JPS637319B2 - - Google Patents

Info

Publication number
JPS637319B2
JPS637319B2 JP12765082A JP12765082A JPS637319B2 JP S637319 B2 JPS637319 B2 JP S637319B2 JP 12765082 A JP12765082 A JP 12765082A JP 12765082 A JP12765082 A JP 12765082A JP S637319 B2 JPS637319 B2 JP S637319B2
Authority
JP
Japan
Prior art keywords
wall
furnace
heat
ceiling
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12765082A
Other languages
Japanese (ja)
Other versions
JPS5918376A (en
Inventor
Noryuki Oda
Nobuyuki Kido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP12765082A priority Critical patent/JPS5918376A/en
Publication of JPS5918376A publication Critical patent/JPS5918376A/en
Publication of JPS637319B2 publication Critical patent/JPS637319B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

【発明の詳細な説明】 本発明は特定の内壁構造を有する加熱炉に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heating furnace having a specific inner wall structure.

窯業製品の焼成に用いるトンネル炉やバツチ
炉、ガラス窯や金属溶解炉、鉄鋼製品の加工や熱
処理に用いる鉄鋼加熱炉や均熱炉などにおいては
800℃、特には1200℃以上の高温の熱風下で物品
や粘性液体を加熱するので、これらの加熱炉の炉
壁にはかかる高温に耐えられるように耐火材や断
熱材をたとえば厚さ1.5mにも達するような複雑
かつ多層の構造が要請され、特に天井部は温度も
高くなるのでより厚く重量の大きい炉壁構造とな
り、同時にこうした重量物を支えるために天井部
のみならず側壁部も含めて堅固な構造が必要で、
一口でいえば築炉に所要の炉材の質も量もスペー
スも高価につくものであつた。一方、かかる加熱
炉を操業するにあたつても、炉壁の熱容量が大き
いため操業開始時の熱上げに長時間と多くの熱量
を必要とし、所定の高温を維持するには炉壁から
の熱ロスはきわめて大きく、また送入する熱風量
に見合う量のまだかなり高温の排ガスにもち去ら
れる熱ロスも大きく、この排ガスから熱回収を行
なうには別途熱交換器を設けねばならないなどの
問題点を有していた。
Tunnel furnaces and batch furnaces used for firing ceramic products, glass kilns and metal melting furnaces, steel heating furnaces and soaking furnaces used for processing and heat treating steel products, etc.
Since articles and viscous liquids are heated under hot air at a temperature of 800°C, especially 1200°C or higher, the walls of these heating furnaces are covered with refractory and heat insulating materials to a thickness of, for example, 1.5 m to withstand such high temperatures. A complicated and multi-layered structure is required, and the temperature in the ceiling is particularly high, resulting in a thicker and heavier furnace wall structure.At the same time, in order to support such heavy objects, not only the ceiling but also the side walls must be constructed. It requires a solid structure,
Simply put, the quality, quantity, and space required for furnace construction were expensive. On the other hand, when operating such a heating furnace, since the heat capacity of the furnace wall is large, it takes a long time and a large amount of heat to raise the temperature at the start of operation, and in order to maintain a predetermined high temperature, a large amount of heat is required from the furnace wall. The heat loss is extremely large, and the heat loss that is carried away by the exhaust gas, which is still quite hot in proportion to the amount of hot air that is sent in, is also large, and there are problems such as the need to install a separate heat exchanger to recover heat from this exhaust gas. It had a point.

本発明はこれらの問題点を解決するための特定
の内壁構造を有する加熱炉を提供するもので、す
なわち本発明はセラミツクスからなる内壁を有す
る加熱炉において、該内壁の内外に通ずる多数個
のガス流路および該ガス流路と近接かつ隔絶する
多数個の流体流路を該内壁に形成せしめてあるこ
とを特徴とする加熱炉、および該内壁より内側に
セラミツクスからなる隔壁を該内壁と離隔して設
け、かつ該隔壁には該障壁の内外に通ずる多数個
のガス流路を形成せしめてあることを特徴とする
上記の加熱炉を提供するもである。
The present invention provides a heating furnace having a specific inner wall structure to solve these problems. In other words, the present invention provides a heating furnace having an inner wall made of ceramics, in which a large number of gases are connected to the inside and outside of the inner wall. A heating furnace characterized in that a flow path and a large number of fluid flow paths that are close to and separated from the gas flow path are formed in the inner wall, and a partition wall made of ceramic is provided inside the inner wall and separated from the inner wall. The present invention provides a heating furnace as described above, characterized in that the partition wall is provided with a plurality of gas passages communicating between the inside and outside of the barrier.

以下に図面に基づいて本発明を説明する。 The present invention will be explained below based on the drawings.

第1図はトンネル炉の天井部内壁を特定構造と
した実施例である。アルミナ煉瓦、マグクロ煉瓦
などの上質耐火物で構築した炉側壁1および鋼材
で組んだ架構3の梁4からの吊ビーム5によつて
支持されるシヤモツト煉瓦などの低級耐火物で構
築した炉天井壁2を有するトンネル炉において、
炉側壁の天井近くの部位にヘツダー6,6′およ
び第3図に示すようなセリ受け煉瓦7,7′が配
設されている。向かいあうセリ受け煉瓦の間には
第4図に示すようなセリ煉瓦8から成る内壁9が
アーチ状に構築されており、必要に応じてヘツダ
ーの炉外壁側には架構に固定された支持金具10
が設けられて内壁9の重量に由来する横方向の圧
力に抗している。
FIG. 1 shows an embodiment in which the inner wall of the ceiling of a tunnel furnace has a specific structure. Furnace side walls 1 are made of high-quality refractories such as alumina bricks and maguro bricks, and furnace ceiling walls are made of low-grade refractories such as siyamoto bricks supported by suspension beams 5 from beams 4 of a frame 3 made of steel. In a tunnel furnace having 2,
Headers 6, 6' and shaving bricks 7, 7' as shown in FIG. 3 are disposed on the furnace side wall near the ceiling. An inner wall 9 made of bricks 8 as shown in Fig. 4 is constructed in an arch shape between the facing bricks, and if necessary, a support fitting 10 fixed to the frame is installed on the outer wall side of the header.
are provided to resist the lateral pressure resulting from the weight of the inner wall 9.

炉内に送入された約1400℃の熱風は炉内の物品
を加熱したのち、約1300℃の排ガスとなつて内壁
9に設けられている多数個のガス流路を内壁の炉
内側から天井側へゆるやかな流速で通過し、炉天
井壁2と内壁9との間の空間に開口する図示して
いない排気ダクトを経て炉外に排出される。一
方、燃料の燃焼に用いられる空気は炉外から入口
側ヘツダー6に導かれ、入口側セリ受け煉瓦7を
経て、内壁9の内部に内壁面に略平行して設けら
れている流体流路を適宜な流速で通過し、この間
に排ガスと熱交換して加熱され、出口側セリ受け
煉瓦7′を経て、出口側ヘツダー6′から約400℃
に加熱された予熱空気として回収される。なお流
体流路には空気の他の適宜な流体を流してもよ
い。
The hot air of about 1400°C sent into the furnace heats the items inside the furnace, and then becomes exhaust gas of about 1300°C, which flows through the numerous gas channels provided in the inner wall 9 from the inner side of the furnace to the ceiling. It passes to the side at a slow flow velocity and is discharged to the outside of the furnace through an exhaust duct (not shown) that opens into the space between the furnace ceiling wall 2 and the inner wall 9. On the other hand, the air used for combustion of the fuel is led from outside the furnace to the inlet header 6, passes through the inlet side bracing brick 7, and enters a fluid flow path provided inside the inner wall 9 substantially parallel to the inner wall surface. It passes through at an appropriate flow rate, during which it is heated by exchanging heat with the exhaust gas, passes through the outlet-side seri receiving brick 7', and is heated to approximately 400°C from the outlet-side header 6'.
It is recovered as preheated air. Note that an appropriate fluid other than air may be flowed through the fluid flow path.

セリ受け煉瓦は第3図に示すような形状をして
いる。すなわち直方体を、稜に平行にしてかつそ
の稜を含む二面と交わる斜面で切截したような外
形をしており、セリ受け面7c−7d−7e−7
fとヘツダー面7a−7b−7j−7iとの間に
複数個の流体流路15が側面7b−7c−7f−
7g−7jおよび7a−7d−7e−7h−7i
に平行に設けられている。このセリ受け煉瓦は面
7h−7i−7j−7gを底面とし、面7a−7
b−7c−7dを上面としてその上下に積まれる
アルミナ煉瓦などと共に炉側壁を構成する。ヘツ
ダー面は炉の外側を向いてヘツダー6,6′の開
口面と接し、セリ受け面の上にはセリ煉瓦8が逐
次積まれて内壁のアーチを形成する。二つの側面
には同様のセリ受け煉瓦が並んで配置される。な
お第3図において一部の流路は省略して示されて
いる。
The paring brick has a shape as shown in Figure 3. In other words, it has the shape of a rectangular parallelepiped cut with a slope that is parallel to the edge and intersects with the two sides including the edge, and has the shape of a rectangular parallelepiped.
A plurality of fluid channels 15 are provided between the side surfaces 7b-7c-7f- and the header surfaces 7a-7b-7j-7i.
7g-7j and 7a-7d-7e-7h-7i
is set parallel to. This paring brick has surfaces 7h-7i-7j-7g as the bottom surface and surfaces 7a-7 as the bottom surface.
With b-7c-7d as the upper surface, the furnace side wall is formed together with alumina bricks stacked above and below it. The header surface faces the outside of the furnace and contacts the opening surfaces of the headers 6, 6', and the seri bricks 8 are successively stacked on the seri receiving surface to form an arch of the inner wall. Similar paring bricks are placed side by side on the two sides. Note that some flow paths are omitted in FIG. 3.

天井がアーチ天井の場合には、内壁である天井
を構成する煉瓦としては一般にセリ煉瓦が適して
おり、典型的なセリ煉瓦は第4図に示すような形
状をしている。すなわち断面が対称な台形である
直角柱状の外形を有するセリ煉瓦において、稜8
a−8bは稜8d−8cより長くかつ平行であ
る。底面8d−8e−8f−8cと上面8a−8
h−8g−8bとの間には底面および上面に開口
し両面間を連通する複数個のガス流路16が側面
8a−8d−8c−8bに略平行にかつ層状をな
して走つている。斜面8a−8d−8e−8hと
斜面8b−8c−8f−8gとの間には両斜面に
開口し両斜面間を連通する複数個の流体流路15
が側面に略平行にかつガス流路と交互に層状をな
して走つている。ガス流路16と流体流路15は
相互に近接しかつ隔絶して設けられており、かつ
その流路の向きは相互に概ね直交しており、いわ
ゆる直交形換熱器ユニツトを形成している。しか
してセリ煉瓦の底面が炉の内側に向き、かつセリ
煉瓦の両斜面に他の同形のセリ煉瓦の斜面が逐次
接し、両末端のセリ煉瓦の斜面はセリ受け煉瓦の
セリ受け面と接するように配置される。この際、
セリ受け煉瓦のセリ受け面に開口する流体流路1
5の位置はセリ煉瓦の斜面に開口する流体流路1
5の位置と一致するように構成されている。なお
第4図において一部の流路は省略して示されてい
る。
When the ceiling is an arched ceiling, seri bricks are generally suitable as the bricks constituting the ceiling, which is an inner wall, and a typical seri brick has a shape as shown in FIG. In other words, in a seri brick having a right prism-like outer shape with a symmetrical trapezoidal cross section, the edge 8
Edges a-8b are longer and parallel than edges 8d-8c. Bottom surface 8d-8e-8f-8c and top surface 8a-8
A plurality of gas passages 16, which are open at the bottom and top surfaces and communicate between the two surfaces, run substantially parallel to the side surfaces 8a-8d-8c-8b in a layered manner between the side surfaces 8a-8g-8b. Between the slopes 8a-8d-8e-8h and the slopes 8b-8c-8f-8g, there are a plurality of fluid channels 15 that are open to both slopes and communicate between the slopes.
runs approximately parallel to the side surface and alternately with the gas flow path in a layered manner. The gas flow path 16 and the fluid flow path 15 are provided close to each other and separated from each other, and the directions of the flow paths are generally orthogonal to each other, forming a so-called orthogonal heat exchanger unit. . Therefore, the bottom surface of the seri brick faces the inside of the furnace, and the slopes of other seri bricks of the same shape are successively in contact with both slopes of the seri brick, and the slopes of the seri bricks at both ends are in contact with the seri receiving surface of the seri receiving brick. will be placed in On this occasion,
Fluid flow path 1 opened to the seri receiving surface of the seri receiving brick
Position 5 is fluid flow path 1 that opens on the slope of the seri brick.
It is configured to match the position of 5. Note that in FIG. 4, some flow paths are omitted.

かかる内壁は次のような効果を奏するものであ
る。すなわち従来の加熱炉では例えば炉内加熱温
度約1400℃に対し、たかだか100℃しか低くない
約1300℃の高温排ガスが多量の顕熱を有したまま
炉外に排出され、その熱ロスは大きなものであ
り、またこの熱ロスをいくらかでも回収するため
には炉外に新たな高温に耐える熱交換器を設置せ
ねばならぬ不便があつたのに対し、本発明の加熱
炉では、多数個の流体流路と多数個のガス流路が
近接かつ隔絶して設けられている内壁において、
排ガスと被加熱流体とが混じりあうことなく簡便
に、かつ効率よく熱交換されることとなり、内壁
を通過した排ガスは1000℃以下まで冷却され、一
方室温乃至100℃で導入された空気は条件にもよ
るが約500℃にまで予熱されて容易に熱回収が図
られる。また従来の加熱炉では天井部などの特定
位置から排ガスを導出していたので、内壁の当該
特定位置周辺と他の内壁各部との間には熱風流量
や温度に分布を生じ、ひいては被加熱体の加熱温
度が炉内部位によつて不均一となつたり、炉壁部
位によつて炉材材質を使いわける必要が生じたり
補修頻度に差が生じたりしていた。しかるに本発
明では広い面積にわたる内壁の各部位からほぼ均
等に排ガスを導出するので上述の欠点も解消さ
れ、かつ熱交換にも広い面積が利用できるので、
小さい内壁厚さで所要量の熱回収が図れる。さら
に広い面積にわたり多数個の流体流路と多数個の
ガス流路が相互独立して設けられているので、こ
れらのうちの一部の流路が閉塞その他の損傷を起
こしても全体の機能に致命的な損害を与えない利
点も有する。
Such an inner wall has the following effects. In other words, in conventional heating furnaces, for example, the heating temperature inside the furnace is about 1400°C, but the high-temperature exhaust gas of about 1300°C, which is only 100°C lower at most, is discharged outside the furnace with a large amount of sensible heat, resulting in a large heat loss. In addition, in order to recover some of this heat loss, there was the inconvenience of having to install a new heat exchanger that can withstand high temperatures outside the furnace.However, in the heating furnace of the present invention, a large number of In an inner wall where a fluid flow path and a large number of gas flow paths are provided close to each other and separated from each other,
The exhaust gas and the fluid to be heated can exchange heat easily and efficiently without mixing, and the exhaust gas that has passed through the inner wall is cooled to below 1000℃, while the air introduced at room temperature to 100℃ is cooled under certain conditions. Depending on the situation, it can be preheated to about 500℃, making it easy to recover heat. In addition, in conventional heating furnaces, exhaust gas is drawn out from a specific location such as the ceiling, so there is a distribution of hot air flow rate and temperature between the specific location on the inner wall and other parts of the inner wall, which can lead to The heating temperature of the furnace becomes uneven depending on the parts of the furnace, and it becomes necessary to use different furnace materials depending on the part of the furnace wall, and there are differences in the frequency of repairs. However, in the present invention, the exhaust gas is led out almost equally from each part of the inner wall over a wide area, so the above-mentioned drawbacks are eliminated, and a wide area can be used for heat exchange, so
The required amount of heat can be recovered with a small inner wall thickness. Furthermore, since multiple fluid channels and multiple gas channels are provided independently over a wide area, even if some of these channels become blocked or otherwise damaged, the overall function will not be affected. It also has the advantage of not causing fatal damage.

内壁は空気などの流体によつて強制冷却されて
いることとなるので、内壁の炉内側と天井側との
間にかなりの温度差が生じ、換言すれば高機能の
断熱層を形成していることになり、同時にこの内
壁の平均温度も低下するので、従来の高級耐火
材・高級断熱材を厚く張りつめた内壁構造に比べ
てきわめて軽量かつ簡易な内壁構造が得られるこ
ととなり、ひいては内壁を構成するセリ煉瓦、こ
れを支持するセリ受け煉瓦、さらには側壁や架構
に要求される強度も低下させられる。また内壁の
ガス流路を通過した後の排ガスは温度が低下して
いるので炉天井壁を構成する炉材には高温の熱風
に直接さらされる部位(例えば第1図における炉
側壁)の炉材に比べてグレードを落とした材質が
採用可能となり、さらに炉材層の厚さも、従来な
ら天井部は側壁部より厚くする必要があつたのに
対し、本発明では逆に薄くできるものである。こ
のことはさらに、従来なら天井部は重畳した複雑
なセリ構造を必要としたのに対し、一層の炉材に
よる簡易な吊天井構造や、条件によつては単なる
鉄板外皮のみの天井構造をも可能とするものであ
る。これらのことは築炉のための資材を節減する
のみならず、炉の熱容量も低下させて、炉操業に
おける熱上げ、熱下げをも容易にするものであ
る。
Since the inner wall is forcedly cooled by air or other fluid, there is a considerable temperature difference between the inner wall of the furnace and the ceiling, forming a highly functional heat insulating layer. At the same time, the average temperature of this inner wall also decreases, making it possible to obtain an extremely lightweight and simple inner wall structure compared to the conventional inner wall structure in which high-grade refractory materials and high-grade insulation materials are thickly stretched. This also reduces the strength required for the warp bricks that support them, the bricks that support them, and even the side walls and frames. In addition, since the temperature of the exhaust gas after passing through the gas flow path on the inner wall has decreased, the furnace material constituting the furnace ceiling wall is It is now possible to use materials of a lower grade compared to the conventional furnace material layer, which conventionally required the ceiling to be thicker than the side walls, but in the present invention can be made thinner. Furthermore, whereas conventionally the ceiling required a complicated structure with overlapping layers, it is possible to use a simple suspended ceiling structure using one layer of furnace material, or depending on the conditions, a ceiling structure with only a simple steel plate outer shell. It is possible. These things not only save materials for furnace construction, but also lower the heat capacity of the furnace, making it easier to raise and lower the heat during furnace operation.

本発明で示す内壁構造は炉天井部に適用するの
が好ましい。これは熱風の対流効果により炉天井
部が一般に最も高温になりやすく、従来は炉壁も
厚く複雑であつたので本発明の効果がより良く発
揮され、さらに特別な強制通風装置を設けること
なく、炉のドラフト効果のみによつても天井部内
壁の各ガス流路から均一に排ガスを圧損少なく排
出できるからである。しかし、炉天井部に限定さ
れることなく、炉側壁部その他の内壁に適用する
ことも容易である。また排ガスの排出のために適
宜な強制通風装置を備えてもよい。
The inner wall structure shown in the present invention is preferably applied to the furnace ceiling. This is because the furnace ceiling tends to reach the highest temperature due to the convection effect of hot air, and conventionally the furnace walls were thick and complicated, so the effects of the present invention can be better exhibited, and furthermore, there is no need to install a special forced ventilation device. This is because the exhaust gas can be discharged uniformly from each gas flow path in the inner wall of the ceiling with little pressure loss even by the draft effect of the furnace. However, the present invention is not limited to the furnace ceiling, and can easily be applied to the furnace side walls and other inner walls. Further, an appropriate forced ventilation device may be provided for exhaust gas discharge.

内壁を構成する部材の材質は必要とされる耐熱
性、断熱性、強度などに応じてコージライト質、
ムライト質、ジルコニア質、炭化ケイ素質、窒化
ケイ素質など各種のセラミツクス耐火材が選択で
きる。なかでもコージライト質、炭化ケイ素質は
耐熱衝撃性に優れ、内壁各部位の温度差に耐えら
れるなどの点で好適である。
The material of the members that make up the inner wall is cordierite, depending on the required heat resistance, insulation, strength, etc.
Various ceramic refractories such as mullite, zirconia, silicon carbide, and silicon nitride can be selected. Among these, cordierite and silicon carbide are preferable because they have excellent thermal shock resistance and can withstand temperature differences at various parts of the inner wall.

換熱式熱交換機能を有する内壁は第4図に示し
たような、一つの成形体ですでに換熱式熱交換体
を形成している同形または類似形の成形体ユニツ
トを敷きつめて構成するのが築炉が容易で強度も
確保しやすいなどの点で好ましいが、流体通路の
みを有するセラミツクス体とガス流路のみを有す
るセラミツクス体と交互に敷きつめるなどして構
成してもよく、あるいは個々の流路の半截断面を
有するセラミツクス体を組み合せ、さらには適宜
な隙間を空けてセラミツクス体を組み合せるなど
してこれらの流路を構成してもよい。また天井部
内壁を構築するにあたつては必ずしもセリ構造で
なくてもよく、適宜な支え梁の上に内壁を敷いた
り、内壁を吊り構造としてもよい。また第4図の
セリ煉瓦は側壁間でアーチを構成し奥行方向では
アーチを構成していない天井部内壁に好適である
が、セリ煉瓦の形状を変形して奥行方向にもアー
チを構成可能として、丸天井形の炉に適用するこ
とも可能である。
The inner wall having a heat exchange function is constructed by laying molded body units of the same or similar shape that already form a heat exchange body in one molded body, as shown in Fig. 4. Although it is preferable to construct a furnace easily and ensure strength, it may also be constructed by alternately laying ceramic bodies having only fluid passages and ceramic bodies having only gas passages, or These channels may be constructed by combining ceramic bodies having half-cut sections of individual channels, or by combining ceramic bodies with appropriate gaps. Further, when constructing the inner wall of the ceiling part, it is not necessarily necessary to have a serpentine structure, but the inner wall may be laid on an appropriate support beam, or the inner wall may have a hanging structure. Furthermore, the seri bricks shown in Figure 4 are suitable for the inner wall of the ceiling, which forms an arch between the side walls and does not form an arch in the depth direction, but it is possible to form an arch in the depth direction by changing the shape of the seri bricks. , it is also possible to apply it to a vaulted furnace.

ガス流路および流体流路は近接かつ隔絶してい
ることが効率的な熱変換を行うために必須である
が、各流路の断面形状、断面積、流路数、両流路
間の距離などは、内壁面積、排ガスの量と温度、
被加熱流体の量と温度、内壁強度などの諸因子を
勘案して適宜設計可能であり、一般的には一流路
の断面積が1〜5cm2、ガス流路数は内壁面積1m2
あたり50〜150個、流体流路数は内壁断面積1m2
あたり50〜150個が好ましいが、必ずしもこれに
限定されない。
It is essential for gas flow channels and fluid flow channels to be close and separated for efficient heat conversion, but the cross-sectional shape and area of each flow channel, the number of channels, and the distance between both flow channels are essential. The inner wall area, the amount and temperature of exhaust gas, etc.
It can be designed as appropriate by taking into account various factors such as the amount and temperature of the fluid to be heated, and the strength of the inner wall. Generally, the cross-sectional area of the first channel is 1 to 5 cm 2 and the number of gas channels is 1 m 2 of the inner wall area.
50 to 150 fluid channels per area, the number of fluid channels is 1m2 of the inner wall cross-sectional area
Although 50 to 150 pieces per unit is preferable, the number is not necessarily limited to this.

また両流路の流れ方向は直線状、斜行状、屈曲
状、蛇行状などが選択できる中で、ガス流路が内
壁面に略直交し、流体流路が内壁面に略平行して
いることが、設計・製作が容易であり、圧力損失
も少なくて好便である。
In addition, while the flow direction of both flow paths can be selected from linear, oblique, bent, meandering, etc., the gas flow path should be approximately perpendicular to the inner wall surface, and the fluid flow path should be approximately parallel to the inner wall surface. However, it is convenient because it is easy to design and manufacture, and there is little pressure loss.

内壁における両流路の分布は均一であつても不
均一であつてもよい。内壁面内で均一であること
は均熱炉、均熱帯など炉内各部温度が均一である
場合に好ましく、一方、炉内各部で温度差が大き
い場合には流路も内壁面内で適宜疎密に分布させ
るのが好ましい。内壁の厚さ方向では、炉内側に
流体流路を疎に分布させまたは炉内側にやや厚く
流体流路を設けない層を形成せしめてこの内壁の
炉内側の冷却熱量を少くして省エネルギーを図る
のも有効である。
The distribution of both channels on the inner wall may be uniform or non-uniform. Uniformity within the inner wall surface is preferable when the temperature in each part of the furnace is uniform, such as in a soaking furnace or soaking zone.On the other hand, if there is a large temperature difference in each part of the furnace, the flow path should also be made thinner or denser as appropriate within the inner wall surface. It is preferable to distribute the In the thickness direction of the inner wall, fluid channels are distributed sparsely on the inside of the furnace, or a slightly thick layer without fluid channels is formed on the inside of the furnace to reduce the amount of cooling heat for this inner wall inside the furnace, thereby saving energy. is also valid.

一方、ヘツダーの形状を適宜選択して組合せる
ことにより空気の加熱温度などを適節可能であ
る。第5図はトンネル炉などにおいて炉の奥行方
向での温度分布をなるべく少なくしたいいわゆる
均熱帯部分に好ましい流路構成である。なお第5
図〜第7図において被加熱流体の流れ方向は矢線
で示されている。すなわち、第5図は奥行方向に
連通しかつセリ受け煉瓦側に開口するヘツダーを
用いた場合を示し、入口側ヘツダーに導入された
空気は各セリ受け煉瓦にほぼ均等に分散されて導
かれ、したがつてセリ煉瓦からなる内壁をほぼ均
等に流れて出口側ヘツダーに流出する。しかして
内壁が空気に冷却される熱量は炉の奥行方向でほ
とんど差がなく、したがつて炉内は奥行方向で均
一な温度分布を維持可能である。また第6図に示
すように奥行方向には連通せず、上方、下方また
は外方のいずれか一方とセリ受け煉瓦側に開口す
るヘツダーを用いて加熱されるべき空気と加熱さ
れた空気を交互のヘツダーに導くように流路を構
成して炉の奥行方向のみならず、炉の両側壁方向
間の温度分布を少なくすることも可能である。ま
たたとえばトンネル炉の予熱帯あるいは冷却帯な
どのように、炉の奥行方向に温度分布がある部位
には第7図のような流路構成が採用しうる。すな
わち一側方とセリ受け煉瓦側に開口するヘツダー
を側方の開口を向かいあわせ、かつ内壁をへだて
て向かいあうヘツダーとは側方の開口が逆側にな
るように配置し、加熱されるべき空気を炉の低温
部側内壁9″から導入し、高温部側内壁9′へ導出
することにより、この空気は内壁の流体流路を炉
の低温側から高温側まで複数回往復して流れ、加
熱側流体である炉排ガスとの間に直交向流型熱交
換をしてかなりの高温にまで加熱された予熱空気
が得られる。
On the other hand, by appropriately selecting and combining the shapes of the headers, it is possible to appropriately adjust the heating temperature of the air. FIG. 5 shows a preferred flow path configuration for a so-called soaking zone in a tunnel furnace or the like where the temperature distribution in the depth direction of the furnace is to be minimized. Furthermore, the fifth
In FIGS. 7 to 7, the flow direction of the fluid to be heated is indicated by an arrow. That is, FIG. 5 shows a case where a header is used which communicates in the depth direction and opens on the side of the warp receiving brick, and the air introduced into the header on the entrance side is distributed and guided almost equally to each of the warp receiving bricks, Therefore, it flows almost evenly through the inner wall made of seri bricks and flows out to the outlet side header. Therefore, there is almost no difference in the amount of heat that the inner wall is cooled by air in the depth direction of the furnace, and therefore it is possible to maintain a uniform temperature distribution in the depth direction inside the furnace. In addition, as shown in Figure 6, a header that does not communicate in the depth direction but opens either upward, downward, or outward toward the brick receiving brick side is used to alternately distribute the air to be heated and the heated air. It is also possible to reduce the temperature distribution not only in the depth direction of the furnace but also in the direction of both side walls of the furnace by configuring the flow path so as to lead to the header of the furnace. Further, a flow path configuration as shown in FIG. 7 can be adopted in a region where the temperature is distributed in the depth direction of the furnace, such as the pre-heating zone or the cooling zone of a tunnel furnace. In other words, the headers that open on one side and on the side of the seri receiving brick are arranged so that the side openings face each other, and the side openings are on the opposite side of the headers that face each other across the inner wall, and the air to be heated is heated. By introducing the air from the inner wall 9'' on the low-temperature side of the furnace and leading it out to the inner wall 9' on the high-temperature side, this air flows back and forth multiple times through the fluid flow path on the inner wall from the low-temperature side to the high-temperature side of the furnace, and is heated. Preheated air heated to a considerably high temperature is obtained by cross-countercurrent heat exchange with the side fluid, the furnace exhaust gas.

流路を流れる排ガスおよび流体は適宜の流量を
選択できるが、入口側ヘツダーに導かれる流体が
100℃程度以下の空気などである場合には、排ガ
ス量に対し、空気などの被加熱流体量はほぼ等量
から半量が好適である。
Appropriate flow rates can be selected for the exhaust gas and fluid flowing through the flow path, but the fluid led to the inlet header
In the case of air having a temperature of about 100° C. or lower, it is preferable that the amount of fluid to be heated such as air is approximately equal to half the amount of exhaust gas.

さらにかかる内壁構造においては被加熱流体
量、排ガス量、排ガス温度などによつては、内壁
からの伝熱または排ガスの顕熱などにより系外に
持ち去られる熱量が無視できない場合もあるが、
このような場合には第7図の如く、内壁より内側
に該内壁とは離隔してセラミツクスからなる障壁
17を設けることが有効である。この障壁にはそ
の内外に通ずる多数個のガス流路を形成せしめて
おくことにより排ガスの流路を確保するととも
に、セラミツクスからなるので高温になるほど高
い熱線輻射能を有し、高温の熱風や排ガスの熱エ
ネルギーをこの障壁によつて炉内に再輻射し、排
ガスや内壁に与えられる熱エネルギーを削減する
効果を有する。かかる障壁は各種のセラミツクス
材から構成可能であるが、コージライト質、ジル
コニア質、ムライト質、炭化ケイ素質、窒化ケイ
素質などからなる輻射効率の高い、かつ耐熱性の
セラミツクスからなるハニカム体をその開口面が
障壁の内外に向くように敷きつめて構成するのが
好便である。かかるハニカム体の外形状は断面が
5〜30cm角、長さが3〜20cmの四角柱状が好まし
いが、寸法、形状ともこれに限定されない。また
ハニカム体の流路は代表径1〜10cmの四角断面状
で厚さ0.3〜5mmの隔壁で隔てられているのが好
ましいが、同様にこれに限定されない。これらの
ハニカム体は適宜な支持枠により支持されて障壁
を形成するのが好ましい。なお障壁はその内外に
通ずる多数個のガス流路を形成せしめてあれば、
ハニカム体に限定されず、障壁面に多数の凸凹を
形成せしめたり、多数の盲孔を形成せしめたりし
て輻射増進を図つてあつてもよい。またかかる障
壁はその要部が内壁と離隔していれば、障壁の周
辺部が内壁と接していても差しつかえないし、上
述した特定構造の内壁の内側にこれより狭くまた
はこれより広く障壁を設けても差しつかえない。
Furthermore, in such an inner wall structure, depending on the amount of fluid to be heated, the amount of exhaust gas, the exhaust gas temperature, etc., the amount of heat carried away from the system due to heat transfer from the inner wall or sensible heat of the exhaust gas may not be negligible.
In such a case, it is effective to provide a barrier 17 made of ceramics inside the inner wall and separated from the inner wall, as shown in FIG. This barrier has a large number of gas flow paths leading inside and outside it to ensure a flow path for the exhaust gas, and since it is made of ceramics, it has higher heat radiation as the temperature rises, allowing it to be used for high-temperature hot air and exhaust gas. The barrier re-radiates the thermal energy into the furnace, which has the effect of reducing the thermal energy given to the exhaust gas and the inner wall. Such a barrier can be constructed from various ceramic materials, but it is preferable to use a honeycomb body made of heat-resistant ceramics with high radiation efficiency such as cordierite, zirconia, mullite, silicon carbide, and silicon nitride. It is convenient to arrange the walls so that the openings face inside and outside the barrier. The outer shape of such a honeycomb body is preferably a quadrangular prism with a cross section of 5 to 30 cm square and a length of 3 to 20 cm, but the dimensions and shape are not limited thereto. Further, it is preferable that the channels of the honeycomb body have a square cross-sectional shape with a typical diameter of 1 to 10 cm, and are separated by partition walls of 0.3 to 5 mm in thickness, but the present invention is not limited thereto. Preferably, these honeycomb bodies are supported by a suitable support frame to form a barrier. In addition, if the barrier has a large number of gas flow paths leading inside and outside,
The barrier surface is not limited to a honeycomb body, and radiation may be enhanced by forming a large number of unevenness or a large number of blind holes on the barrier surface. In addition, as long as the main part of such a barrier is separated from the inner wall, there is no problem even if the peripheral part of the barrier is in contact with the inner wall, and the barrier is provided narrower or wider inside the inner wall of the above-mentioned specific structure. I can't help it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明実施例のトンネル
炉の縦断面図である。第3図および第4図は上記
トンネル炉のそれぞれセリ受け煉瓦、セリ煉瓦の
斜視図である。第5図、第6図および第7図はい
ずれも上記トンネル炉の天井部内壁とヘツダーの
配置および被加熱流体の流れ方向を模式的に示す
要部平面図である。 1:炉側壁、2:炉天井壁、3:架構、6,
6′:ヘツダー、7,7′:セリ受け煉瓦、8:セ
リ煉瓦、9:内壁、15:流体流路、16:ガス
流路、17:障壁。
1 and 2 are longitudinal sectional views of a tunnel furnace according to an embodiment of the present invention. FIG. 3 and FIG. 4 are perspective views of the seri receiving brick and seri brick, respectively, of the tunnel furnace. FIG. 5, FIG. 6, and FIG. 7 are all plan views of essential parts schematically showing the arrangement of the inner wall of the ceiling portion of the tunnel furnace, the arrangement of the header, and the flow direction of the fluid to be heated. 1: Furnace side wall, 2: Furnace ceiling wall, 3: Frame, 6,
6': Header, 7, 7': Ceramic receiving brick, 8: Ceramic brick, 9: Inner wall, 15: Fluid channel, 16: Gas channel, 17: Barrier.

Claims (1)

【特許請求の範囲】 1 セラミツクスからなる内壁を有する加熱炉に
おいて、該内壁の内外に通ずる多数個のガス流路
および該ガス流路と近接かつ隔絶する多数個の流
体流路を該内壁に形成せしめてあることを特徴と
する加熱炉。 2 内壁は天井部内壁である特許請求の範囲1記
載の加熱炉。 3 ガス流路は内壁面に略直交し、流体流路は内
壁面に略平行している特許請求の範囲1または2
記載の加熱炉。 4 セラミツクスからなる内壁を有する加熱炉に
おいて、該内壁の内外に通ずる多数個のガス流路
および該ガス流路と近接かつ隔絶する多数個の流
体流路を該内壁に形成せしめてあり、該内壁より
内側にセラミツクスからなる障壁を該内壁と離隔
して設け、かつ該障壁には該障壁の内外に通ずる
多数個のガス流路を形成せしめてあることを特徴
とする加熱炉。
[Scope of Claims] 1. In a heating furnace having an inner wall made of ceramics, a large number of gas flow channels communicating inside and outside the inner wall, and a large number of fluid flow channels adjacent to and separated from the gas flow channels are formed in the inner wall. A heating furnace characterized by: 2. The heating furnace according to claim 1, wherein the inner wall is a ceiling inner wall. 3. Claim 1 or 2, wherein the gas flow path is substantially orthogonal to the inner wall surface, and the fluid flow path is substantially parallel to the inner wall surface.
The heating furnace described. 4. A heating furnace having an inner wall made of ceramics, in which a large number of gas passages communicating inside and outside the inner wall and a large number of fluid passages adjacent to and separated from the gas passages are formed in the inner wall, and the inner wall A heating furnace characterized in that a barrier made of ceramics is provided on the inner side at a distance from the inner wall, and the barrier is formed with a large number of gas passages that communicate with the inside and outside of the barrier.
JP12765082A 1982-07-23 1982-07-23 Heating furnace Granted JPS5918376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12765082A JPS5918376A (en) 1982-07-23 1982-07-23 Heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12765082A JPS5918376A (en) 1982-07-23 1982-07-23 Heating furnace

Publications (2)

Publication Number Publication Date
JPS5918376A JPS5918376A (en) 1984-01-30
JPS637319B2 true JPS637319B2 (en) 1988-02-16

Family

ID=14965335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12765082A Granted JPS5918376A (en) 1982-07-23 1982-07-23 Heating furnace

Country Status (1)

Country Link
JP (1) JPS5918376A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5954493B2 (en) * 2013-04-01 2016-07-20 株式会社Ihi Continuous heating furnace
CN112595146B (en) * 2020-12-29 2023-09-12 乔治洛德方法研究和开发液化空气有限公司 High-temperature fluid transportation pipeline with pipeline shell composed of heat exchange equipment, applicable heat exchange equipment and heat exchange method
CN112577338B (en) 2020-12-30 2023-07-25 乔治洛德方法研究和开发液化空气有限公司 High-temperature fluid transportation pipeline internally provided with heat exchange equipment, applicable heat exchange equipment and heat exchange method

Also Published As

Publication number Publication date
JPS5918376A (en) 1984-01-30

Similar Documents

Publication Publication Date Title
US4651810A (en) Checkerwork for upright regeneration chambers of a glass melting furnace
JPS637319B2 (en)
US3314666A (en) Fast fire tunnel kiln
US4444558A (en) System for heating broadwise-end portions of metal material
US1943957A (en) Furnace
US5163831A (en) Refractory tile for a suspended furnace wall
EP0453696B1 (en) A tunnel kiln
JPS6236074Y2 (en)
JPS6333119Y2 (en)
US4069010A (en) Kiln for ceramic products
KR950005677B1 (en) Coking system and reactors
JPS6236075Y2 (en)
US3142482A (en) Carbon body baking furnace
NL7906555A (en) CERAMIC, HEAT RECOVERY CONSTRUCTION AND COMPOSITION.
JP2610514B2 (en) Empty structure of refractories for heat storage room
US3669426A (en) Furnaces
KR101180241B1 (en) Melting furnace
JP3106124B2 (en) Combustion air preheating method and honeycomb-shaped heat storage body
JPH08143949A (en) Continuous heating apparatus
JPH0435751Y2 (en)
KR880004355Y1 (en) Apparatus for recoverying exhaust heat of tunnel kiln
JPS6013035Y2 (en) heat treatment furnace
JP2004131515A (en) End flue heating system of regenerative chamber type coke oven
US2504484A (en) Multiple tunnel kiln
USRE19388E (en) Checkerwork