while gradually increasing its turning radius, the tip of the pipe electrode (1) (l
Since the reduction in diameter (dl) in a) is supplemented by the gradually increasing turning radius of the pipe electrode (1), the workpiece (2)
The difference in the machined hole diameter (D) between the machining start position (2a) and the machining end position (2b) can be made very small.

また、パイプ電極(1)は加工終了位置(2b)に進行
して行くのに従って旋回半径が増すために、パイプ電極
(1)の内径(d2)面で放電加工される加工穴径(D
)の中央部に生じる残存部が少ないため、加工速度を高
めても不安定な動作を起しにくくなる。
In addition, since the turning radius of the pipe electrode (1) increases as it advances to the machining end position (2b), the machined hole diameter (D
) Since there are few remaining parts in the center, unstable operation is less likely to occur even if the machining speed is increased.

第2図〜第5図に上記の旋回半径(r)と加工精度なら
びに加工速度との関係を求めた一実施例を示す。実験条
件として板厚(1)が1.23mmの被加工物(2)を
放電ギャップ25μmでφ0.29mmの穴を加工する
場合、第3図は第2図に示すような加工後の穴径り、、
D2の差ΔD=D、−D2と、パイプ電極(1)の旋回
半径(r)との関係を表わし、旋回半径(r)を10μ
m程度にすると上記ΔDは約5μmであるが、パイプ電
極(1)を旋回させないで加工した場合(r=o)では
、ΔDが約18μmにもなることを示している。
FIGS. 2 to 5 show an example in which the relationships between the turning radius (r), machining accuracy, and machining speed are determined. As an experimental condition, when machining a hole of φ0.29 mm in a workpiece (2) with a plate thickness (1) of 1.23 mm with a discharge gap of 25 μm, Figure 3 shows the hole diameter after machining as shown in Figure 2. the law of nature,,
D2 represents the relationship between the difference ΔD=D, -D2 and the radius of gyration (r) of the pipe electrode (1), and the radius of gyration (r) is 10μ.
When the diameter is about m, the above ΔD is about 5 μm, but when the pipe electrode (1) is processed without turning (r=o), the ΔD becomes about 18 μm.

第4図および第5図は、上記第3図における旋回半径(
r)と同一座標に対する全加工時間(1)ならびに加工
終了前の0.5 mmの加工に要する時間(シ、)との
関係を示す線図であり、例えば第4図において、バイブ
電極(1)の旋回半径(r)が!0〜20μm程度の範
囲では全加工時間(t)が最も短く、特にこの全加工時
間(1)は第5図における(tl)と対比させてその特
徴が明確に肥められる。すなわち、加工終了前の0.5
 mmの加工に要する時間(tl)の旋回半径(r)に
よって生じる差が、全加工時間(1)の旋回半径(r)
による差のほとんどを占めている。このことは、バイブ
電極(1)をその旋回半径を増しながら移動させること
によって、上述の加工終了直前における被加工物(2)
の中央部の残存部が少ないために、安定した速度で加工
が行なえることを示している。
Figures 4 and 5 show the turning radius (
4 is a diagram showing the relationship between the total machining time (1) for the same coordinates and the time required for machining 0.5 mm before the end of machining (shi,). For example, in FIG. )'s turning radius (r)! In the range of about 0 to 20 μm, the total machining time (t) is the shortest, and the characteristics of this total machining time (1) in particular are clearly enhanced when compared with (tl) in FIG. In other words, 0.5 before the end of machining
The difference caused by the turning radius (r) of the time (tl) required for machining mm is the turning radius (r) of the total machining time (1)
account for most of the difference. By moving the vibrator electrode (1) while increasing its turning radius, the workpiece (2) just before the end of the machining can be
This shows that machining can be performed at a stable speed because there is only a small amount of remaining material in the center.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、バイブ電極を旋回させ
、その旋回半径を徐々に増しながら加工送りをするよう
にしたので、被加工物の加工開始位置と終了位置との加
工穴径の差が僅小となるとともに、加工終了直前におけ
る被加工物の中央の残存部が少なくなり、加工精度およ
び加工速度を向上させることができる効果がある。
As explained above, in this invention, the vibrator electrode is rotated and the machining feed is performed while gradually increasing the radius of rotation, so that the difference in machining hole diameter between the machining start position and the machining end position of the workpiece is reduced. In addition to being extremely small, the remaining portion at the center of the workpiece immediately before the end of machining is reduced, which has the effect of improving machining accuracy and machining speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、 (b)はこの発明の一実施例によるバ
イブ電極による放電加工方法を模式的に示した説明図、
第2図はこの発明による放電加工方法を説明するための
被加工物の断面図、第3図〜第5図はこの発明による放
電加工方法に基づいて行なった旋回半径と加工精度およ
び加工速度との関係を示す線図、第6図はバイブ電極に
よる加工部を模式的に示した断面図、第7図は加工終了
直前における被加工物中央部の残存部を模式的に示した
断面図である。 図において、(1)はバイブ電極、(1a)は先端部、
(りは被加工物、(I+)はバイブ電極の軌跡、(r)
は加工終了時の旋回半径、(g)は放電ギャップ、(t
)は板厚。 なお、図中同一符号は同一または相当部分を示す。
FIGS. 1(a) and 1(b) are explanatory diagrams schematically showing an electrical discharge machining method using a vibrator electrode according to an embodiment of the present invention,
Fig. 2 is a cross-sectional view of a workpiece for explaining the electric discharge machining method according to the present invention, and Figs. 3 to 5 show the turning radius, machining accuracy, and machining speed based on the electric discharge machining method according to the present invention. Figure 6 is a cross-sectional view schematically showing the part processed by the vibrator electrode, and Figure 7 is a cross-sectional view schematically showing the remaining part of the center of the workpiece just before the end of the process. be. In the figure, (1) is the vibrator electrode, (1a) is the tip,
(ri is the workpiece, (I+) is the trajectory of the vibrator electrode, (r)
is the turning radius at the end of machining, (g) is the discharge gap, (t
) is the plate thickness. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)パイプ電極によって被加工物に貫通穴を加工する
放電加工装置において、上記パイプ電極をZ軸を中心と
して旋回させながら下降させ、この下降とともに旋回半
径を徐々に増加するようにしたことを特徴とする放電加
工方法。
(1) In an electric discharge machining device that drills a through hole in a workpiece using a pipe electrode, the pipe electrode is lowered while rotating around the Z axis, and the turning radius is gradually increased as the pipe electrode descends. Characteristic electric discharge machining method.
(2)上記パイプ電極の加工終了時の旋回半径の値をそ
の加工における放電ギャップ値以下とすることを特徴と
する特許請求の範囲第1項記載の放電加工方法。
(2) The electrical discharge machining method according to claim 1, characterized in that the value of the turning radius at the end of machining of the pipe electrode is set to be equal to or less than the discharge gap value in the machining.
JP21727486A 1986-09-17 1986-09-17 Electric discharge machining method Pending JPS6374527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21727486A JPS6374527A (en) 1986-09-17 1986-09-17 Electric discharge machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21727486A JPS6374527A (en) 1986-09-17 1986-09-17 Electric discharge machining method

Publications (1)

Publication Number Publication Date
JPS6374527A true JPS6374527A (en) 1988-04-05

Family

ID=16701570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21727486A Pending JPS6374527A (en) 1986-09-17 1986-09-17 Electric discharge machining method

Country Status (1)

Country Link
JP (1) JPS6374527A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07195234A (en) * 1993-08-19 1995-08-01 Charmilles Technol Sa Simply shaped rotary tool electrode for use in three-dimensional electric discharging
JPH07195232A (en) * 1993-08-20 1995-08-01 Charmilles Technol Sa Machining device for three-dimensional work
US7954613B2 (en) 2003-09-22 2011-06-07 Litens Automotive Partnership Decoupler assembly
CN104325202A (en) * 2014-10-21 2015-02-04 中国石油大学(华东) Synchronous processing mechanism for parts at fluid filling hole positions for electrical discharge machining

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516775A (en) * 1978-07-24 1980-02-05 Ishikawajima Harima Heavy Ind Co Ltd Device for supporting roll
JPS5525011A (en) * 1978-08-09 1980-02-22 Hitachi Ltd Automatic play electronic instrument
JPS5590231A (en) * 1978-12-22 1980-07-08 Mitsubishi Electric Corp Electric discharge machining device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516775A (en) * 1978-07-24 1980-02-05 Ishikawajima Harima Heavy Ind Co Ltd Device for supporting roll
JPS5525011A (en) * 1978-08-09 1980-02-22 Hitachi Ltd Automatic play electronic instrument
JPS5590231A (en) * 1978-12-22 1980-07-08 Mitsubishi Electric Corp Electric discharge machining device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07195234A (en) * 1993-08-19 1995-08-01 Charmilles Technol Sa Simply shaped rotary tool electrode for use in three-dimensional electric discharging
JPH07195232A (en) * 1993-08-20 1995-08-01 Charmilles Technol Sa Machining device for three-dimensional work
US7954613B2 (en) 2003-09-22 2011-06-07 Litens Automotive Partnership Decoupler assembly
CN104325202A (en) * 2014-10-21 2015-02-04 中国石油大学(华东) Synchronous processing mechanism for parts at fluid filling hole positions for electrical discharge machining

Similar Documents

Publication Publication Date Title
JPH0351548B2 (en)
JPH10124127A (en) Thread cutting device using nc lathe, and method therefor
JPS6374527A (en) Electric discharge machining method
JP2845888B2 (en) Rounding method of bending part in bending hole
JPS61121822A (en) Electric discharge processing machine
JP3099022B2 (en) Spiral machining method in wire cut electric discharge machining
JPS59169717A (en) Electric discharge machining device
JPH05111825A (en) Threading method by electric discharge machining
JPS6026649B2 (en) Wire cut electrical discharge machining control method
JP2585768B2 (en) Cutting feed setting device for machine tools
JPH02116428A (en) Boring method and device for oblique hole
JPH03117519A (en) Wire electric discharge machining
JP3084385B2 (en) Automatic multiple machining method for NC wire electric discharge machine
JP2584366B2 (en) Taper machining method for wire electric discharge machine
JPS6158256B2 (en)
JPS622926B2 (en)
JPS6237618Y2 (en)
JPS61164729A (en) Tapping method by electric discharge machining
JPS6114820A (en) Method for machining hole
JPH11291126A (en) Electric discharge machine and electric discharge machine
JPS5840213A (en) Work holder before cutting off work
JPS63120304A (en) Production of involute curve
JPH03170232A (en) Processing method for thin wall pipe
JPH04111716A (en) Wire discharge processing device
JPH0691413A (en) Forming method for steel pipe screw joint