JPS6373560A - Semiconductor element - Google Patents

Semiconductor element

Info

Publication number
JPS6373560A
JPS6373560A JP61217818A JP21781886A JPS6373560A JP S6373560 A JPS6373560 A JP S6373560A JP 61217818 A JP61217818 A JP 61217818A JP 21781886 A JP21781886 A JP 21781886A JP S6373560 A JPS6373560 A JP S6373560A
Authority
JP
Japan
Prior art keywords
semiconductor device
thin film
film
element selected
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61217818A
Other languages
Japanese (ja)
Inventor
Kunihiro Sakai
酒井 邦裕
Harunori Kawada
河田 春紀
Hiroshi Matsuda
宏 松田
Yuuko Morikawa
森川 有子
Yoshinori Tomita
佳紀 富田
Takeshi Eguchi
健 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61217818A priority Critical patent/JPS6373560A/en
Priority to US07/071,393 priority patent/US4939556A/en
Priority to EP87306128A priority patent/EP0252756A3/en
Priority to EP19920201460 priority patent/EP0502590A3/en
Publication of JPS6373560A publication Critical patent/JPS6373560A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify a manufacturing process by forming a base body and a periodic laminated structure in which organic thin-films and inorganic thin films are laminated alternately. CONSTITUTION:Cr is vacuum-deposited onto a glass substrate 2 hydrophobic- treated through an LB method as an undercoating layer, and Au is evaporated to shape a foundation electrode 9. the monomolecular film of arachidic acid Cd salt is accumulated through the LB method, using the substrate 2 as a carrier, thus preparing a built-up film 10. Au having a dotted pattern is evaporated onto the surface of said film 10 to form an intermediate metallic layer 11, the monomolecular films of arachidic acid Cd salt are each accumulated (a built-up film 12) in 2, 4, 6, 8 and 10 layers, and Au is evaporated as an upper electrode 13. Accordingly, inorganic materials and organic materials are laminated alternately, thus easily acquiring an excellent hetero-junction having an extremely sudden composition change.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は有機半導体素子に関するものである。[Detailed description of the invention] 〔Technical field〕 The present invention relates to organic semiconductor devices.

更に詳しくは有機及び無機の複合材料によって構成され
るものであり、特に主たる通電方向に対し有機材料によ
って形成されるポテンシャル障壁が2回以上繰り返す超
格子構造を有する半導体素子に関する。
More specifically, the present invention relates to a semiconductor element composed of an organic and inorganic composite material, and particularly to a semiconductor element having a superlattice structure in which a potential barrier formed by an organic material repeats two or more times in the main current direction.

〔背景分野〕[Background field]

近年、半導体技術分野並びに光学技術分野に於いて、加
工特に成膜技術の高精度、高微細化に伴ない、電気的に
も光学的にも極めて良質な半導体ヘテロ接合界面が作ら
れるように至った。
In recent years, in the fields of semiconductor technology and optical technology, with the high precision and fineness of processing, especially film formation technology, it has become possible to create semiconductor heterojunction interfaces that are of extremely high quality both electrically and optically. Ta.

係る方法で異なる半導体を層状に積み重ね、長周期構造
をもたせたものは、半導体ヘテロ構造超格子と呼ばれ、
その電子構造に起因する物性(高移動度、負性抵抗など
)が注目を集めており、多くの研究機関に於いて半導体
素子への実用化が試みられている。
A structure in which different semiconductors are stacked in layers using this method to create a long-period structure is called a semiconductor heterostructure superlattice.
Its physical properties (high mobility, negative resistance, etc.) due to its electronic structure are attracting attention, and many research institutions are attempting to put it to practical use in semiconductor devices.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、上記の如き検討は、取扱いが比較的容易なGaA
SやSiといった無機材料に対象を限って進められてき
た。又、その大半が分子線エピタキシー法によりて薄膜
を形成するものであり、そのため製造工程が複雑で、か
つ超高真空や高温などの極端条件下での処理を必要とし
、製造装置自体も大がかりなものとなっている。
Conventionally, the above studies have been conducted using GaA, which is relatively easy to handle.
Progress has been limited to inorganic materials such as S and Si. In addition, most of them use molecular beam epitaxy to form thin films, which makes the manufacturing process complicated and requires processing under extreme conditions such as ultra-high vacuum and high temperatures, and the manufacturing equipment itself is large-scale. It has become a thing.

又、無機材料である為、素材遷択における自由度が低い
といった問題点も抱えている。
Furthermore, since it is an inorganic material, it also has the problem of a low degree of freedom in material selection.

一方、これに反し、有機材料は、安価かつ製造容易であ
り機能性に富んでいる。更に、これまで劣るとされてい
た耐熱性や機械的強度に対しても、最近これを克服した
有機材料が次々と生まれている。しかしながら、その電
気的特性、特に導電性などは現時点では無機材料に較べ
て著しく小さく、有機材料を単純に無機材料と置@換え
ることは難しい。
On the other hand, organic materials, on the other hand, are inexpensive, easy to manufacture, and highly functional. Furthermore, organic materials that have overcome heat resistance and mechanical strength, which were previously thought to be inferior, have been created one after another. However, its electrical properties, particularly conductivity, are currently significantly lower than those of inorganic materials, making it difficult to simply replace organic materials with inorganic materials.

従フて、本発明は前述の問題点を解消した新規な半導体
素子を提供することにある。
Therefore, an object of the present invention is to provide a novel semiconductor device that solves the above-mentioned problems.

〔問題点を解決するための手段及び作用〕本発明者らは
、上述の如き従来の問題点を解消すべく鋭意研究の結果
、有機材料と無機材料とを積層して得られるペテロ接合
及びペテロ構造超格子が半導体素子構成要素として極め
て有望であることを見出した。本発明は、一般に高い絶
縁性(又は半絶縁性)を示す無機薄膜と、導電性(又は
半導電性)を有する無機薄膜を交互に積層することで、
ポテンシャル障壁が2回以上、好ましくは2〜20回、
特に2〜10回繰返す電気的ポテンシャルの周期構造を
容易に実現できることに着目し、又特に係る周期構造に
於いてその繰り返す幅(無機薄膜の膜厚又は無機薄膜の
膜厚を言う)が極めて小さい場合に、無機材料のみで形
成した従来公知の超格子半導体装置同様、非線型電流電
圧特性等が発現することを期待し、かつその実現を図っ
たものである。
[Means and effects for solving the problems] As a result of intensive research to solve the conventional problems as described above, the present inventors have developed a petrojunction and a petrojunction obtained by laminating organic and inorganic materials. We have found that structured superlattices are extremely promising as components of semiconductor devices. The present invention is achieved by alternately laminating inorganic thin films that generally exhibit high insulating (or semi-insulating) properties and inorganic thin films that have electrical conductivity (or semi-conductivity).
The potential barrier is 2 or more times, preferably 2 to 20 times,
In particular, we focused on the fact that it is easy to realize a periodic structure of electrical potential that repeats 2 to 10 times, and in particular, in such a periodic structure, the repetition width (meaning the thickness of the inorganic thin film or the thickness of the inorganic thin film) is extremely small. In this case, it is expected that nonlinear current-voltage characteristics will be exhibited, similar to conventionally known superlattice semiconductor devices formed only from inorganic materials, and the aim is to realize this.

更に、係る特性を用い増幅機能等を有する新規半導体素
子をも実現したものである。尚、上述した「極めて小さ
い」は本発明に於いて数Å〜数100人の範囲を示すも
ので、更に望ましくは10Å〜100人の範囲を云うも
のである。
Furthermore, by using such characteristics, a new semiconductor element having an amplification function and the like has been realized. In the present invention, the above-mentioned "extremely small" refers to a range of several Å to several 100 people, and more preferably a range of 10 Å to 100 people.

係る本発明に於いて、適用可能な材料というのは無機薄
膜に於いても無機薄膜に於いても著しく多岐にわたる、
現在公知の有機材料のほとんどは絶縁性若しくは半絶縁
性を示すことから本発明におけるポテンシャルの障壁を
成す材料としての必要条件を満足する。一方、無機材料
も係る有機材料に較べて導電性の高いものは枚挙にいと
まない。Au、Ag、Al1.Ni、Ptなどの金属や
合金、グラファイトやSi(単結晶、ポリシリコン、ア
モルファス)やシリサイドにッケルシリサイド、パラジ
ウムシリサイド)、GaAs、Gap、Cds、edg
eなどの半導体を始めとして数多くの材料が挙げられこ
れらの本発明への適用が考えられる。
In the present invention, applicable materials are extremely diverse, both inorganic thin films and inorganic thin films.
Since most of the currently known organic materials exhibit insulating or semi-insulating properties, they satisfy the requirements for materials forming potential barriers in the present invention. On the other hand, there are countless inorganic materials that have higher conductivity than organic materials. Au, Ag, Al1. Metals and alloys such as Ni and Pt, graphite, Si (single crystal, polysilicon, amorphous), silicide, Keckel silicide, palladium silicide), GaAs, Gap, Cds, edg
A large number of materials including semiconductors such as E and the like can be considered for application to the present invention.

特に、本発明では、長周期型周期表のTVB族から遷ば
れたi素(C,Si、Ge)を含む半導体物質、III
 B族から選ばれた元素(Ga)とVB族から選ばれた
元素(As、P)とを含む半導体物質あるいはII B
族から選ばれた元素(Cd)とVIB族から選ばれた元
素(S、Se)とを含む半導体物質を用いることができ
る。
In particular, in the present invention, semiconductor materials containing i elements (C, Si, Ge) from the TVB group of the long periodic table,
A semiconductor material containing an element selected from group B (Ga) and an element selected from group VB (As, P) or II B
A semiconductor material containing an element selected from the group VIB (Cd) and an element selected from the group VIB (S, Se) can be used.

本発明で用いる無機薄膜と無機薄膜とのヘテロ接合界面
で形成されるバンドギャップは、通常0.1eV〜数e
Vである。
The band gap formed at the heterojunction interface between the inorganic thin films used in the present invention is usually 0.1 eV to several eV.
It is V.

係る材料を用いた素子形成法としても従来公知の薄膜技
術で充分本発明の目的を達成することができる。特に、
本発明では素子中に有機材料が含まれることから、30
0℃以下の条件下で成膜可能な方法を採用するのが好ま
しい。例えば、本発明で用いつる好適な無機薄膜層形成
法として真空蒸着法やスパッタリング法をここでは挙げ
ることができる。一方、無機薄膜層の形成に関しては、
具体的には蒸着や電解重合などの通用も可能であるが、
制御性、容易性そして再現性からラングミュアらが提案
したラングミュア・プロジェット法(LB法)が極めて
好適である。
As a method for forming an element using such a material, the object of the present invention can be sufficiently achieved by conventionally known thin film technology. especially,
In the present invention, since an organic material is contained in the element, 30
It is preferable to employ a method that allows film formation under conditions of 0° C. or lower. For example, a vacuum evaporation method and a sputtering method can be cited as suitable inorganic thin film layer forming methods for use in the present invention. On the other hand, regarding the formation of an inorganic thin film layer,
Specifically, methods such as vapor deposition and electrolytic polymerization are also possible, but
The Langmuir-Prodgett method (LB method) proposed by Langmuir et al. is extremely suitable because of its controllability, ease, and reproducibility.

このLB法によれば、1分子中に疎水性部位と親水性部
位とを有する有機化合物の単分子膜またはその累積膜を
基板上に容易に形成することができ、分子オーダの厚み
を有し、かつ大面積にわたって均一、均買な有機超薄膜
を安定に供給することができる。
According to this LB method, a monomolecular film of an organic compound having a hydrophobic site and a hydrophilic site in one molecule or a cumulative film thereof can be easily formed on a substrate, and has a thickness on the order of a molecule. , and it is possible to stably supply a uniform, uniformly priced organic ultra-thin film over a large area.

LB法は、分子内に親水性部位と疎水性部位とを有する
構造の分子において、両者のバランス(両親媒性のバラ
ンス)が適度に保たれている時、分子は水面上で親水性
基を下に向けて単分子の層になることを利用して単分子
膜またはその累積膜を作成する方法である。
The LB method is a molecule with a structure that has a hydrophilic site and a hydrophobic site, and when the balance between the two (amphiphilic balance) is maintained appropriately, the molecule has a hydrophilic group on the water surface. This is a method of creating a monomolecular film or a cumulative film thereof by utilizing the fact that the monomolecular layer forms downward.

疎水性部位を構成する基としては一般に広く知られてい
る飽和及び不飽和炭化水素基や縮合多環芳香族基及び鎖
状多環フェルニル基等の各種疎水基が挙げられる。これ
らは各々単独又はその複数が組合されて疎水性部分を構
成する。
Examples of the group constituting the hydrophobic moiety include various hydrophobic groups such as saturated and unsaturated hydrocarbon groups, condensed polycyclic aromatic groups, and chain polycyclic phenyl groups, which are generally widely known. Each of these may be used singly or in combination to form a hydrophobic portion.

一方親水性部分の構成要素として最も代表的なものは、
例えばカルボキシル基、スルホン酸基及び四級アミノ基
等の新水性基等が挙げられる。
On the other hand, the most typical components of the hydrophilic part are:
Examples include new aqueous groups such as carboxyl groups, sulfonic acid groups, and quaternary amino groups.

これらの疎水性基と親水性基をバランス良く併有する分
子であれば、水面上で単分子膜を形成することが可能で
ある。尚、一般的にはこれらの分子は絶縁性の単分子膜
を形成し、よって単分子累積膜も絶縁性を示すことから
本発明に対し極めて好適な材料といえる。
If the molecule has both these hydrophobic groups and hydrophilic groups in a well-balanced manner, it is possible to form a monomolecular film on the water surface. Incidentally, these molecules generally form an insulating monomolecular film, and since the monomolecular cumulative film also exhibits insulating properties, it can be said to be an extremely suitable material for the present invention.

下記の如き分子等が挙げられる。Examples include the following molecules.

■所望の機能性を荷う部位、即ち機能性部分(例えばπ
電子系)が同時に強い親木性(又は強い疎水性)として
の性質を併有する分子、例えば銅フタロシアニン、とレ
ン、トリフェニルメタン等又、係る機能性部分が重合成
を示す分子、例えばジアセチレン誘導体、ポリイミド等
、 ■機能性部分が特に親水性、疎水性を有さす、上記の如
き親木基、疎水基等を導入することで、分子内に親水性
部分と疎水性部位を構成したもの、例えば、 イ11機能性分が親木性部分の側に配設されているもの
、例えば、光導電性を有する長鎖アルキル置換のメロシ
アニン色素等、 口9機能性部分が疎水性部分の側に配設されているもの
、例えば、とレンに長鎖アルキルカルボン酸を結合した
もの等、 ハ0機能性部分が中央付近、即ち疎水性部分と親木性部
分の中間に配設されているもの、例えば、アントラセン
銹導体、ジアヅ色素の8導体等、 二0機能性部分がなく、疎水性部分と親木性部分のみで
できているもの、例えば、長鎖飽和↓ 脂肪酸置換のステアリ酸、アラキシン酸等が具体的なも
のとして挙げられる。。
■ Parts that carry the desired functionality, i.e., functional parts (for example, π
Molecules that have strong xylophilicity (or strong hydrophobicity) at the same time (electronic system), such as copper phthalocyanine, tolene, triphenylmethane, etc. Molecules whose functional moiety exhibits polymerization, such as diacetylene Derivatives, polyimides, etc. ■Functional parts have particularly hydrophilic and hydrophobic properties, and by introducing the above-mentioned parent wood groups, hydrophobic groups, etc., a hydrophilic part and a hydrophobic part are formed in the molecule. For example, (11) those in which the functional part is arranged on the side of the wood-loving part, such as long-chain alkyl-substituted merocyanine dyes with photoconductivity; For example, in those in which a long-chain alkylcarboxylic acid is bonded to andren, the HA0 functional part is located near the center, that is, between the hydrophobic part and the woody part. For example, anthracene conductor, diazu dye 8 conductor, etc. 20 Things that do not have functional parts and are made only of hydrophobic parts and woody parts, such as long chain saturated ↓ fatty acid substituted stearic acid, Specific examples include araxic acid and the like. .

尚、上記以外でもLB法に適している材料であれば本発
明に好適なのは言うまでもない。
It goes without saying that materials other than those mentioned above are suitable for the present invention as long as they are suitable for the LB method.

例えば近年研究が盛んになりつつある生体材料(例えば
バタテリオロドブシンやチトクロームC)や合成ポリペ
プチド(PBLGなと)等も適用が可能である。
For example, biomaterials (for example, batatteriorhodobuscin and cytochrome C) and synthetic polypeptides (PBLG), etc., which have been actively researched in recent years, can also be applied.

係る両親媒性の分子は水面上で親木基を下に向けて単分
子の層を形成する。このとき、水面上の単分子層は二次
元系の特徴を有し、分子がまばらに散開しているときは
、一分子当り面積Aと表面圧πとの間に二次元理想気体
の式、πA = に T が成り立ち、“気体膜”となる、ここに、にはボルツマ
ン定数、Tは絶対温度である。Aを十分小さくすれば分
子間相互作用が強まり、二次元固体の“凝縮膜(または
固体膜)”になる。
Such amphiphilic molecules form a monomolecular layer on the water surface with the parent group facing downward. At this time, the monomolecular layer on the water surface has the characteristics of a two-dimensional system, and when the molecules are sparsely dispersed, the two-dimensional ideal gas equation is expressed between the area A per molecule and the surface pressure π. πA = T holds true, resulting in a "gas film", where is Boltzmann's constant and T is the absolute temperature. If A is made sufficiently small, the intermolecular interaction becomes stronger, resulting in a two-dimensional solid "condensation film (or solid film)."

凝縮膜はガラスや樹脂の如き種々の材質や形状を有する
任意の物体の表面へ一層ずつ移すことができる。この方
法を用いて、単分子膜またはその累積膜を形成し、これ
を本発明が示す半導体素子用のポテンシャル障壁層とし
て使用することができる。
The condensed film can be transferred layer by layer onto the surface of arbitrary objects having various materials and shapes, such as glass and resin. Using this method, a monomolecular film or a cumulative film thereof can be formed and used as a potential barrier layer for a semiconductor device according to the present invention.

具体的な製法としては、例えば、以下に示す方法を挙げ
ることができる。
As a specific manufacturing method, for example, the method shown below can be mentioned.

所望の有機化合物をクロロホルム、ベンゼン、アセトニ
トリル等の溶剤に溶解させる0次に添付図面の第3図に
示す如き適当な装置を用いて、係る溶液を水相1上に展
開させて有機化合物の展開層11を膜状に形成させる。
The desired organic compound is dissolved in a solvent such as chloroform, benzene, acetonitrile, etc. Next, the solution is developed on the aqueous phase 1 using a suitable apparatus as shown in Figure 3 of the attached drawings to develop the organic compound. Layer 11 is formed into a film shape.

次にこの展開層11が水相1上を自由に拡散して広がり
すぎないように仕切板(または浮子)3を設け、展開層
11の面積を制限して膜物質の集合状態を制御し、その
集合状態に比例した表面圧πを得る。この仕切板3を勅
かし、展開層11の面積を縮小して膜物質の集合状態を
制御し、表面圧を徐々に上昇させ、膜の製造に適する表
面圧πを設定することができる。この表面圧を維持しな
がら、静かに清浄な基板2を垂直に上昇または下降させ
ることにより有機化合物の単分子膜4が基板2上に穆し
取られる。このような単分子膜4は第4図(a)または
第4図(b)に模式的に示す如く分子が秩序正しく配列
した膜である。
Next, a partition plate (or float) 3 is provided to prevent the spreading layer 11 from freely diffusing and spreading too much on the aqueous phase 1, and the area of the spreading layer 11 is restricted to control the aggregation state of the film substance. Obtain the surface pressure π proportional to the collective state. By controlling the partition plate 3, the area of the spreading layer 11 is reduced to control the state of collection of membrane substances, and the surface pressure can be gradually increased to set a surface pressure π suitable for membrane production. By gently raising or lowering the clean substrate 2 vertically while maintaining this surface pressure, the monomolecular film 4 of the organic compound is removed onto the substrate 2. Such a monomolecular film 4 is a film in which molecules are arranged in an orderly manner as schematically shown in FIG. 4(a) or FIG. 4(b).

単分子膜4は以上で製造されるが、前記の操作を繰り返
すことにより所望の累積数の累積膜が形成される。単分
子膜を基板上に移すには、上述した垂直浸漬法の他、水
平付着法、回転円筒法等の方法でも可能である。
The monomolecular film 4 is manufactured as described above, and by repeating the above operations, a desired cumulative number of films can be formed. In addition to the above-mentioned vertical dipping method, methods such as a horizontal deposition method and a rotating cylinder method can also be used to transfer the monomolecular film onto a substrate.

水平付着法は、基板2を水面に水平に接触させて単分子
膜4を穆しとる方法であり、回転円筒法は円筒形の基板
2を水面上を回転させて単分子膜4を基板2の表面に穆
しとる方法である。
The horizontal deposition method is a method in which the monomolecular film 4 is removed by horizontally contacting the substrate 2 with the water surface, and the rotating cylinder method is a method in which the cylindrical substrate 2 is rotated on the water surface to remove the monomolecular film 4 on the substrate 2. This is a method of scouring the surface.

前述した垂直浸漬法では、表面が親水性である基板2を
水面を横切る方向に水中から引き上げると有機化合物の
親水性基が基板2の側に向いた有機化合物の単分子膜4
が基板2の上に形成される(第4図−b−)、前述のよ
うに基板2を上下させると、各行程ごとに一枚ずつ単分
子膜4が積み重なって累積膜5が形成される。成膜分子
の向きが引上行程と浸漬行程で逆になるので、この方法
によると単分子膜4の各層間は有機化合物の疎水基と疎
水基が向かいあうY型膜が形成される(第5図−a −
)。これに対し、水平付着法は、有機化合物の疎水性基
が基板2の側に向いた単分子膜4が基板2の上に形成さ
れる(第4図−a−)、この方法では、単分子膜4を累
積しても成膜分子の向きの交代はなく全ての層において
、疎水性基が基板2の側に向いたX型膜が形成される(
第5図−b−)、反対に全ての層において親木性基が基
板2の側に向いた累積膜5はZ型膜と呼ばれる(′s5
図−〇−)。
In the above-mentioned vertical immersion method, when the substrate 2 having a hydrophilic surface is lifted out of water in a direction across the water surface, a monomolecular film 4 of an organic compound is formed with the hydrophilic groups of the organic compound facing toward the substrate 2.
is formed on the substrate 2 (Fig. 4-b). When the substrate 2 is moved up and down as described above, the monomolecular film 4 is stacked one by one at each step, forming a cumulative film 5. . Since the direction of the film-forming molecules is reversed between the pulling process and the dipping process, this method forms a Y-shaped film in which the hydrophobic groups of the organic compound face each other between each layer of the monomolecular film 4 (No. 5). Figure-a-
). In contrast, in the horizontal deposition method, a monomolecular film 4 with the hydrophobic groups of the organic compound facing the substrate 2 is formed on the substrate 2 (Fig. 4-a). Even if the molecular films 4 are accumulated, there is no change in the orientation of the film-forming molecules, and an X-shaped film is formed in which the hydrophobic groups face the substrate 2 in all layers (
On the contrary, the cumulative film 5 in which the tree-philic groups in all the layers face the substrate 2 side is called a Z-type film ('s5-b-).
Figure-〇-).

単分子膜4を基板2の上に穆す方法は、上記方法に限定
されるわけではなく、大面積基板を用いる時には、ロー
ルから水相中に基板2を押し出していく方法なども採り
得る。また、前述した親木性基および疎水性基の基板2
への向きは原則であり、基板2の表面処理等によって変
えることもできる。
The method of spreading the monomolecular film 4 onto the substrate 2 is not limited to the above method, and when a large-area substrate is used, a method of extruding the substrate 2 from a roll into an aqueous phase may also be adopted. In addition, the substrate 2 of the above-mentioned lignophilic group and hydrophobic group
The orientation is a general rule and can be changed by surface treatment of the substrate 2 or the like.

以上の如くして有機化合物の単分子膜4またはその累積
膜5かうなるポテンシャル障壁層が基板上に形成される
As described above, a potential barrier layer consisting of the organic compound monomolecular film 4 or its cumulative film 5 is formed on the substrate.

本発明において、上記の如き無機及び有機材料が積層さ
れた薄膜を支持するための基板2は、金属、ガラス、セ
ラミックス、プラスチック材料等いずれの材料でもよく
、更に耐熱性の著しく低い生体材料も使用できる。
In the present invention, the substrate 2 for supporting the thin film laminated with inorganic and organic materials as described above may be made of any material such as metal, glass, ceramics, or plastic material, and biomaterials with extremely low heat resistance may also be used. can.

上記の如き基板2は、任意の形状でよく、平板状である
のが好ましいが、平板に何ら限定されない、すなわち前
記成膜法においては、基板2の表面がいかなる形状であ
ってもその形状通りに膜を形成し得る利点を有するから
である。
The substrate 2 as described above may have any shape, preferably a flat plate, but is not limited to a flat plate. In other words, in the film forming method, whatever shape the surface of the substrate 2 has, the shape will be the same. This is because it has the advantage of being able to form a film.

〔実施例1〕 以下に示す手順で金属(下地電極)9層単分子累積膜1
0/金属11/単分子累積膜12/金属(上部電極)1
3の構造を有する試料(第1図)を作成した。尚このと
き中間の金属層11をはさむ両側の単分子累積膜10と
12の層数は等しくした(図中、41と42は取出し電
極を表わす)、まず、LB法により疎水処理(アラキシ
ン酸Cd塩[CHs (CH2)+aCO百・Cd ”
]を33層累積したガラス基板2(コーニング社製、)
059)上にCrを下引き層として厚さ500人真空蒸
着(抵抗加熱法、基板温度室温)し、更にAuを同法に
より蒸着(膜厚1000°人)し、これを下地電極9と
した。係る基板2を担体としてLB法によりアラキシン
酸Cd塩の単分子膜の累積を行ない、累積膜10を作成
した。次に、累積方法の詳細を記す、アラキシン酸(C
H3(C1(2)+aCOOH)を濃度1 m g /
 m 1で溶かしたクロロホルム溶媒を、KHCO,で
PH6,4に調製したCdC1゜濃度4xlO−’mo
j2/fLで水温20℃の水相上に展開し水面上に単分
子膜4を形成した溶媒の蒸発除去を待って係る単分子膜
4の表面圧を30 m N / mまで高め、更にこれ
を一定に保ちながら前記基板2を水面を横切る方向に定
速10MM/Minで静かに浸漬した後、続いて同速度
で静かに引き上げ2層のY型単分子膜の累積を行なった
。係る操作を適当回数繰り返すことによって前記基板2
上に、それぞれ2,4゜6.8と10層の累積膜10を
形成した。次に係る膜面上にドツト状のパターンのAu
(直径1φ、膜厚80人)を蒸着し中間金属層11を形
成した。次にアラキシン膜Cd塩の単分子膜を前記と全
く同じ方法でそれぞれ2,4,6.8と10層累積(累
積膜12)し、更に上部電極13としてAu(直径2φ
、膜厚1000人)を蒸着した。
[Example 1] A 9-layer monomolecular cumulative film 1 of metal (base electrode) was prepared by the following procedure.
0/Metal 11/Single molecule cumulative film 12/Metal (upper electrode) 1
A sample (Fig. 1) having the structure No. 3 was prepared. At this time, the number of monomolecular cumulative films 10 and 12 on both sides sandwiching the intermediate metal layer 11 was made equal (in the figure, 41 and 42 represent extraction electrodes). First, hydrophobic treatment (araxinic acid Cd Salt [CHs (CH2) + aCO100・Cd”
Glass substrate 2 (manufactured by Corning Inc.) with 33 layers of
059) Cr was vacuum deposited as an undercoat layer to a thickness of 500 degrees (resistance heating method, substrate temperature at room temperature), and Au was further deposited by the same method (film thickness of 1000 degrees), and this was used as the base electrode 9. . Using the substrate 2 as a carrier, a monomolecular film of a Cd araxinate salt was accumulated by the LB method to form a cumulative film 10. Next, we describe the details of the accumulation method, araxic acid (C
H3 (C1(2)+aCOOH) at a concentration of 1 mg/
The chloroform solvent dissolved in m 1 was adjusted to pH 6.4 with KHCO, and the CdC1° concentration was 4xlO-'mo.
j2/fL on a water phase with a water temperature of 20°C, and after waiting for the evaporation of the solvent that formed the monomolecular film 4 on the water surface, the surface pressure of the monomolecular film 4 was increased to 30 mN/m, and further this The substrate 2 was gently immersed in the water at a constant rate of 10 MM/min in a direction across the water surface while keeping the temperature constant, and then gently pulled up at the same rate to accumulate two Y-type monomolecular films. By repeating this operation an appropriate number of times, the substrate 2
A cumulative film 10 of 2.4° and 6.8° and 10 layers was formed thereon. Next, a dot-shaped pattern of Au was formed on the film surface.
(diameter 1φ, film thickness 80 layers) was deposited to form the intermediate metal layer 11. Next, 10 layers of 2, 4, and 6.8 monomolecular films of Araxin film Cd salt were accumulated (cumulative film 12) in exactly the same manner as described above, and furthermore, as the upper electrode 13, Au (diameter 2φ
, a film thickness of 1000 layers) was deposited.

以上の様にして作成した試料をタライオスタット(真空
容器)中に設置し、低温(77” K)下で上下電極間
に電圧を印加したときの電流特性(VI特性)を測定し
た。その結果、単分子累積膜が2層及び4層の試料のV
I特性に於いて、1〜2ボルト付近に極大を待つ上に、
凸の特性曲線が観察され、係る試料が負性抵抗を示すこ
とが確認された。第2図は、単分子累積膜が4層の試料
を用いた時のVI特性を明らかにしている。
The sample prepared as described above was placed in a taliostat (vacuum container), and the current characteristics (VI characteristics) were measured when voltage was applied between the upper and lower electrodes at low temperature (77" K). As a result, the V of samples with two and four layers of monomolecular cumulative film
In the I characteristic, in addition to waiting for the maximum around 1 to 2 volts,
A convex characteristic curve was observed, confirming that the sample exhibited negative resistance. FIG. 2 clarifies the VI characteristics when a sample with four monomolecular cumulative layers is used.

(実施例2〜8) 実施例1と同様の構造を有する試料を作成した。このと
き単分子累積膜(ポテンシャル障壁層)の構成分子には
下記に示す1または2または3を用いた。単分子膜の形
成及びその累積条件及び工程は表面圧を20 m N 
/ mとしたこと、水温を17℃としたこと、と累積速
度を5mm/ m i nとしたこと以外は実施例1と
全く同じとした、但し金属層によって挟まれる各層10
と12はいずれも2層の累積膜とした。
(Examples 2 to 8) Samples having the same structure as in Example 1 were created. At this time, the following molecules 1, 2, or 3 were used as constituent molecules of the monomolecular cumulative film (potential barrier layer). The formation of a monomolecular film and its cumulative conditions and steps were performed using a surface pressure of 20 mN.
/ m, the water temperature was 17° C., and the cumulative speed was 5 mm/min. However, each layer 10 sandwiched between the metal layers was
and No. 12 were both two-layer cumulative films.

1 ジアセチレン銹導体 C+zH2s−CEC−CミC+CH2+a C0OH
2アズレン系スクアリリウム色素 n−Ca Hly  n−C6HI−13アントラセン
誘導体 Hj H2 H2 H2 OOH また、下地電極9及び上電極13も実施例1と全く同様
にして形成した。
1 Diacetylene rust conductor C+zH2s-CEC-CmiC+CH2+a C0OH
2 Azulene-based squarylium dye n-Ca Hly n-C6HI-13 Anthracene derivative Hj H2 H2 H2 OOH Further, the base electrode 9 and the upper electrode 13 were also formed in exactly the same manner as in Example 1.

単分子累積膜に挟まれる中間の金属層11には試料毎に
それぞれAfL、Au、Nfとptを用いた。但し膜厚
は全て50人とし、その形成法は下表中に示す方法を用
いた。係る形成法はいずれも従来公知であり、かつすで
に確立されている技術であることから、その手順等に関
しての詳細な説明は省く。但し本発明に於いて留意すべ
き条件等は下記に示す。
For each sample, AfL, Au, Nf, and pt were used for the intermediate metal layer 11 sandwiched between the monomolecular cumulative films. However, the thickness of each film was 50, and the method shown in the table below was used for forming the film. Since all such forming methods are conventionally known and established techniques, detailed explanations of the procedures and the like will be omitted. However, conditions to be kept in mind in the present invention are shown below.

イ、 Ajl (スパッタリング法);実施例7具体的
にはマグネトロンスパッタ法を用い膜への損傷を低減さ
せた。Ar正ビイオン用い、ガス圧2xlO−’Tor
r、ターゲット電圧250vとし、成膜速度が2人/ 
s e cとなる様ターゲット電流を調整した。
B.Ajl (Sputtering method); Example 7 Specifically, a magnetron sputtering method was used to reduce damage to the film. Using Ar positive bioion, gas pressure 2xlO-'Tor
r, target voltage 250V, film formation speed 2 people/
The target current was adjusted so that sec.

口、pt(電子ビーム法);実施例8 ターゲツト(Pt20φ10t)加熱時に、他の金属に
較べて極めてスプラッシュ(粒状になって飛ぶ)が生じ
易い為、電子ビーム出力を絞り成膜速度を0.05人/
Sまで下げる必要があった。
PT (electron beam method); Example 8 When heating the target (Pt20φ10t), splashes (flying in the form of particles) are more likely to occur than other metals, so the electron beam output was reduced and the film formation rate was reduced to 0. 05 people/
I had to lower it to S.

以上の様にして作成した試料に関し、実施例1と同様に
してv■特性の測定を行なった処、以下の表に示す結果
を得た。
Regarding the samples prepared as described above, the v■ characteristics were measured in the same manner as in Example 1, and the results shown in the table below were obtained.

2     1     1  抵抗加熱(蒸着)法 
    03     2      A4     
 n          。
2 1 1 Resistance heating (vapor deposition) method
03 2 A4
n.

4      ))      A u      )
)          △5     3      
N i      ))          Q6  
    u      A It      n   
       07      ))      il
l  スパッタリング法      ○B      
//      Pt  電子ビーム加熱(蒸着)法 
 0(表11作成条件及び測定結果) 表中、○印で示した様にほとんどの試料に関し負性抵抗
性が認られた。又、負性抵抗を示す電圧はいずれの試料
に於いても数ボルト程度であるのは、異なる試料に於い
ても各層の膜厚等の構造パラメータがほぼ等しい為と考
える。但し、実施例3の結果に於いては電流のピーク(
極大)が比較的鋭く、この為室温下に於いても負性抵抗
を示すに至った(表中O印で示した)。尚、実施例4に
於いて、実施例1同様にAuを用いたにもかかわらず、
同一条件で作成した12個の試料中食性抵抗が認められ
たのはわずかに1点を、顕著な負性抵抗は観察されなか
った(表中Δ印で示した)。これは実施例1に較べ金属
層の膜厚をさらに薄くした為、Auに於いては50人程
度の均一な薄膜を得るのが難しかったことに起因すると
考えられる。
4)) A u)
) △5 3
N i )) Q6
u A It n
07))il
l Sputtering method ○B
// Pt electron beam heating (vapor deposition) method
0 (Table 11 Preparation Conditions and Measurement Results) In the table, negative resistance was observed in most of the samples as indicated by circles. Furthermore, the reason why the voltage showing negative resistance is about several volts in all samples is considered to be because the structural parameters such as the film thickness of each layer are almost the same even in different samples. However, in the results of Example 3, the current peak (
(maximum) was relatively sharp, and therefore showed negative resistance even at room temperature (indicated by O in the table). In addition, in Example 4, although Au was used as in Example 1,
Of the 12 samples prepared under the same conditions, only one point showed corrosion resistance, and no significant negative resistance was observed (indicated by Δ in the table). This is thought to be due to the fact that the thickness of the metal layer was made even thinner than in Example 1, making it difficult to obtain a uniform thin film of approximately 50 layers of Au.

(実施例9) 実施例3で作成した試料の1つを選び第6図に示す電気
回路を構成した。第6図中61が2端子素子を形成する
試料であり、62は直流バイアス用電圧源Va、63は
入力信号源■、で詳しくは低周波発振器を用いた。又6
4は負荷抵抗で金属被膜型300Ωの抵抗体を用いた。
(Example 9) One of the samples prepared in Example 3 was selected and an electric circuit shown in FIG. 6 was constructed. In FIG. 6, 61 is a sample forming a two-terminal element, 62 is a DC bias voltage source Va, and 63 is an input signal source (2), in which a low frequency oscillator was used. Also 6
4 is a load resistance, which is a metal film type resistor of 300Ω.

尚、孫子負荷抵抗に発生する電位をその両端に接続した
オシロスコープ(入力抵抗IMΩ)にて観察した。
Incidentally, the potential generated in the Sun Tzu load resistor was observed with an oscilloscope (input resistance IMΩ) connected to both ends thereof.

まず、入力信号源Vl1114の出力を零としておき、
試料61が負性抵抗を示す電圧、具体的には2.2■と
なる様に直流バイアス用電圧源vB13を設定した。孫
子後に、入力信号源’/In63に波高値50mV、周
波数IKHzの正弦波を印加したところ、抵抗体64の
両端に同じくIKHzの、波高値約85mVの正弦波が
得られた。すなわち、孫子試料61が増幅素子として機
能することが示された。
First, the output of the input signal source Vl1114 is set to zero,
The DC bias voltage source vB13 was set so that the voltage at which the sample 61 exhibited negative resistance, specifically, 2.2. When a sine wave with a peak value of 50 mV and a frequency of IKHz was applied to the input signal source '/In 63 after Sun Tzu, a sine wave with a peak value of about 85 mV and a peak value of about 85 mV was obtained at both ends of the resistor 64. That is, it was shown that the Sun Tzu sample 61 functions as an amplification element.

尚、周波数をIMHzまで変化させた限りに於いてはそ
の増幅率はほとんど変化しなかった。
Incidentally, as long as the frequency was changed up to IMHz, the amplification factor hardly changed.

〔実施例10〕 実施例3と全く同様の構成の試料を作成した。[Example 10] A sample having exactly the same configuration as in Example 3 was prepared.

但しこの時単分子累積膜で挟まれ、る中間金属層11に
外部取出し電極を設けた。具体的には第7図に示す素子
構成を行なった。これは金属蒸着時のマスクパターンを
取り換えるだけで他は実施例3と全く同一の方法で形成
し得た。 。
However, at this time, an external lead electrode was provided on the intermediate metal layer 11 sandwiched between the monomolecular stacked films. Specifically, the device configuration shown in FIG. 7 was made. This could be formed in exactly the same manner as in Example 3, except that the mask pattern during metal vapor deposition was replaced. .

次に係る試料に於いて上部電極13、中間電極11と下
部電8i9をそれぞれに対し領域71゜72.73に於
いてプローブを立てコンタクトを取ワた。このとき特に
領域72に於いては単分子累積膜層をつき破る様、プロ
ーブを強く(針圧>50mg)押しっけてコンタクトを
取った。更に係るプローブに電流計81、バイアス電圧
VB用直流電源62、信号源Vln用直流電流63を接
続し、第8図に示す電気回路を組み立てた。次に、信号
源Vln用直流電源63の出力をθVに保ったまま、電
流が最も流れる様にバイアス電圧V、用直流電源62の
出力を設定した。このときVBは、およそ1.4vol
tであフた。
Next, in the sample, probes were set up and contacts were made with respect to the upper electrode 13, the intermediate electrode 11, and the lower electrode 8i9 at regions 71.degree. 72.73, respectively. At this time, in particular in region 72, contact was made by pushing the probe strongly (needle force > 50 mg) so as to break through the monomolecular cumulative film layer. Furthermore, an ammeter 81, a DC power source 62 for bias voltage VB, and a DC current 63 for signal source Vln were connected to the probe to assemble the electric circuit shown in FIG. Next, while keeping the output of the signal source Vln DC power supply 63 at θV, the bias voltage V and the output of the DC power supply 62 were set so that the maximum current flowed. At this time, VB is approximately 1.4 vol
I finished it with t.

以下の様にして得た条件下でVlnを250mVずつ変
化させたときの回路に流れる電流を測定した処第9図で
示す様な結果が得られた。この結果は、係る3端子素子
が電圧制御型電流増幅素子として機能することを示して
いる。もちろん印加する電圧によって電流量を大きく変
化させていることからスイッチング素子としての応用も
可能であることを示している。
The current flowing through the circuit was measured when Vln was varied by 250 mV under the conditions obtained as follows. Results as shown in FIG. 9 were obtained. This result shows that the three-terminal element functions as a voltage-controlled current amplification element. Of course, the amount of current varies greatly depending on the applied voltage, indicating that it can also be applied as a switching element.

(実施例11) 実施例10の上、下の電極に挟まれる領域に於いて、ポ
テンシャル障壁層(実施例10では単分子累積膜を用い
た)が2回以上、具体的には本実施例では4回繰り返す
構造を有する3端子素子を作成した。断面構造の概略を
第10図(C)に示す。下地金属Ni9及び上部金属層
13並びに単分子累積膜10a、10b、10c。
(Example 11) In the region sandwiched between the upper and lower electrodes of Example 10, the potential barrier layer (a monomolecular cumulative film was used in Example 10) was applied twice or more, specifically in this example. Now, we created a three-terminal element with a structure that repeats four times. A schematic cross-sectional structure is shown in FIG. 10(C). Base metal Ni9, upper metal layer 13, and monomolecular cumulative films 10a, 10b, 10c.

12、中間金属層11a、jlb、lieともに実施例
10と同様の条件で形成した。但し単分子累積膜層/金
属層の成膜を3回繰り返した後、最上の単分子累積膜層
を形成した。又、中間金属層とのコンタクトを確実なも
のとする為に単分子累積膜を含む積層膜の一部を剥II
!(剥離部101)し、更に同領域に取出電極用金属1
00aと100bを注入する方法をとった。
12. The intermediate metal layers 11a, jlb, and lie were formed under the same conditions as in Example 10. However, after repeating the formation of the monomolecular cumulative film layer/metal layer three times, the uppermost monomolecular cumulative film layer was formed. In addition, in order to ensure contact with the intermediate metal layer, a part of the laminated film including the monomolecular cumulative film was peeled off.
! (Peeling part 101), and then the metal 1 for the extraction electrode in the same area
A method of injecting 00a and 100b was adopted.

その様子、手順を第10図a、bとCに示す。The situation and procedure are shown in FIGS. 10a, b, and c.

具体的には、所望の形状を有したM o製のマスク(t
=0.1)を試料に密着させ、これをガス導入口と電子
ビーム蒸発源を併せ持つ高周波イオンブレーティング装
置真空容器内に設晋し、Arガス(ガス圧5X 10−
’To r r)を導入、高周波電力(13,56MH
z、12W)を印加し、得られたAr”イオンビーム1
02を100eVで加速し、試料上方から10分間照射
してマスクで覆われていない領域をエツチングした。
Specifically, a mask (t
= 0.1) was brought into close contact with the sample, and this was placed in a vacuum chamber of a high frequency ion brating device that has both a gas inlet and an electron beam evaporation source, and Ar gas (gas pressure 5X 10-
'To r r) introduced, high frequency power (13,56MH
z, 12W) and the obtained Ar'' ion beam 1
02 was accelerated at 100 eV and irradiated from above the sample for 10 minutes to etch the area not covered by the mask.

尚、基板温度は室温とした。更に試料を真空容器から取
り出さずに再び容器中を真空に保ち(2×10−’To
rr)、今度は電子ビーム蒸着源を用いてエミッション
電流600 mA、加速電圧10KV(7)条件下でA
fLを蒸着(膜厚500人)を行った。上部電極の形成
はこの後行なった。
Note that the substrate temperature was room temperature. Furthermore, without removing the sample from the vacuum container, the inside of the container was kept under vacuum again (2 × 10-'To
rr), this time using an electron beam evaporation source under the conditions of an emission current of 600 mA and an accelerating voltage of 10 KV (7).
fL was deposited (film thickness: 500 ml). After this, the upper electrode was formed.

以上の様にして得た素子に関し実施例10と全く同様に
して一部バイアス下での電流電圧特性を観察したところ
、増幅機能を有していることが確かめられた。
Regarding the device obtained as described above, the current-voltage characteristics under partial bias were observed in exactly the same manner as in Example 10, and it was confirmed that the device had an amplification function.

以上述べてきた実施例中ではポテンシャル障壁層の形成
にLB法を使用してきたが、極めて薄く均一な絶縁制あ
るいは半導電性の無機薄膜が作成できる成膜法であれば
LB法に限らず使用可能である、具体的には真空蒸着法
や電界重合法、CVD法等が挙げられ、使用可能な有機
材料の範囲が広がる。
In the examples described above, the LB method has been used to form the potential barrier layer, but any film formation method that can create an extremely thin and uniform insulating or semiconductive inorganic thin film can be used other than the LB method. Specific examples include vacuum evaporation, electric field polymerization, CVD, etc., which expands the range of usable organic materials.

又、ポテンシャル障壁に囲まれる導電層に関しても既に
述べている様に、無機薄膜層上に均一な薄膜を作成しう
る成膜法であれば使用可能であり、真空蒸着法やスパッ
タ法に限られるものではない。
Also, as mentioned above, regarding the conductive layer surrounded by potential barriers, any film formation method that can create a uniform thin film on the inorganic thin film layer can be used, and is limited to vacuum evaporation and sputtering. It's not a thing.

更に基板材料や3の形状も本発明は何ら限定するもので
はない。
Further, the present invention does not limit the material of the substrate or the shape of 3 in any way.

〔発明の効果〕〔Effect of the invention〕

■無機材料、有機材料を交互に積層することにより極め
て免役な組成変化を有する良好なペテロ接合が容易に得
られた。
(2) By alternately laminating inorganic and organic materials, a good Peter junction with extremely ineffective compositional changes was easily obtained.

■係るペテロ接合を繰り返すことで人工的な周期構造及
び超格子構造を構築し得た。このとき従来の無機材料の
みからなる超格子素子に較べ材料の自由度が高いことを
示した。
(2) By repeating such Peter junctions, we were able to construct artificial periodic structures and superlattice structures. At this time, it was shown that the material has a higher degree of freedom than conventional superlattice elements made only of inorganic materials.

■単分子膜の累積によって有機材料層を形成する方法と
した為、分子オーダ(数Å〜数十人)による膜厚制御が
容易に実現できた。
■Since the organic material layer is formed by accumulating monomolecular films, film thickness control on the order of molecules (several angstroms to tens of angstroms) can be easily achieved.

制御性が優れている為、素子を形成した時再現性が高く
、また生産性に富む。
Since it has excellent controllability, it has high reproducibility when forming elements and is highly productive.

■以上の結果、超格子構造を有する素子に於いて、所望
の非線型電流電圧特性(負性抵抗)が観察された。
(2) As a result of the above, desired nonlinear current-voltage characteristics (negative resistance) were observed in the device having a superlattice structure.

■無機材料、有機材料のヘテロ接合を有する新規な2t
I4子並びに3端子素子を提案し、更に係る素子に於い
て、増幅特性、スイッチング特性が得られることを示し
た。
■New 2t with heterojunction of inorganic and organic materials
We proposed an I4 element and a three-terminal element, and furthermore showed that such elements can provide good amplification characteristics and switching characteristics.

■係る素子は、従来の無機材料のみからなる超格子素子
に比べ高温等の極端条件下での処理を必要としないため
、将来分子エレクトロニクス、バイオエレクトロニクス
等、生体との親和性の高い素子が提供しつる。
■As such devices do not require processing under extreme conditions such as high temperatures compared to conventional superlattice devices made only of inorganic materials, devices with high affinity with living organisms such as molecular electronics and bioelectronics will be provided in the future. Shitsuru.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体素子の断面図で、第2図はその
■特性を示す特性図である。 第3図は本発明のポテンシャル障壁層をLB法によって
形成する方法を図解的に示す図である。 第4図4(a)及び(b)は単分子膜の模式図であり、
第5図(a)、(b)及び(C)は累積膜の模式図であ
る。 第6図は、本発明の■特性を測定した時に用いた測定器
の電気回路図である。 第7図(a)は、本発明の別の半導体素子の平面図で、
第7図(b)はそのA−A’断面図で、第8図はその半
導体素子のvr特性を測定した時に用いた測定器の電気
回路図で、第9図はその時の■特性を示す特性図である
。 第10図(a)、(b)及び(C)は本発明の別の半導
体素子を作成するプロセスを示す断面図である。
FIG. 1 is a sectional view of the semiconductor device of the present invention, and FIG. 2 is a characteristic diagram showing its ■characteristic. FIG. 3 is a diagram schematically showing a method of forming the potential barrier layer of the present invention by the LB method. FIGS. 4(a) and 4(b) are schematic diagrams of a monomolecular film,
FIGS. 5(a), (b) and (C) are schematic diagrams of cumulative films. FIG. 6 is an electrical circuit diagram of a measuring instrument used when measuring the characteristic (1) of the present invention. FIG. 7(a) is a plan view of another semiconductor element of the present invention,
Figure 7(b) is the AA' cross-sectional view, Figure 8 is the electrical circuit diagram of the measuring instrument used to measure the vr characteristics of the semiconductor element, and Figure 9 shows the ■characteristics at that time. It is a characteristic diagram. FIGS. 10(a), 10(b) and 10(C) are cross-sectional views showing a process for producing another semiconductor element of the present invention.

Claims (21)

【特許請求の範囲】[Claims] (1)基体と、有機薄膜と無機薄膜を交互に積層した周
期積層構造体とを有することを特徴とする半導体素子。
(1) A semiconductor device comprising a substrate and a periodic laminated structure in which organic thin films and inorganic thin films are alternately laminated.
(2)有機薄膜と無機薄膜とがヘテロ接合を有しており
、前記周期積層構造体がヘテロ接合の繰返しによる超格
子構造を形成している特許請求の範囲第1項記載の半導
体素子。
(2) The semiconductor device according to claim 1, wherein the organic thin film and the inorganic thin film have a heterojunction, and the periodic stacked structure forms a superlattice structure by repeating the heterojunction.
(3)前記有機薄膜が絶縁性を有しているとともに、前
記無機薄膜が導電性又は半導電性を有している特許請求
の範囲第1項又は第2項記載の半導体素子。
(3) The semiconductor device according to claim 1 or 2, wherein the organic thin film has insulating properties, and the inorganic thin film has conductivity or semiconductivity.
(4)前記周期積層構造体が一対の電極間に配置されて
いる特許請求の範囲第1項記載の半導体素子。
(4) The semiconductor device according to claim 1, wherein the periodic laminated structure is arranged between a pair of electrodes.
(5)前記無機薄膜が蒸着法又はスパッタリング法によ
って形成した薄膜である特許請求の範囲第1項記載の半
導体素子。
(5) The semiconductor device according to claim 1, wherein the inorganic thin film is a thin film formed by a vapor deposition method or a sputtering method.
(6)前記蒸着法が電子ビーム加熱法を用いた蒸着法で
ある特許請求の範囲第5項記載の半導体素子。
(6) The semiconductor device according to claim 5, wherein the vapor deposition method is a vapor deposition method using an electron beam heating method.
(7)前記有機薄膜が分子内に親水性部位と疎水性部位
とを有する有機化合物の薄膜である特許請求の範囲第1
項記載の半導体素子。
(7) Claim 1, wherein the organic thin film is a thin film of an organic compound having a hydrophilic site and a hydrophobic site within the molecule.
Semiconductor device described in Section 1.
(8)ヘテロ接合界面の数が2〜20である特許請求の
範囲第1項記載の半導体素子。
(8) The semiconductor device according to claim 1, wherein the number of heterojunction interfaces is 2 to 20.
(9)ヘテロ接合界面の数が2〜10である特許請求の
範囲第1項記載の半導体素子。
(9) The semiconductor device according to claim 1, wherein the number of heterojunction interfaces is 2 to 10.
(10)前記有機薄膜の膜厚が数Å〜数百Åである特許
請求の範囲第1項記載の半導体素子。
(10) The semiconductor device according to claim 1, wherein the organic thin film has a thickness of several angstroms to several hundred angstroms.
(11)前記有機薄膜の膜厚が10Å〜100Åである
特許請求の範囲第1項記載の半導体素子。
(11) The semiconductor device according to claim 1, wherein the organic thin film has a thickness of 10 Å to 100 Å.
(12)前記無機薄膜の膜厚が数Å〜数百Åである特許
請求の範囲第1項記載の半導体素子。
(12) The semiconductor device according to claim 1, wherein the inorganic thin film has a thickness of several angstroms to several hundred angstroms.
(13)前記無機薄膜の膜厚が10Å〜100Åである
特許請求の範囲第1項記載の半導体素子。
(13) The semiconductor device according to claim 1, wherein the inorganic thin film has a thickness of 10 Å to 100 Å.
(14)前記無機薄膜が金属又は合金で形成した薄膜で
ある特許請求の範囲第1項記載の半導体素子。
(14) The semiconductor device according to claim 1, wherein the inorganic thin film is a thin film formed of a metal or an alloy.
(15)前記金属又は合金がAl、Ag、Au、Ni又
はPtである特許請求の範囲第14項記載の半導体素子
(15) The semiconductor device according to claim 14, wherein the metal or alloy is Al, Ag, Au, Ni, or Pt.
(16)前記無機薄膜が長周期型周期表のIVB族から選
ばれた元素を含む物質、IIIB族から選ばれた元素及び
VB族から選ばれた元素とを含む物質又はIIB族から選
ばれた元素及びVIB族から選ばれた元素とを含む物質で
形成した薄膜である特許請求の範囲第1項記載の半導体
素子。
(16) The inorganic thin film is a substance containing an element selected from Group IVB of the long periodic table, a substance containing an element selected from Group IIIB, an element selected from Group VB, or a substance selected from Group IIB. The semiconductor device according to claim 1, which is a thin film formed of a substance containing an element and an element selected from group VIB.
(17)前記VIB族から選ばれた元素がC又はSiであ
る特許請求の範囲第16項記載の半導体素子。
(17) The semiconductor device according to claim 16, wherein the element selected from Group VIB is C or Si.
(18)前記IIIB族から選ばれた元素がGaで、前記
VB族から選ばれた元素がAs又はPである特許請求の
範囲第16項記載の半導体素子。
(18) The semiconductor device according to claim 16, wherein the element selected from Group IIIB is Ga, and the element selected from Group VB is As or P.
(19)前記IIB族から選ばれた元素がCdで、前記V
IB族から選ばれた元素がS又はSeである特許請求の
範囲第16項記載の半導体素子。
(19) The element selected from Group IIB is Cd, and the V
17. The semiconductor device according to claim 16, wherein the element selected from Group IB is S or Se.
(20)前記無機薄膜がシリサイドで形成された薄膜で
ある特許請求の範囲第1項記載の半導体素子。
(20) The semiconductor device according to claim 1, wherein the inorganic thin film is a thin film formed of silicide.
(21)前記シリサイドがニッケルシリサイド又はパラ
ジウムシリサイドである特許請求の範囲第20項記載の
半導体素子。
(21) The semiconductor device according to claim 20, wherein the silicide is nickel silicide or palladium silicide.
JP61217818A 1986-07-10 1986-09-16 Semiconductor element Pending JPS6373560A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61217818A JPS6373560A (en) 1986-09-16 1986-09-16 Semiconductor element
US07/071,393 US4939556A (en) 1986-07-10 1987-07-09 Conductor device
EP87306128A EP0252756A3 (en) 1986-07-10 1987-07-10 Semiconductor device comprising an organic material
EP19920201460 EP0502590A3 (en) 1986-07-10 1987-07-10 Semiconductor device comprising an organic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61217818A JPS6373560A (en) 1986-09-16 1986-09-16 Semiconductor element

Publications (1)

Publication Number Publication Date
JPS6373560A true JPS6373560A (en) 1988-04-04

Family

ID=16710221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61217818A Pending JPS6373560A (en) 1986-07-10 1986-09-16 Semiconductor element

Country Status (1)

Country Link
JP (1) JPS6373560A (en)

Similar Documents

Publication Publication Date Title
US5359204A (en) Switching device
EP0272937B1 (en) Switching device
JP2556491B2 (en) Recording device and recording method
JP2556492B2 (en) Reproduction device and reproduction method
JPH04372745A (en) Recording medium and production thereof, information processor, erasing method
JPH01245445A (en) Recording and detecting device
JPH01214078A (en) Switching device
KR20040081769A (en) Organic electronic device and its manufacturing method
US5284779A (en) Method of forming organic charge-transfer thin films
US5152805A (en) M-I-M' device and fabrication method
EP0305033A2 (en) Recording device and reproducing device
JPS6373560A (en) Semiconductor element
JP2694531B2 (en) Driving method of MIM type element
US5057878A (en) M-I-M' device and fabrication method
JPH01209767A (en) Electric/electronic device element
JPS6396956A (en) Switching element
JPH01166555A (en) Semiconductor element
JPS63204531A (en) Reproducing device
JPH07121917A (en) Recording medium, manufacture thereof and recording/ reproducing apparatus using the medium
JP2715301B2 (en) Photoelectron beam conversion element
JP2003264326A (en) Molecular integrated circuit element and manufacturing method therefor
JPH02257543A (en) Electron emitting element
JPH01166579A (en) Organic thin film pressure sensitive device
JPH01245577A (en) Switching element
JPH04145664A (en) Driving method for organic electronic element