JPS637335A - Production of high-strength high gamma value cold rolled steel sheet - Google Patents

Production of high-strength high gamma value cold rolled steel sheet

Info

Publication number
JPS637335A
JPS637335A JP14996686A JP14996686A JPS637335A JP S637335 A JPS637335 A JP S637335A JP 14996686 A JP14996686 A JP 14996686A JP 14996686 A JP14996686 A JP 14996686A JP S637335 A JPS637335 A JP S637335A
Authority
JP
Japan
Prior art keywords
strength
steel
annealing
rolling
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14996686A
Other languages
Japanese (ja)
Other versions
JPH0699756B2 (en
Inventor
Kazuo Koyama
一夫 小山
Hiroshi Kato
弘 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61149966A priority Critical patent/JPH0699756B2/en
Publication of JPS637335A publication Critical patent/JPS637335A/en
Publication of JPH0699756B2 publication Critical patent/JPH0699756B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To easily and economically produce a high-strength high gamma value cold rolled steel sheet having a beautiful surface by subjecting a steel slab consisting of specifically composed C, Si, Mn, P, Cu, Al, N, and Fe to specific hot rolling, cold rolling and box annealing. CONSTITUTION:A steel contg. 0.03-0.10% C, <=0.2% Si, 0.9-2.0% Mn, <=0.1% P, 0.6-1.5% Cu, 0.01-0.1% Al, and <=0.0070% N, and consisting of the balance unavoidable impurity elements is continuously cast to form a slab. The slab is subjected to hot rolling directly or after heating to 1,000-1,080 deg.C and the rolling is ended at 860-930 deg.C. The rolled steel sheet is coiled at 620-750 deg.C. The hot rolled sheet is in succession subjected to cold rolling at 65-85% draft. The cold rolled sheet is thereafter subjected to the box annealing at 10-100 deg.C/hr heating up speed, and 650-800 deg.C annealing temp. for 2-20hr annealing holding time. The high-strength cold rolled steel sheet which has about >=50kgf/mm<2> tensile strength and about >=1.5 gamma value and is also provided with the surface beauty suitable for the outside plates of automobiles is thus obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、表面疵のない高強度高r値冷延鋼板を製造す
る方法に関するもので、特に付加工程を含まない通常の
工程で経済的に製造することのできるものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing a high-strength, high-r-value cold-rolled steel sheet free of surface defects, and particularly relates to a method for manufacturing a cold-rolled steel sheet with high strength and high r-value, which is economical in a normal process that does not include additional steps. It can be manufactured in

(従来の技術) 近年、安全対策や省エネルギーの観点から自動車用鋼板
の高強度化が進み、各種高強度鋼板の研究開発が行なわ
れ現在に至るもまだ活発である。
(Prior Art) In recent years, steel plates for automobiles have been made to have higher strength from the viewpoint of safety measures and energy conservation, and research and development of various high-strength steel plates has been carried out and is still active to this day.

自動車用鋼板にとっての生命は高度の成形性と表面美麗
度である。しかし、合金化等によって高強度化されると
、これら特性、特に成形性は劣化するのが普通であり、
自動車用鋼板の高強度化にあたってはこれら特性の維持
が大きな課題となる。
The lifeblood of automotive steel sheets is high formability and surface beauty. However, when the strength is increased by alloying, etc., these properties, especially formability, usually deteriorate.
Maintaining these properties is a major challenge in increasing the strength of automotive steel sheets.

薄鋼板の成形性には、伸びで代表される延性とF値で代
表される深絞り性とがある。(注、F値は塑性異方性を
表わす指標で、ある方向に引っ張った時にr=(幅対数
ひずみ〕/〔板厚対数ひずみ〕で定義され、F= (r
 (圧延方向)+「(圧延方向と直角)+2r(圧延方
向に45度)〕÷4である。F値と深絞り性とは良く対
応すると言われている。) このうち、伸び〜強度関係については研究開発が進み、
相当に強度が高い場合でも伸びの大きいいわゆるTS−
Eβバランスの優れた鋼板が開発されている。(注、T
S:引張強度、El:伸−び)しかし、1値〜強度関係
については、それほど高強度側にまで開発されていない
。すなわち?≧1.5を有する深絞り用と言えるもので
はせいぜい引張強度40 kgf/*m”級までが現状
実用化されているに過ぎない。
Formability of thin steel sheets includes ductility, which is represented by elongation, and deep drawability, which is represented by F value. (Note: F value is an index expressing plastic anisotropy, and is defined as r = (width logarithmic strain) / [thickness logarithmic strain] when pulled in a certain direction, and F = (r
(Rolling direction) + "(perpendicular to the rolling direction) + 2r (45 degrees to the rolling direction)] ÷ 4. It is said that the F value and deep drawability correspond well.) Among these, the relationship between elongation and strength is Research and development is progressing on
So-called TS-, which has a large elongation even when the strength is considerably high.
Steel sheets with excellent Eβ balance have been developed. (Note, T
(S: tensile strength, El: elongation) However, the relationship between one value and strength has not been developed to the high strength side. In other words? ≧1.5, which can be said to be used for deep drawing, has a tensile strength of up to 40 kgf/*m'' class at most, which is currently in practical use.

しかし、高強度〜高を値の達成手段としてCu添加は知
られている。すなわち特開昭59−76824号公報、
特開昭59−76825号公報および特公昭58−42
248号公報記載の技術がそれである。これらの技術に
より、引張強度が50に+rf/鶴2級でF = 1.
5以上のものが得られる。
However, Cu addition is known as a means of achieving high to high strength values. That is, Japanese Patent Application Laid-Open No. 59-76824,
Japanese Unexamined Patent Publication No. 59-76825 and Japanese Patent Publication No. 58-42
This is the technique described in Publication No. 248. With these techniques, the tensile strength is increased to 50+RF/Tsuru grade 2 and F = 1.
5 or more can be obtained.

しかしながら、これらの技術においてはCuを有効に作
用させるために、熱延板の焼鈍および/または熱延板の
析出処理を必須としており、これは鋼板の生産性を著し
く損ない、そのため、鋼板のコスト上昇をもたらし、実
用化を困難なものにしていた。
However, these techniques require annealing of the hot-rolled sheet and/or precipitation treatment of the hot-rolled sheet in order to make Cu work effectively, which significantly impairs the productivity of the steel sheet and therefore reduces the cost of the steel sheet. This caused a rise in the amount of carbon dioxide, making it difficult to put it into practical use.

すなわち、特開昭59−76824号公報では、その特
許請求の範囲(2)、 (3)にはCu添加鋼が記載さ
れているが、熱延板を850〜950℃という極めて高
温度で溶体化処理した後さらに500℃以上の温度で焼
鈍し、しかる後に冷延・焼鈍することが要件となってい
る。特開昭59−76825号公報ではやはり、その特
許請求の範囲(2)〜(4)にはCu添加鋼が記載され
ているが、500℃以上の温度で熱延板を焼鈍した後、
冷延・焼鈍することが要件となっている。さらにまた、
特公昭58−42248号公報では特許請求の範囲には
付加工程に関する記載はないが、高r値を示す実施例で
は熱延板の付加熱処理を行なっている。このように従来
技術では大量生産素材としてはまず避けるべき工程付加
を必須要件としている。
That is, in JP-A-59-76824, claims (2) and (3) thereof describe Cu-added steel; After the chemical treatment, it is required that the steel be further annealed at a temperature of 500° C. or higher, and then cold rolled and annealed. JP-A-59-76825 also describes Cu-added steel in its claims (2) to (4), but after annealing the hot-rolled sheet at a temperature of 500°C or higher,
Cold rolling and annealing are required. Furthermore,
Although Japanese Patent Publication No. 58-42248 does not include any description of an additional process in the claims, additional heat treatment of the hot-rolled sheet is carried out in the examples showing a high r value. As described above, in the prior art, as a material for mass production, the addition of processes that should be avoided is an essential requirement.

冷延鋼板としてもう一つの重要な要件である表面美麗度
にとってCu添加はこれまで必ずしも好適ではなく、こ
れもまたCu添加鋼の実用化阻害要因と言える。Cu添
加鋼ではCuへげと呼ばれる表面疵が生じる。このため
、Cu添加量の制限やNi複合添加により防止が計られ
ている。そうすると強度やf値が不十分になったり、コ
ストアンプになるというような欠点が重畳される。特に
、自動車外板や準外板には不向きであった。
Up to now, Cu addition has not always been suitable for surface beauty, which is another important requirement for cold-rolled steel sheets, and this can also be said to be a factor inhibiting the practical use of Cu-added steel. In Cu-added steel, surface flaws called Cu flakes occur. Therefore, attempts have been made to prevent this by limiting the amount of Cu added and adding Ni in combination. In this case, disadvantages such as insufficient strength and f-number and cost increase are added. In particular, it was unsuitable for automobile exterior panels and semi-exterior panels.

(発明が解決しようとする問題点) 本発明はこの様な状況に鑑み、50 kgf/*m”以
上の引張強度と1.5以上のt値を有し、かつ自動車外
板にも耐える表面美麗度を兼ね備える高強度冷延鋼板を
、特別な付加工程のない通常の工程においてその工程条
件を特定し、かつ特定の添加成分との組合わせによって
供給しようとするものである。
(Problems to be Solved by the Invention) In view of these circumstances, the present invention provides a surface that has a tensile strength of 50 kgf/*m" or more, a t value of 1.5 or more, and is resistant to automobile exterior panels. The objective is to supply high-strength cold-rolled steel sheets with good beauty in a normal process without special additional processes by specifying the process conditions and by combining them with specific additive components.

(問題点を解決するための手段) 本発明の要旨とするところは、C: 0.03〜0.1
0%、Si:0.2%以下、Mn:0.9〜2.0%、
P : 0.1%以下、Cu:0.6〜1.5%、Al
: 0.01〜0.1%、N : 0.0070%以下
を含み、残部不可避的不純物元素からなる鋼を連続鋳造
してスラブとし、これを直接、もしくは1000〜10
80℃に加熱後熱間圧延を行ない、860〜930°C
で圧延を終了し、620〜750℃に巻取り、続いて、
65〜85%の圧下率で冷間圧延を行った後昇温速度1
0〜100℃/時、焼鈍温度650〜800°C1焼鈍
保定時間2〜20時間で箱焼鈍を行うことを特徴とする
高強度高を値冷延鋼板の製造方法にある。
(Means for solving the problems) The gist of the present invention is that C: 0.03 to 0.1
0%, Si: 0.2% or less, Mn: 0.9 to 2.0%,
P: 0.1% or less, Cu: 0.6-1.5%, Al
: 0.01 to 0.1%, N : 0.0070% or less, and the remainder consists of unavoidable impurity elements, is continuously cast into a slab, and this is directly or
After heating to 80°C, hot rolling is performed to 860-930°C.
Finish rolling at 620-750°C, and then
After cold rolling with a reduction ratio of 65 to 85%, the temperature increase rate is 1.
A method for producing a cold-rolled steel sheet with high strength, characterized by box annealing at 0 to 100°C/hour, an annealing temperature of 650 to 800°C, and an annealing holding time of 2 to 20 hours.

すなわち、本発明は、比較的多量のCuを添加した鋼を
出発材としこれを連続鋳造し、かつ熱延条件を特定する
ことでCuの溶体化状態を確保しつつCuへげの防止を
達成し、続いて、熱延後コイルを高’/L巻取すること
で適正なCu析出状態を得ることに成功したものである
That is, the present invention uses steel to which a relatively large amount of Cu has been added as a starting material, continuously casts it, and specifies hot rolling conditions, thereby achieving prevention of Cu flaking while ensuring the solution state of Cu. However, by subsequently winding the hot-rolled coil at high'/L, it was possible to obtain an appropriate Cu precipitation state.

次に、本発明構成要件の数値限定理由について述べる。Next, the reasons for limiting the numerical values of the constituent elements of the present invention will be described.

まず、Cは0.03〜0.10%必要である。0.03
%未満では強度が得られず、0.1%を越えるとt値、
伸びが低くなる。
First, C is required in an amount of 0.03 to 0.10%. 0.03
If it is less than 0.1%, no strength can be obtained, and if it exceeds 0.1%, the t value,
Elongation becomes lower.

Siは?値を劣化させずに鋼を強化するが、焼鈍時に板
表層にテンパーカラーを生じ易く、表面美麗度を重んじ
る本発明では0.2%以下に限定した。
What about Si? Although it strengthens the steel without deteriorating its value, it tends to cause temper color on the surface layer of the plate during annealing, so in the present invention, where surface beauty is important, it is limited to 0.2% or less.

厳しい自動車外板に適用する場合には0.03%以下と
することが好ましい。
When applied to severe automobile outer panels, the content is preferably 0.03% or less.

Mnは強度を確保するために必要であるが、それ以外に
Cとあいまって鋼の変態点を調整し、Cuの溶体・析出
挙動を補助する効果をもたらす。0.9%未満ではこれ
らの効果が少なく、2.0%超ではかえってt値を低下
させる。
Mn is necessary to ensure strength, but in addition to that, together with C it has the effect of adjusting the transformation point of steel and assisting the solution/precipitation behavior of Cu. If it is less than 0.9%, these effects will be small, and if it exceeds 2.0%, the t value will actually decrease.

Pは、f値を損なうことなしに鋼を強化する。P strengthens the steel without compromising the f value.

しかし、Pは鋼を脆化させ、加工後の粒界破壊を発生さ
せる可能性があるので上限を0.1%とする。
However, P embrittles the steel and may cause intergranular fracture after working, so the upper limit is set at 0.1%.

この加工脆化が問題となる場合には0.01%以内の高
純度にすることが好ましい。
If this process embrittlement is a problem, it is preferable to have a high purity of 0.01% or less.

Alは脱酸およびNの固定のために0.01〜O91%
必要である。下限値未満ではこれらの作用が不十分であ
り、上限を越えると不純物が増し、鋼の延性を劣化させ
る。
Al is 0.01-91% for deoxidation and N fixation.
is necessary. Below the lower limit, these effects are insufficient, and above the upper limit, impurities increase and deteriorate the ductility of the steel.

Nば低炭素アルミキルド鋼はどではないが、AIN析出
時に補助的にr値を高める作用がある。
Although N is not the same as low carbon aluminum killed steel, it has the effect of increasing the r value as an auxiliary during AIN precipitation.

このため、0.0070%以内添加する。これを越える
とAIN析出量が増し延性を劣化させる。
Therefore, it is added within 0.0070%. If this value is exceeded, the amount of AIN precipitation increases and the ductility deteriorates.

次にCuは本発明において基本をなす元素である。Next, Cu is a basic element in the present invention.

すなわち、Cuは鋼の強度を高め、を値を高めるために
必要な反面、Cu添加鋼の害であるCuへげの原因とも
なる。本発明では付加工程をなくすためにCuは比較的
多量に添加する。0.6%未満では付加工程省略は困難
である。好ましくは0.9%以上とすべきである。−方
、1.5%超程度で強度、を値に必要なCu析出物量と
しては飽和し、また鋼の経済性を損なうので、上限は1
.5%とした。
That is, although Cu is necessary to increase the strength of steel and increase its value, it also causes Cu flaking, which is a problem with Cu-added steel. In the present invention, Cu is added in a relatively large amount in order to eliminate the addition step. If it is less than 0.6%, it is difficult to omit the additional step. Preferably it should be 0.9% or more. On the other hand, if it exceeds 1.5%, the amount of Cu precipitates required for strength is saturated, and it also impairs the economic efficiency of the steel, so the upper limit is 1.
.. It was set at 5%.

なお、硫化物系介在物は圧延により展伸しその切欠効果
のために鋼板の曲げ成形性などの成形性を劣化させる。
Incidentally, sulfide-based inclusions are expanded by rolling, and their notch effect deteriorates the formability such as the bending formability of the steel sheet.

そのため、Sを0.010%以下とすることは望ましい
。さらに、Ca、 REM、 Mgの1種以上を添加し
て硫化物の組成を変え、圧延による展伸を抑−えること
が好ましい。その場合、之等の各元素は0.0010〜
0.0100%の添加が必要である。
Therefore, it is desirable that S be 0.010% or less. Furthermore, it is preferable to add one or more of Ca, REM, and Mg to change the composition of the sulfide to suppress elongation due to rolling. In that case, each element such as 0.0010~
Addition of 0.0100% is required.

いずれも下限値未満では効果がなく、上限値を越すとか
えって全介在物量が増し材質を劣化させる。
If the lower limit is less than the lower limit, there is no effect, and if the upper limit is exceeded, the total amount of inclusions increases and the quality of the material deteriorates.

次に製造工程であるが、まず、鋳造は連続鋳造でなけれ
ばならない。連続鋳造ではスラブ厚が小さく比較的速や
かに冷却されるのでCuへげに繋がるCu表面濃化が少
ない。そしてこのスラブはそのままか、あるいは加熱炉
に入れる場合は1000〜1080℃に加熱してから熱
延を行う。1000℃未満の加熱では熱延がしがたく、
また、1080℃を越えるとCuへげが生ずる。熱延は
比較的高温で行ない、860〜930℃で終了する。8
60℃未満ではCu析出が生じ、付加工程なしでは高を
値・高強度とはならない。また、930℃を越えると、
フェライト結晶粒が粗大化しt値、伸びが劣化する。熱
延後ランアウトテーブル上で冷却を行ない、620〜7
50℃の温度範囲で巻取る。620℃未満ではCu析出
が十分でなく、750℃超ではCu析出物が粗大化して
しまい、いずれも高を値・高強度とならない。ランアウ
トテーブルでの冷却は通常で良いが、巻取での析出促進
の意味で20〜b 延コイルは冷延・焼鈍されるが、冷延圧下率は十分なr
値を確保するには65%以上必要である。
Next is the manufacturing process. First, casting must be continuous casting. In continuous casting, the slab thickness is small and the slab is cooled relatively quickly, so there is little concentration of Cu surface that leads to Cu flaking. Then, this slab is hot-rolled either as it is or, if placed in a heating furnace, after being heated to 1000 to 1080°C. It is difficult to hot-roll when heated below 1000℃,
Further, when the temperature exceeds 1080°C, Cu flaking occurs. Hot rolling is performed at a relatively high temperature and is completed at 860-930°C. 8
If the temperature is lower than 60°C, Cu precipitation occurs, and high values and strength cannot be achieved without an additional process. In addition, when the temperature exceeds 930℃,
The ferrite crystal grains become coarse and the t value and elongation deteriorate. After hot rolling, it is cooled on a run-out table, and 620-7
Wind up in a temperature range of 50°C. If the temperature is lower than 620°C, Cu precipitation will not be sufficient, and if the temperature exceeds 750°C, the Cu precipitates will become coarse, and in both cases high values and high strength will not be achieved. Normal cooling on the runout table is sufficient, but in order to promote precipitation during coiling, the rolled coil is cold rolled and annealed, but the cold rolling reduction rate is sufficient.
65% or more is required to secure the value.

圧下率は通常の範囲では高いほど良いが、上限値は工業
的に圧下可能な値である85%とした。焼鈍昇温速度は
100℃/時以下としなければならない。これより大き
くなると良好なF値が得られない。下限値は10℃/時
とした。この値で十分に特性が得られるが、いたずらに
時間をかけて昇温することは経済性を損なうからである
。焼鈍温度は650〜800℃、焼鈍保定時間は2〜2
0時間でなければならない。いずれも下限値未満ではフ
ェライト結晶の再結晶・成長が十分でなく低を値・低延
性となる。それぞれの上限値付近で特性は飽和し、 また、高温長時間はどコストアップとなるので800℃
および20時間を上限値と定めた。焼鈍はタイトコイル
、オープンコイルを問わないが、生産性の高いタイトコ
イル焼鈍が好ましい。その場合、焼鈍温度の上限は75
0℃程度である。
The higher the rolling reduction rate is in the normal range, the better, but the upper limit was set to 85%, which is a value that can be rolled down industrially. The annealing temperature increase rate must be 100° C./hour or less. If it is larger than this, a good F value cannot be obtained. The lower limit was 10°C/hour. This is because although sufficient characteristics can be obtained with this value, economical efficiency is impaired if the temperature is increased unnecessarily over a long period of time. Annealing temperature is 650-800℃, annealing retention time is 2-2
Must be 0 hours. If both values are below the lower limit, recrystallization and growth of ferrite crystals will not be sufficient, resulting in low values and low ductility. The characteristics are saturated near the upper limit of each, and the cost increases due to high temperatures for long periods of time, so 800℃
and 20 hours was set as the upper limit. Although tight coil annealing or open coil annealing may be used, tight coil annealing is preferred because of its high productivity. In that case, the upper limit of the annealing temperature is 75
The temperature is about 0°C.

(実施例−1) 第1表に示す成分の鋼を溶製し、連続鋳造−熱延を行な
った。鋼A、Bは直送、泪C−Fはスラブを1050℃
に再加熱して熱延した。鋼A、C,Eは本発明にしたが
った鋼成分であるが、鋼BはCuが、鋼りはC,Mnが
、綱FはC,Stがそれぞれ本発明範囲と異なる。これ
らの綱をFT(仕上温度)=880〜910℃で熱延し
た後、直ちに約30’c / sの平均冷却速度で冷却
し、660〜680℃で巻取った。この綱を酸洗後80
%の冷延を行ない、続いて、昇温速度30℃/時、保定
720℃、12時間の焼鈍をおこない最後に1.0%の
スキンバス圧延を行なった。結果の機械的性質および表
面検定評点を第2表に示す。機械試験はJIS2220
15号試験片を用い、JIS Z 2241記載の方法
にしたがって実施した。表面検定は出荷時検査に準じて
行なった。評点は1から5まであり、数値が大きくなる
ほどへげ、すり疵、介在物露出等の表面欠陥が著しい。
(Example 1) Steel having the components shown in Table 1 was melted and continuously cast and hot rolled. Steel A and B are delivered directly, and Slabs C-F are heated to 1050℃.
It was reheated and hot rolled. Steels A, C, and E have steel components according to the present invention, but steel B has Cu, steel steel has C and Mn, and steel F has C and St, which are different from the scope of the present invention. After hot rolling these ropes at FT (finishing temperature) = 880-910 °C, they were immediately cooled at an average cooling rate of about 30'c/s and coiled at 660-680 °C. After pickling this rope, 80
% cold rolling was performed, followed by annealing at a heating rate of 30° C./hour and a holding temperature of 720° C. for 12 hours, and finally skin bath rolling of 1.0%. The resulting mechanical properties and surface assay scores are shown in Table 2. Mechanical test is JIS2220
The test was carried out using a No. 15 test piece according to the method described in JIS Z 2241. The surface inspection was conducted in accordance with the inspection at the time of shipment. Ratings range from 1 to 5, and the higher the number, the more serious surface defects such as flaws, scratches, and exposed inclusions.

評点1は欠陥を認め得なかったことを示し、通常評点2
以下が出荷可能である。
A rating of 1 indicates that no defects were found, and a rating of 2 is normal.
The following can be shipped.

第2表より明らかなように、本発明にしたがった綱A、
C,Eは50 kKf/x*”以上の引張強度と1.5
を越えるt値を有し、延性も良好である。表面状態も全
く問題がない。これに対し、鋼Bでは強度、r値が足り
ず、MDでは強度が大幅に低下している。鋼Fはt値が
低い上に、テンパーカラーのために評点が落ちている。
As is clear from Table 2, rope A according to the present invention,
C and E have a tensile strength of 50 kKf/x*” or more and 1.5
It has a t value exceeding , and has good ductility. There are no problems with the surface condition. On the other hand, steel B lacks strength and r value, and the strength of MD is significantly reduced. Steel F has a low t value and a lower rating due to its temper color.

これより本発明の成分条件の必要性が明らかである。From this, the necessity of the component conditions of the present invention is clear.

(実施例−2) 第1表に示す鋼の内符号A−CおよびEの鋼を用い、第
3表に示す熱延条件で熱延を行なった。
(Example 2) Using the steels shown in Table 1, steels with internal codes A-C and E were hot-rolled under the hot-rolling conditions shown in Table 3.

隘1〜4では直送熱延を、!!h5〜11では再加熱後
熱延を行なった。魚12ではインゴット法で鋳込み、再
加熱後熱延を行なった。なお、患7では 。
Direct delivery of hot rolling in rooms 1 to 4! ! From h5 to h11, hot rolling was performed after reheating. Fish No. 12 was cast by the ingot method, reheated, and then hot rolled. In addition, in patient 7.

熱延後、900℃、2時間のCυ溶体化処理と650℃
、12時間の析出処理を行なった。すなわち、これは従
来の典型的なCu添加鋼における付加工程である。熱延
板はその後78.6%ないし80%の冷延が施され、続
いて昇温速度=30″C/時、焼鈍温度ニア20℃/時
、焼鈍時間:12時間の焼鈍が施された。1.0%スキ
ンパス圧延後の材質・表面状態を同じく第3表に示す、
この実施例では主としてCC−熱延の条件の影響を見て
いるが、11h1.3,4.8の例が本発明にしたがっ
ており、その他はいずれかの条件において本発明と異な
る。
After hot rolling, Cυ solution treatment at 900℃ for 2 hours and 650℃
, a precipitation treatment was performed for 12 hours. That is, this is an additional step in typical conventional Cu-added steel. The hot-rolled sheet was then cold-rolled from 78.6% to 80%, and then annealed at a heating rate of 30″C/hour, annealing temperature of near 20°C/hour, and annealing time: 12 hours. The material and surface condition after 1.0% skin pass rolling are also shown in Table 3.
In this example, the influence of CC-hot rolling conditions is mainly observed, but examples of 11h1.3 and 4.8 are in accordance with the present invention, and the others differ from the present invention in any of the conditions.

そして本発明と異なったものは強度、延性、r値、表面
状態のいずれかひとつ以上において劣化している。ただ
し、丸7の鋼のように特別の付加処理を施したものは良
好な特性を示す。言い替えれば、本発明で付加工程省略
が実現されたことを示している。
Those different from the present invention are deteriorated in one or more of strength, ductility, r value, and surface condition. However, steels that have undergone special additional treatment, such as round 7 steel, exhibit good properties. In other words, the present invention shows that the additional process can be omitted.

この実施例より、CC1熱延、巻取条件の影響は明らか
である。
From this example, the influence of CC1 hot rolling and winding conditions is clear.

(実施例−3) 次に、冷延・焼鈍条件の影響を示す実施例について述べ
る。
(Example 3) Next, an example showing the influence of cold rolling and annealing conditions will be described.

冷延・焼鈍条件と結果を第4表に示す。用いた鋼は第1
表@Aである。徹2〜4の鋼は本発明条件に従っており
本発明が目的とする良好な特性を有する。それに対して
、患1の鋼では冷延率が、Na3の鋼では昇温速度が、
阻6の鋼では焼鈍温度が、N117の綱では焼鈍時間が
それぞれ本発明と相違しており、その結果、低を値ある
いは低強度となっている。この実施例より、本発明にお
ける冷延・焼鈍条件の効果は明らかである。
Table 4 shows the cold rolling/annealing conditions and results. The steel used is the first
Table @A. The steels of Toru 2 to 4 comply with the conditions of the present invention and have the good properties aimed at by the present invention. On the other hand, the cold rolling rate of the steel with No. 1 and the heating rate of the steel with Na3,
The annealing temperature of the No. 6 steel and the annealing time of the N117 steel are different from those of the present invention, and as a result, the steel has a low value or a low strength. From this example, the effects of cold rolling and annealing conditions in the present invention are clear.

(発明の効果) 自動車を中心とする材料の高強度化は、素材の有効利用
の観点から当然進展するものでなければならない。しか
しながら、薄鋼板においては成形性劣化がネックとなり
その進展が阻まれていた。
(Effects of the Invention) Increasing the strength of materials mainly for automobiles must naturally progress from the viewpoint of effective use of materials. However, progress in thin steel sheets has been hindered by deterioration in formability.

本発明によって、この制限が引張強度60 kgf/m
m”級まで緩和され、これによって、−種の飽和状態に
あった鋼板の高強度化に新展開が開けたのであって、そ
の経済的な効果は大きい。
With the present invention, this limit is reduced to a tensile strength of 60 kgf/m
This has opened up a new development in increasing the strength of steel sheets that had been saturated with - grade, and the economic effects are significant.

また、鋼中Cuは、鋼の耐食性を高めると推定され、高
強度化に伴う薄手化によって生ずる耐食寿命を補うこと
が期待される。すなわち、高強度化、高耐食性化という
三大課題の両立という展開が可能でこの意味からも本発
明の効果は極めて大きい。
Further, Cu in steel is estimated to improve the corrosion resistance of steel, and is expected to compensate for the corrosion resistance life caused by thinning due to higher strength. That is, it is possible to achieve both of the three major problems of high strength and high corrosion resistance, and in this sense, the effects of the present invention are extremely large.

Claims (1)

【特許請求の範囲】[Claims] C:0.03〜0.10%、Si:0.2%以下、Mn
:0.9〜2.0%、P:0.1%以下、Cu:0.6
〜1.5%、Al:0.01〜0.1%、N:0.00
70%以下を含み、残部不可避的不純物元素からなる鋼
を連続鋳造してスラブとし、これを直接、もしくは10
00〜1080℃に加熱後熱間圧延を行ない、860〜
930℃で圧延を終了し、620〜750℃に巻取り、
続いて、65〜85%の圧下率で冷間圧延を行った後昇
温速度10〜100℃/時、焼鈍温度650〜800℃
、焼鈍保定時間2〜20時間で箱焼鈍を行うことを特徴
とする高強度高@r@値冷延綱板の製造方法。
C: 0.03 to 0.10%, Si: 0.2% or less, Mn
: 0.9 to 2.0%, P: 0.1% or less, Cu: 0.6
~1.5%, Al: 0.01~0.1%, N: 0.00
Continuously cast steel containing 70% or less and the remainder consisting of unavoidable impurity elements to form a slab, which can be directly or
After heating to 00~1080℃, hot rolling is carried out to 860~1080℃.
Finish rolling at 930°C, wind up at 620-750°C,
Subsequently, after performing cold rolling at a reduction rate of 65 to 85%, the temperature increase rate was 10 to 100°C/hour, and the annealing temperature was 650 to 800°C.
A method for producing a high-strength, high-value cold-rolled steel sheet, characterized in that box annealing is performed with an annealing holding time of 2 to 20 hours.
JP61149966A 1986-06-26 1986-06-26 Method for manufacturing high strength high r value cold rolled steel sheet Expired - Lifetime JPH0699756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61149966A JPH0699756B2 (en) 1986-06-26 1986-06-26 Method for manufacturing high strength high r value cold rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61149966A JPH0699756B2 (en) 1986-06-26 1986-06-26 Method for manufacturing high strength high r value cold rolled steel sheet

Publications (2)

Publication Number Publication Date
JPS637335A true JPS637335A (en) 1988-01-13
JPH0699756B2 JPH0699756B2 (en) 1994-12-07

Family

ID=15486504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61149966A Expired - Lifetime JPH0699756B2 (en) 1986-06-26 1986-06-26 Method for manufacturing high strength high r value cold rolled steel sheet

Country Status (1)

Country Link
JP (1) JPH0699756B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018857A1 (en) * 2001-08-24 2003-03-06 Nippon Steel Corporation Steel plate exhibiting excellent workability and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842248A (en) * 1981-08-19 1983-03-11 フエアチアイルド・カメラ・アンド・インストルメント・コ−ポレ−シヨン Wire bonding technique for integrated circuit chip
JPS6112975A (en) * 1984-06-12 1986-01-21 テイツクリラン ベリテヒタート オユ Substancially non-extensible fabric having water resistance and weatherability, its production and constitutional material obtained therefrom

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842248A (en) * 1981-08-19 1983-03-11 フエアチアイルド・カメラ・アンド・インストルメント・コ−ポレ−シヨン Wire bonding technique for integrated circuit chip
JPS6112975A (en) * 1984-06-12 1986-01-21 テイツクリラン ベリテヒタート オユ Substancially non-extensible fabric having water resistance and weatherability, its production and constitutional material obtained therefrom

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003018857A1 (en) * 2001-08-24 2003-03-06 Nippon Steel Corporation Steel plate exhibiting excellent workability and method for producing the same
US7534312B2 (en) 2001-08-24 2009-05-19 Nippon Steel Corporation Steel plate exhibiting excellent workability and method for producing the same
US7749343B2 (en) 2001-08-24 2010-07-06 Nippon Steel Corporation Method to produce steel sheet excellent in workability
US7776161B2 (en) 2001-08-24 2010-08-17 Nippon Steel Corporation Cold-rolled steel sheet excellent in workability
US8052807B2 (en) 2001-08-24 2011-11-08 Nippon Steel Corporation Steel sheet excellent in workability

Also Published As

Publication number Publication date
JPH0699756B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
JP3610883B2 (en) Method for producing high-tensile steel sheet with excellent bendability
CN103975082A (en) Method for manufacturing high-strength cold-rolled steel sheet having excellent aging resistance and bake hardenability
WO1984001585A1 (en) Process for manufacturing cold-rolled steel for deep drawing
JPS5849628B2 (en) Method for producing composite structure high-strength cold-rolled steel sheet with excellent deep drawability
JPS5959831A (en) Manufacture of cold-rolled steel plate causing no surface roughening
JPS637335A (en) Production of high-strength high gamma value cold rolled steel sheet
JPH0559970B2 (en)
JPH06179922A (en) Production of high tensile strength steel sheet for deep drawing
JP4094498B2 (en) Deep drawing high strength cold-rolled steel sheet and method for producing the same
JP3735142B2 (en) Manufacturing method of hot-rolled steel sheet with excellent formability
JP2608508B2 (en) Manufacturing method of cold rolled steel sheet with excellent deep drawability
JPS63179046A (en) High-strength sheet metal excellent in workability and season cracking resistance and its production
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JP4332960B2 (en) Manufacturing method of high workability soft cold-rolled steel sheet
JPH03150315A (en) Production of high strength sheet steel excellent in corrosion resistance and formability
JP4313912B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent deep drawability
JPS59166650A (en) Steel for cold rolled steel plate
JPH01177321A (en) Manufacture of cold rolled steel sheet excellent in deep drawability
JP3544441B2 (en) High-strength hot-rolled steel sheet and plated steel sheet with excellent deep drawability and method for producing the same
JP3443220B2 (en) Hot rolled steel sheet excellent in deep drawability and method for producing the same
KR930002739B1 (en) Method for making aluminium-killed cold-rolled steel having a good forming property
JPS63310923A (en) Production of cold rolled steel plate for deep drawing
JPH07242949A (en) Production of cold rolled steel sheet for deep drawing excellent in baking hardenability
JPH11229085A (en) Coating baking hardening type cold rolled steel sheet excellent in aging resistance and its production
JPS60258429A (en) Manufacture of cold rolled steel sheet for working

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term