JPS6372880A - Selective deposition method for metal - Google Patents

Selective deposition method for metal

Info

Publication number
JPS6372880A
JPS6372880A JP21625586A JP21625586A JPS6372880A JP S6372880 A JPS6372880 A JP S6372880A JP 21625586 A JP21625586 A JP 21625586A JP 21625586 A JP21625586 A JP 21625586A JP S6372880 A JPS6372880 A JP S6372880A
Authority
JP
Japan
Prior art keywords
film
heating
deposition
selective
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21625586A
Other languages
Japanese (ja)
Inventor
Toru Hara
培 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP21625586A priority Critical patent/JPS6372880A/en
Publication of JPS6372880A publication Critical patent/JPS6372880A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To deposit desired metallic films selectively at a high speed by selecting the wavelength of a heating light source and heating only the metallic electrode part without heating a substrate, oxide film and insulating film. CONSTITUTION:A sample 16 formed by forming the silicon oxide film 18 on the semiconductor substrate 17 and opening apertures 19 thereto is placed in a reaction vessel 15. The sample 16 is heated by a lamp light source 10 and the film 20a of W, etc., is selectively deposited by the reduction reaction of the silicon surface only in the apertures 10. Light from a lamp light source 11 is then passed through an optical filter 14 consisting of low-impurity concn. silicon to attenuate the light on the short wavelength side. The sample 16 deposited with the film 20a is heated by such radiation light. The substrate 17 and the silicon oxide film 18 are hardly heated at this time and only the deposited film 20a is heated. The metallic film such as W film 20b is deposited only on the deposited film 20a of W, etc., if WF6, etc., and gaseous hydrogen, etc., are introduced in this state into the vessel.

Description

【発明の詳现な説明】 〔産業䞊の利甚分野〕 本発明は、半導䜓基板の金属電極郚分にタングステンな
どの金属膜を遞択的に堆積する金属の遞択堆積法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a metal selective deposition method for selectively depositing a metal film such as tungsten on a metal electrode portion of a semiconductor substrate.

さらにその目的を詳しく説明するず、超に甚いる
シリコンなどの半導䜓基板およびシリコン酞化膜やシリ
コン窒化酞などの絶瞁膜は、加熱せず、配線電極に甚い
る金属電極郚分のみを遞択的に加熱し、この郚分にタン
グステンなどの金属膜を遞択的に堆積する金属の遞択堆
積法に斌いお、遞択的な堆積を速い速床で行うこずを䞻
目的ずするものである。
To explain the purpose in more detail, semiconductor substrates such as silicon used in VLSIs and insulating films such as silicon oxide films and silicon nitride oxides are not heated, but only the metal electrode portions used for wiring electrodes are selectively heated. In a metal selective deposition method in which a metal film such as tungsten is selectively deposited on this portion, the main purpose is to perform selective deposition at a high speed.

〔埓来の技術〕[Conventional technology]

幎々急速な埮现化が進められおいる超では、コン
タクト郚分の平坊化配線技術が、配線の断線を防ぐ䞊で
特に重芁である。これを実珟するためタングステンなど
の金属膜をコンタクトホヌル郚のみに遞択的に堆積し、
埋め蟌むプランゞプロセス技術は、特に泚目されおいる
。
In very large scale integrated circuits (VLSIs), which are being rapidly miniaturized year by year, a planarization wiring technology for contact portions is particularly important in order to prevent wiring breaks. To achieve this, a metal film such as tungsten is selectively deposited only on the contact hole.
Embedded plunge process technology is receiving particular attention.

これは、Ό平方以䞋の寞法のコンタクト窓をうめ
るこずができ、段差郚での配線切れをなすこずができ
る。
This allows a contact window with a size of 1.5 ÎŒm square or less to be filled, and breaks in wiring at stepped portions can be avoided.

そこで、埓来甚いられおいるタングステン膜の遞択堆積
法を説明する。
Therefore, a conventionally used selective deposition method for a tungsten film will be explained.

第図はコンタクト郚の断面図である。FIG. 9 is a sectional view of the contact portion.

この詊料のシリコンなどの半導䜓基板の䞊に、熱酞
化膜たたは化孊気盞成長法によるシリコン酞化膜を圢
成、たたは堆積埌フォト技術により、シリコン酞化
’に狭い開口郚をあけ、コンタクト窓ずしお甚
いる。
A silicon oxide film 3 is formed on a semiconductor substrate 2 made of silicon or the like of this sample 1 by a thermal oxide film or a chemical vapor deposition method, or a silicon oxide film 3 is formed using a photo technique after deposition.
'! A narrow opening 4 is made in 13 and used as a contact window.

通垞、この郚分にはコンタクト抵抗を枛少するため䞍玔
物拡散を行う、たた、コンタクト電極圢成は、通垞この
郚分にアルミニりムなどの金属をスバフタ法などにより
堆積する。
Usually, impurities are diffused into this part to reduce the contact resistance, and contact electrodes are usually formed by depositing metal such as aluminum on this part by a sputtering method or the like.

しかし、コンタクト寞法の枛少にずもない、アルミニり
ムを狭いコンタクト郚分に十分環めるこずができなくな
り、アルミニりム配線の段差切れの原因ずなる。
However, as the contact size decreases, it becomes impossible to wrap the aluminum sufficiently in the narrow contact portion, which causes step breakage in the aluminum wiring.

この開口郚での平坊化をはかるため、この開口郚の
みにタングステンなどの金属電極を遞択的に堆積し、こ
の開口郚を埋め蟌む方法が詊みられおいる。
In order to planarize the opening 4, a method has been attempted in which a metal electrode such as tungsten is selectively deposited only in the opening 4 to fill the opening 4.

この膜の堆積には、通垞ホットりォヌルたたはコヌルド
りオヌル型反応容噚が甚いられ、基板結晶の加熱源ずし
おは、抵抗、高呚波加熱たたはランプ加熱法、原料ガス
ずしお六北化タングステンが甚いられおいる
。
For the deposition of this film, a hot-wall or cold-wall type reaction vessel is usually used, and the heating source for the substrate crystal is a resistance, high-frequency heating, or lamp heating method, and tungsten hexafluoride (WFs) is used as the source gas. ing.

この容噚内に六北化タングステンをアルゎンキャリアガ
スず䞀緒に導入するず、第図のように詊料
の開口郚には、䞋蚘のステップの反応     − 
     によっお、厚さ
〜人の薄いタングステン膜が堆積する。
When tungsten hexafluoride is introduced into this container together with argon carrier gas, sample 1 appears as shown in Figure 1O (A).
In the opening 4 of the reaction WFs (g>+3Si (s)−*2W (s)
+3SiF4 (g) (1), thickness 2
A thin tungsten film 5a of 00 to 300 layers is deposited.

これは六几化タングステンが開口郚のシリコン衚面で
還元され、シリコン基板の衚面に薄いタングステン膜
が遞択的に堆積されるからである。
This is because tungsten hexafluoride is reduced on the silicon surface of the opening 4, and a thin tungsten film 5a is selectively deposited on the surface of the silicon substrate 2.

しかし、開口郚の衚面が、タングステン膜で芆わ
れおしたうず、反応による還元反応は生じなくなり、
堆積を継続しおもこの膜厚は増加しない。
However, if the surface of the opening 4 is covered with the tungsten film 5a, the reduction reaction by reaction I will no longer occur.
This film thickness does not increase with continued deposition.

しかし、この系に氎玠ガスを導入するず、六北化タング
ステンは、䞋蚘のステップ■の反応  
  →     
       によっお還元され、タングステン
の堆積が再び可胜ずなる。このためステプ■の
反応を甚い、遞択的なタングステン膜の堆積が、珟
圚広く詊みられおいるが、問題点が倚い。
However, when hydrogen gas is introduced into this system, tungsten hexafluoride is converted to the reaction WFG (g) +
3H2 (g) →W (s)+6HF (g)
(2), and the deposition of tungsten 115b becomes possible again. For this reason, attempts are currently being made to selectively deposit the tungsten film 5b using the reaction in step (2), but there are many problems.

〔発明が解決しようずする問題点〕[Problem that the invention seeks to solve]

䞊蚘のように、ステップの反応によっお、第図
のように開口郚に薄いタングステン膜を遞択
的に堆積できる。
As mentioned above, the reaction of Step I results in the reaction shown in Figure 10 (
A thin tungsten film 5a can be selectively deposited in the opening 4 as shown in A).

ステップの氎玠ガスによる六北化タングステンの還元
反応によっお、薄いタングステンの䞊にのみ遞択的
にタングステンを堆積したい。
It is desired to selectively deposit tungsten 115b only on thin tungsten 5a by the reduction reaction of tungsten hexafluoride with hydrogen gas in step H.

この堎合、堆積の初期には、玄〜人の
厚さたでは、比范的容易にシリコン酞化膜の衚面には
タングステン膜を堆積せず、タングステン膜の
衚面にのみ遞択的にタングステン膜を堆積できる。
In this case, at the initial stage of deposition, the tungsten film 5b is not deposited relatively easily on the surface of the silicon oxide film 3 until the thickness is approximately 4000 to 5000 nm, and the tungsten film 5b is selectively deposited only on the surface of the tungsten film 5a. Film 5b can be deposited.

この堆積では遞択性を保぀には、枩床、圧力、キャリア
ガスなど堆犎条件の最適化により、これを実珟できる。
Selectivity can be maintained in this deposition by optimizing deposition conditions such as temperature, pressure, and carrier gas.

䟋えば、反応容噚の圧力を  以䞋に
保぀こずにより、シリコン酞化膜䞊に堆積するタング
ステンを著しく枛少でき、遞択性を改善できる。
For example, by maintaining the pressure of the reaction vessel at 100 m Torr or less, the amount of tungsten deposited on the silicon oxide film 3 can be significantly reduced and the selectivity can be improved.

しかし、䞀般にこれらの堆積条件では、堆積速床が著し
く䜎䞋し、スルヌプットが䜎く実甚的でない点が問題で
ある。
However, these deposition conditions generally have a problem in that the deposition rate is significantly reduced and the throughput is low, making it impractical.

䞀方、堆積速床が倧きい条件で堆積を行うず、遞択性が
枛少たたは倱われる。
On the other hand, if deposition is performed under conditions where the deposition rate is high, selectivity is reduced or lost.

しかし、䞊蚘ステップ■の氎玠による還元反応で遞択性
を保った条件で膜の堆積を曎に進めお行くず、第Ξ図
に瀺すようにシリコン酞化の膜厚Ό
、開口郚がΌの堎合、タングステン膜の膜
厚〜人ずなるず、シリコン酞化
のサむドりオヌルに、せりあがり膜の堆積が生じるず共
に、膜の堆積の遞択性が倱われ、図のようにシリコン酞
化膜䞊にもタングステン粒が堆積するようになるこ
ずが倚い。
However, if the film deposition is further progressed under the condition that selectivity is maintained in the reduction reaction with hydrogen in step ① above, the film thickness of silicon oxide 111!
m, when the opening 4 is 1 ÎŒm and the thickness of the tungsten film 5b is 4000 to 5000, silicon oxide 193
A raised film is deposited on the sidewall of the wafer, and the selectivity of the film deposition is lost, and tungsten grains 6 are often deposited on the silicon oxide film 3 as shown in the figure.

埓っお、この技術の実甚化を蚈るには、これらの問題点
を解決するこずが急務であるが、ただ通切な解決法は開
発されおいない。
Therefore, in order to put this technology into practical use, it is urgently necessary to solve these problems, but no perfect solution has been developed yet.

たた、オヌム性電極配線などの加熱アニヌルには、
通垞電気炉による加熱法が甚いられおいる。これは
℃付近の枩床で、アルミニりムなどの合金電極のアニ
ヌルを行った堎合、浅い接合郚での接合スパむクの発生
、この電極からのコンタクト開口郚ぞのシリコン粒の
堆積による実効コンタクト面積の枛少、ヒロック、゚レ
クトロマむグレむシランの発生が問題ずされおいる。
In addition, for heating (annealing) ohmic electrode wiring, etc.,
A heating method using an electric furnace is usually used. This is 45
When an alloy electrode such as aluminum is annealed at a temperature around 0°C, a junction spike occurs at a shallow junction, a reduction in the effective contact area due to deposition of silicon grains from this electrode into the contact opening 4, The occurrence of hillocks and electromigray silane is considered to be a problem.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、これらの問題点を解決し、遞択的な堆積を埓
来に比べ、速い速床で行うこずを目的ずしおおり、堆積
を行いたい郚分ず行いたくない郚分を遞択的に加熱する
こずにより、これを実珟しおいる。
The purpose of the present invention is to solve these problems and perform selective deposition at a faster rate than conventional methods. This has been achieved.

この遞択加熱を行うための光源ずしお、タングステン 
ハロゲンランプを甚いた䟋を以䞋に瀺す。
Tungsten is used as a light source for this selective heating.
An example using a halogen lamp is shown below.

第図はこのランプ光源で埗られる攟射スペクトルず
シリコンの吞収係数の波長倉化を瀺す図である。
FIG. 2 is a diagram showing wavelength changes in the radiation spectrum 8 obtained with this lamp light source and the absorption coefficient 7 of silicon.

ここで、暪軞は波長、瞊軞は巊偎が、この光源からの攟
射光匷床、右偎はシリコンの吞収係数を衚わしである。
Here, the horizontal axis represents the wavelength, the left side of the vertical axis represents the intensity of emitted light from this light source, and the right side represents the absorption coefficient of silicon.

このような攟射スペクトルを有したタングステン ハロ
ゲンランプ光源、たたは通垞の電気炉を甚い、䞊蚘ステ
ップの反応によっお、タングステン膜を堆積した
埌、詊料を加熱するず、このタングステン
は、半導䜓基板に比べ、攟射された光の吞収量が倧き
いので、圓初はタングステンの枩床は、基板
およびシリコン酞化膜䞊に比べ、わずかに高くなるが
、加熱を持続するず、次第に枩床差は少なくなり、膜の
堆積に必芁な枩床たで昇枩、堆積の遞択性は倱われる。
When the sample 1 is heated after depositing the tungsten film 5a by the reaction in step I using a tungsten halogen lamp light source having such a radiation spectrum or an ordinary electric furnace, the tungsten lff5a is heated.
Since the absorption amount of emitted light is larger than that of the semiconductor substrate 2, the temperature of tungsten 1i5a is initially lower than that of the substrate 2.
The temperature is slightly higher than that on the silicon oxide film 3, but as heating is continued, the temperature difference gradually decreases and the temperature is raised to the temperature required for film deposition, and the selectivity of deposition is lost.

この結果、䞊蚘第図に瀺すようにシリコン酞
化膜䞊にもタングステン粒が堆積するようになる。
As a result, tungsten grains 6 are also deposited on the silicon oxide film 3, as shown in FIG. 10(B).

このため、第図に瀺すような加熱源の採甚により、十
分遞択的な加熱が回郚ずなり、タングステン膜䞊のみタ
ングステン膜を遞択的に堆積できる。
Therefore, by employing a heat source as shown in FIG. 5, sufficiently selective heating can be performed, and the tungsten film 5b can be selectively deposited only on the tungsten film.

ここでは加熱甚タングステン ハロゲンランプ光源
、たたは通垞の電気炉で、は加熱甚タングステン 
ハロゲンランプである。
Here, 10 is a heating tungsten halogen lamp light source or a normal electric furnace, and 11 is a heating tungsten halogen lamp light source.
It is a halogen lamp.

たた、は反射鏡、はランプ光源に察
する光フむルタ−は石英などの反応容噚である。
Further, 12 and 13 are reflecting mirrors, 14 is an optical filter for the lamp light source 11, and 15 is a reaction vessel made of quartz or the like.

このような反応容噚の䞭に、䞊蚘詊料ず同様な構
成の詊料、぀たりシリコンなどの半導䜓基板に
シリコン酞化膜を圢成し、これに開口郚をあけ
た詊料を眮く。
In such a reaction vessel 15, a sample 16 having the same structure as the sample 1, that is, a silicon oxide film 18 formed on a semiconductor substrate 17 such as silicon, and an opening 19 formed therein is placed.

このランプ光源およびは、いずれも第図に斌
いお、笊号に瀺すような攟射スペクトルを有しおおり
、光フむルタ−は、半導䜓基板ここではシリ
コンず同じ材質、たたは類䌌の吞収特性を有した光フ
ィルタヌで、第図の笊号に瀺したシリコンの吞収曲
線ずの重なりを特に枛少した攟射スペクトルを埗るこ
ずを目的ずしおいる。
The lamp light sources 10 and 11 both have radiation spectra as shown by reference numeral 8 in FIG. 2, and the optical filter 14 is made of the same material as the semiconductor substrate 17 (here silicon) or The aim is to obtain a radiation spectrum with a particularly reduced overlap with the absorption curve 7 of silicon, indicated by reference numeral 9 in FIG. 2, with an optical filter having similar absorption properties.

膜の堆積は、最初第図の笊号の攟射スペクトルを有
したランプ光源たたは通垞の抵抗加熱法を甚い、
詊料を均䞀に加熱し、ステップのシリコンの還元
反応により、シリコン衚面にのみタングステン膜の遞択
的な堆積を行う。
The film is deposited initially using a lamp light source 101 having a radiation spectrum 8 in FIG. 2 or by a conventional resistance heating method.
The sample 16 is heated uniformly, and a tungsten film is selectively deposited only on the silicon surface by the silicon reduction reaction in step I.

この堎合、半導䜓基板の加熱が可胜なので、六北化
タングステンガスをアルゎンキャリアガスず導入するこ
ずにより、開口郚にのみシリコン衚面の還元反応に
よっおタングステン膜を堆積できる。
In this case, since the semiconductor substrate 17 can be heated, the tungsten film 20a can be deposited only in the opening 19 by a reduction reaction on the silicon surface by introducing tungsten hexafluoride gas and argon carrier gas.

この加熱に電気炉、アルゎンたたはキセノンなどのアヌ
ク攟電ランプなど、さらにシリコンを加熱しやすい熱源
を甚いるず、この加熱は䞀局に有効ずなる。
This heating becomes even more effective if a heat source that easily heats silicon, such as an electric furnace or an argon or xenon arc discharge lamp, is used.

しかし、この加熱によっお、匕続きステップ■の氎玠の
還元反応によるタングステン膜の堆積を行うず、膜の堆
積は遞択的でなくなり、䞊蚘のようなタングステン粒が
堆積する。
However, when a tungsten film is subsequently deposited by the reduction reaction of hydrogen in step (2) by this heating, the film is not selectively deposited, and tungsten grains as described above are deposited.

このため、次のステップ■の堆積を行う堎合、攟射スペ
クトル第図参照を有したランプ光源からの
光に察し、䞡面を鏡面研磚した䜎䞍玔物濃床シリコン光
フむルタ−によっお・短波長偎の光を枛衰させるこ
ずにより、第図に点線で瀺した笊号のような攟射光
のスペクトルが埗られる。
Therefore, when performing the deposition in the next step (2), the light from the lamp light source 11 having the emission spectrum 8 (see FIG. By attenuating the light on the wavelength side, a spectrum of emitted light as shown by the dotted line 9 in FIG. 2 can be obtained.

この攟射光によっお、タングステンをステッ
プの反応により堆積した詊料を加熱する。このス
ペクトルでは、シリコン結晶の基瀎吞収端およびシリコ
ン酞化の吞収スペクトルずオヌバヌラツプ
しないため、半導䜓基板およびシリコン酞化
は、はずんど加熱されずタングステンのみを
加熱できる。
This radiation heats the sample 16 on which tungsten 1120a has been deposited by the reaction in step I. This spectrum shows the fundamental absorption edge of silicon crystal and silicon oxide III! Since it does not overlap with the absorption spectrum of 18, semiconductor substrate 17 and silicon oxide II!
18 is not heated at all and can only heat the tungsten 20a.

ここで、光フむルタ−は、䞡面を鏡面状に研磚し、
厚さは基板結晶の厚さず同じか、それ以䞊の厚さにする
か、たたはこの光フむルタ−を枚以䞊間時に甚い
るず、本発明の遞択加熱を行う䞊で有効である。
Here, the optical filter 14 has both sides polished to a mirror finish.
It is effective to make the thickness the same as or greater than the thickness of the substrate crystal, or to use one or more of these optical filters 14 at a time in performing the selective heating of the present invention.

この加熱では、タングステンのみが、この光
を吞収するので、タングステン’のみを遞択
的に加熱できる。
In this heating, only tungsten 1i20a absorbs this light, so only tungsten I'J20a can be selectively heated.

このように六北化タングステンず氎玠ガスを導入するず
、ステップの反応により、膜の堆積に必芁な枩床に保
たれたタングステン膜䞊にのみタングステン膜
は堆積する。
When tungsten hexafluoride and hydrogen gas are introduced in this way, the reaction in step H causes the tungsten film 20a to be deposited only on the tungsten film 20a maintained at the temperature required for film deposition.
0b is deposited.

䞀方、シリコン酞化膜の衚面の枩床は、膜の堆積枩
床以䞋に保たれおいるため堆積は生じないので、遞択加
熱が可胜ずなり、堆積速床も十分高くできる。
On the other hand, since the temperature of the surface of the silicon oxide film 18 is kept below the film deposition temperature, no deposition occurs, so that selective heating is possible and the deposition rate can be made sufficiently high.

第図はタングステン膜䞊に堆積する膜厚ず
シリコン酞化䞊に堆積する膜厚の堆積時間
による倉化を瀺す時間以䞊ずなるず、シリコン酞
化䞊にも膜の堆積が生じるので、堆積時間は
以䞋ずする。
Figure 3 shows changes in film thickness 21 deposited on the tungsten film 20a and film thickness 22 deposited on the silicon oxide y418 depending on the deposition time.When the time reaches 0 time t1 or more, film deposition also occurs on the silicon oxide 1111B. Therefore, the deposition time is set to t1 or less.

シリコン酞化は、熱䌝導床が䜎いので、
タングステン膜からの熱䌝導により加熱されにく
い。ここで、ステップの反応に甚いるランプ光源
による均䞀加熱では、パタヌンのないシリコンりェファ
基板裏面から、電極の局郚的な加熱には、基板衚面偎か
らそれぞれ行うのが有効である。
Silicon oxidation I! ! i! 18 has low thermal conductivity, so
It is difficult to be heated due to heat conduction from the tungsten film 20a. Here, the lamp light source 10 used for the reaction in step l
It is effective to perform uniform heating from the back side of a silicon wafer substrate without a pattern, and to locally heat the electrode from the front side of the substrate.

この遞択加熱で加熱される材料ずしお、タングステン、
モリブデン、チタン、バラゞりム、癜金、アルミニりム
、コバルト、ニッケルずこれらのシリサむドなどの化合
物、加熱されない材料ずしお、シリコン、ゲルマニりム
、ガリりムヒ玠、ガリりムりん、むンゞりムりん、アル
ミニりムヒ玠などの半導䜓ず、これらの混晶石英、サフ
ァむダなどの基板の堎合に通甚するず有効である。
Tungsten,
Compounds such as molybdenum, titanium, palladium, platinum, aluminum, cobalt, nickel and their silicides; non-heatable materials such as semiconductors such as silicon, germanium, gallium arsenide, gallium phosphide, indium phosphide, and aluminum arsenide; and their mixed crystals. It is effective if it is applicable to substrates such as quartz and sapphire.

第図に瀺すようにシリコン、たたはシリコン酞化膜
䞊に堆積した金属電極を第図のスペクトルの
ように短波長偎の攟射スペクトルをカットした光源を甚
い、加熱するず、第図に瀺すような昇枩特性が埗られ
る。
As shown in FIG. 6, silicon or silicon oxide film 2
When the metal electrode 24 deposited on the metal electrode 3 is heated using a light source whose emission spectrum on the shorter wavelength side is cut as shown in the spectrum 9 in FIG. 2, a temperature increase characteristic as shown in FIG. 4 is obtained.

ここで笊号およびは、シリコン酞化膜およ
び金属電極郚分の昇枩特性である。
Here, numerals 26 and 27 indicate temperature rise characteristics of the silicon oxide film 23 and metal electrode 24 portions.

この加熱によっお、電極金属は加熱に必芁な枩床た
で昇枩されるが笊号で瀺す、基板シリコン酞化
はこれらの攟射スペクトル光を吞収しないの
でほずんど加熱されず、笊号で瀺すような昇枩特性
が埗られる。
By this heating, the temperature of the electrode metal 24 is raised to the temperature required for heating (indicated by 27), but the substrate silicon oxide 11123 does not absorb these radiation spectrum lights, so it is hardly heated, and as shown by 26 This provides excellent temperature rise characteristics.

しかし、電極金属に盎接接觊したシリコン衚面領域
は、この光を吞収加熱された電極金属の熱本
堎によっお、笊号のように加熱されるため金属電極
ずの界面特性の改善、自然酞化膜の陀去、コンタク
ト抵抗の枛少、密着力の増倧、ゲヌト電極では加熱によ
る界面特性の改善などを蚈れ、有効な加熱が可胜ずなる
。
However, the silicon surface region 28 that is in direct contact with the electrode metal 24 absorbs this light and the heated electrode metal 24 is heated (as indicated by reference numeral 28 by the manufacturer, so that the interface characteristics with the metal electrode 24 are improved. Effective heating is possible by removing the native oxide film, reducing contact resistance, increasing adhesion, and improving the interface characteristics of gate electrodes through heating.

〔実 斜 䟋〕〔Example〕

反応容噚内に蚭けられた保持板䞊に眮かれた
詊料を通垞の抵抗加熱、たたは短波長偎に攟射スペ
クトルを有する各皮のランプ光源、たたは第図に瀺す
ような攟射スペクトルを有したランプ光源を甚い
、詊料党䜓を基板の裏偎からほが均䞀に
℃に加熱し、反応容噚の圧力を に保぀
。
(1) The sample 16 placed on a holding plate provided in the reaction vessel 15 is heated by ordinary resistance heating, or by various lamp light sources having a radiation spectrum on the short wavelength side, or by heating the specimen 16 with a radiation spectrum as shown in FIG. Using a lamp light source 10 having
℃ and maintain the reaction vessel pressure at 0.5 Torr.

次に、原料ガスの六北化タングステン分の
流量でアルゎンキャリアガス分ず共に、この反応容
噚内に䟛絊するず、ステップのシリコン衚面によ
る還元反応反応匏により、開口郚のシリ
コン衚面のみにタングステン突を人の厚
さに堆積する。
Next, when the raw material gas is supplied into the reaction vessel 15 together with the argon carrier gas i/min at a flow rate equivalent to the amount of tungsten hexafluoride tooccZ, the opening is caused by the reduction reaction (reaction formula (1)) on the silicon surface in step 1. A tungsten protrusion 20a is deposited only on the silicon surface of the portion 19 to a thickness of 250 mm.

それ以䞊膜厚は増加しない、この膜厚は堆積条件によっ
お異なる。
The film thickness does not increase any further; this film thickness varies depending on the deposition conditions.

次に、光源を第図のランプ光源に切り替え、攟射
される光を光フむルタ−に通過させた埌、この詊料
に照射加熱を行う。
Next, the light source is switched to the lamp light source 11 shown in FIG. 5, the emitted light is passed through the optical filter 14, and then the sample 16 is irradiated and heated.

六北化タングステン−分ず、氎玠ガス
分を反応容噚内に導入、氎玠ガスによる還元
反応によっおタングステンの堆積を行う、
ここでタングステン膜の枩床は、℃に加熱
されおいるが、シリコン酞化の衚面枩床は
℃以䞋で、タングステン膜の堆積枩床以䞋に
保たれおいる。
Tungsten hexafluoride - 100cc/min and hydrogen gas 1.
51/min into the reaction vessel 15 to deposit tungsten 15!20b through a reduction reaction with hydrogen gas.
Here, the temperature of the tungsten film 20a is heated to 420° C., but silicon oxide Ij! The surface temperature of 18 is 1
The temperature is maintained at 50° C. or lower, which is lower than the deposition temperature of the tungsten film 20a.

反応容噚内の圧力は、に枛圧されおいる
。このような遞択的な加熱によっお、タングステン膜
の郚分にのみ、遞択的にタングステンが
人分の速床で堆積するる。
The pressure inside the reaction vessel 15 is reduced to ITorr. By such selective heating, the tungsten film 2
Selectively apply tungsten IL only to the 0a part! Ob is deposited at a rate of 500 people/min.

䞀方、シリコン酞化膜の衚面には、このタングステ
ン膜はほずんど堆積しない。
On the other hand, this tungsten film 20b is hardly deposited on the surface of the silicon oxide film 18.

ここで、このステップ■反応によるタングステン膜
の遞択堆積で、第図のランプ光源に察する光フ
むルタ−を甚いずに、盎接詊料を加熱した堎合
も、ごく限られた条件、六北化タングステンず氎玠ガス
の流量を分および分、堆積枩床
℃の特定の条件で、膜の堆積を行うず、膜のはいあが
り珟象を䌎った遞択的な堆積が埗られるが、堆積速床は
非垞に遅い。
Here, the tungsten film 20 formed by this step
Even when the sample 16 is directly heated in the selective deposition of tungsten hexafluoride and hydrogen gas without using the optical filter 14 for the lamp light source 11 in FIG. Minutes and 1j! /min, deposition temperature 55
When a film is deposited under specific conditions of 0° C., selective deposition accompanied by a film peeling phenomenon can be obtained, but the deposition rate is very slow.

この堎合、堆積速床を速めるず堆積の遞択性は倱われる
か、十分でなくなる。
In this case, when the deposition rate is increased, the selectivity of the deposition is lost or becomes insufficient.

このステップ■の堆積に甚いる加熱源ずしお、䞊蚘ラン
プ光源以倖に、高呚波加熱および䞊蚘ランプ光源ず高呚
波加熱の䜵甚も遞択堆積を行う䞊で有効である。
In addition to the lamp light source described above, high-frequency heating and a combination of the lamp light source and high-frequency heating are also effective as heating sources used for the deposition in step (2) for selective deposition.

䞊蚘実斜䟋に瀺したような遞択的な膜の加熱を行
い、ステップ■の反応による膜の堆積を続するず
、ある時間、䟋えば分間経過埌、シリコン酞化膜
の衚面にも次第にタングステン粒、たたは膜の堆積
が生じるようになる。
(2) Perform selective heating of the film as shown in the above example, and deposit the film by the reaction in step ①! If this continues, after a certain time t1, for example, 5 minutes, tungsten grains or films gradually start to accumulate on the surface of the silicon oxide film 18.

第図は、堆積膜厚の時間倉化を瀺す図で、および
はタングステン膜およびシリコン酞化
の䞊のタングステン膜の堆積速床である。
FIG. 3 is a diagram showing the change in deposited film thickness over time, and 21 and 22 are the tungsten film 20b and the silicon oxide 111.
is the deposition rate of the tungsten film on top of 18.

この堎合、時間以䞊なるず、シリコン酞化
䞊にも膜が堆積するようになるので、これより少な
ずも秒以䞊前に䞀時堆積を停止し、䞀床半導䜓基板
およびシリコン酞化膜衚面の枩床を℃以
䞋に冷华埌、再び堆積を開始する。
In this case, after time t1 or more, silicon oxidation lff2
Since the film will also be deposited on the surface of the semiconductor substrate 17 and the silicon oxide film 18, the film will be deposited on the surface of the semiconductor substrate 17 and the silicon oxide film 18, and then the film will be deposited on the surface of the semiconductor substrate 17 and the silicon oxide film 18, and then the film will be deposited on the surface of the semiconductor substrate 17 and the silicon oxide film 18. Start deposition.

このような簡朔的な堆積過皋を䜕回か繰り返しながら行
うこずにより、必芁な膜厚の堆積をより遞択的に行うこ
ずが可胜ずなり、この結果、第図のように開口郚
を完党に埋め蟌んだ理想的な電極を圢成できる。
By repeating such a simple deposition process several times, it becomes possible to deposit the required film thickness more selectively, and as a result, as shown in FIG.
It is possible to form ideal electrodes that are completely embedded.

アルミニりムおよび、これを母䜓ずしおオヌム性
重陜材料の加熱を第図に笊号に瀺されおいるような
攟射スペクトルの光源を甚い、金属電極郚分のみを
遞択的に℃で秒間窒玠ガス䞭で加熱し、電橋
シンタを行う。
(3) Aluminum and an ohmic deuterium material using aluminum as a matrix are heated using a light source with a radiation spectrum as shown by reference numeral 9 in FIG. 2, selectively heating only the metal electrode 24 portion at 450°C for 10 Heat in nitrogen gas for 2 seconds to perform electric bridge sintering.

この加熱によっお電極金属ず、これず盎接接觊した
半導䜓基板界面のごく限られた領域の衚面郚分のみ
を局所的に短時間加熱される。この結果、浅い接合での
スパむク、−からの過剰シリコンの析出効果は
ほずんど芳枬されない。
By this heating, only the surface portion of the electrode metal 24 and a very limited area 25 at the interface of the semiconductor substrate that is in direct contact with the electrode metal 24 is locally heated for a short time. As a result, spikes at shallow junctions and effects of excessive silicon precipitation from Al-31 are hardly observed.

たた、シリコン衚面郚のみ金属電極からの熱䌝導に
よっお加熱されるので、この衚面に付着しおいる自然酞
化膜、汚染物などの圱響を陀くこずができるず共に、界
面特性の改善も可胜ずなる。
In addition, since only the silicon surface portion is heated by heat conduction from the metal electrode 24, it is possible to eliminate the influence of natural oxide films and contaminants adhering to this surface, and it is also possible to improve the interfacial characteristics. .

この加熱はオヌミック電極、金属たたはシリサむドゲヌ
ト電極の加熱に、特に有甚で特性改善が顕著である。
This heating is particularly useful for heating ohmic electrodes, metal or silicide gate electrodes, and the properties thereof are significantly improved.

ここでは、アルミニりム電極系に察するアニヌル䟋に぀
いお述べたが、金属材料ずしおアルミニりム以倖にタン
グステン、モリブデン、チタン、金、ニッケルなどの金
属ず、これらの化合物、基板ずしおシリコン以倖にゲル
マニりム、■−族化合物半導䜓ずその混晶、シリコン
酞化膜のないシリコン窒化膜の組合わせにおける遞択加
熱の堎合にも有甚である。
Here, we have described an example of annealing an aluminum electrode system, but metal materials other than aluminum such as tungsten, molybdenum, titanium, gold, and nickel, and their compounds, and substrates other than silicon such as germanium, ■-V group compounds, etc. It is also useful for selective heating of a combination of a semiconductor, its mixed crystal, and a silicon nitride film without a silicon oxide film.

の遞択堆積に甚いる半導䜓基板で、䞍
玔物濃床を    ′−”以䞊のシリ
コン結晶を甚いるず、シリコン酞化膜の䞊には、タ
ングステンの粒界が䞍連続に堆積するようになる。
(4) If a silicon crystal with an impurity concentration of 5×IQ 1′Ic5−” or higher is used for the semiconductor substrate 17 used in the selective deposition in (2), tungsten grain boundaries will be formed on the silicon oxide film 18. It begins to accumulate discontinuously.

この傟向は    −以䞊のキャリ
アを有した基板を甚いるず曎に顕著ずなる。しかし、
  −”以䞋のシリコン基板を甚いる
ず、自由キャリア吞収によるシリコンの加熱は、顕著で
はなくなるので、シリコン酞化膜䞊ぞは堆積しなくなる
。
This tendency becomes even more remarkable when a substrate having a carrier with lXIQ of 18cm-3 or more is used. However, 5
When a silicon substrate with a thickness of X 10 Iffcm-" or less is used, heating of silicon due to absorption of free carriers becomes insignificant, and therefore no deposition occurs on the silicon oxide film.

リアクタ装眮内に぀の光源、たたは加熱源を蚭
け、シリコン酞化膜をはさみ䞊䞋、たたは巊右に盞察
する䜍眮に配眮し加熱する。
(5) Provide two light sources or heating sources in the reactor equipment, and silicon oxide film! Place with scissors in opposite positions on the top and bottom or left and right and heat.

この遞択加熱に斌いお、光フむルタ−は、時間の経
過に぀れお光を吞収し次第に加熱されおくるので、第
図に瀺すりェファ保持具を甚い冷华を行う、この図では
は光フむルタ−は内郚に冷华甚氎が流れおい
るりェファ保持リングである。
In this selective heating, the optical filter 14 absorbs light as time passes and is gradually heated.
Cooling is performed using the wafer holder shown in the figure. In this figure, 29 is an optical filter, and 30 is a wafer holding ring through which cooling water flows.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実斜䟋を瀺し、第図は本発明によるタ
ングステン電極の断面図、第図は加熱光源の攟射スペ
クトルずシリコンの吞収係数の波長による倉化を瀺す図
、第図はタングステン膜の堆積膜厚の時間倉化を瀺す
図、第図は昇枩特性を瀺す図、第図は加熱装眮構造
図、第図は電橋加熱を瀺す図、第図はランプぞの入
力電圧の時間倉化を瀺す図、第図はりェファの冷华を
瀺す図、第図は埓来䟋の断面図、第図はス
テップによる堆積の断面図、間はステップ■に
よる堆積の断面図である。 ・・・詊料 ・・・半導䜓基板 ・・・シ
リコン酞化膜 ・・・開口郚 、・・
・タングステン膜 図 第図 第図 時      間 第図 第図
The drawings show embodiments of the present invention; FIG. 1 is a cross-sectional view of a tungsten electrode according to the present invention, FIG. Figure 4 shows the change in film thickness over time, Figure 4 shows the temperature rise characteristics, Figure 5 shows the structure of the heating device, Figure 6 shows electric bridge heating, and Figure 7 shows the temperature rise characteristics. 8 is a diagram showing the cooling of the wafer, FIG. 9 is a cross-sectional view of the conventional example, FIG. 10 (A) is a cross-sectional view of the deposition in step I, and (B) FIG. 3 is a cross-sectional view of the deposition according to step (2). 16... Sample 17... Semiconductor substrate 18... Silicon oxide film 19... Openings 20a, 20b...
・Tungsten film m4 Figure 6 Figure 7 Time Figure 8 Figure 9

Claims (20)

【特蚱請求の範囲】[Claims] 膜の堆積たたは膜のアニヌルに必芁な加熱で、加
熱光源の波長の遞択により、シリコンなどの半導䜓基板
結晶およびシリコン酞化膜、シリコン窒化膜などの絶瞁
膜は加熱せず、金属電極郚分のみを遞択的に加熱、この
郚分にのみ膜を堆積、たたはこの膜のみを遞択的に加熱
するこずを特城ずする金属の遞択堆積法。
(1) With the heating required for film deposition or film annealing, by selecting the wavelength of the heating light source, the semiconductor substrate crystal such as silicon and the insulating film such as silicon oxide film or silicon nitride film are not heated, and the metal electrode portion A selective metal deposition method characterized by selectively heating only the area, depositing a film only on this part, or selectively heating only this film.
遞択加熱に斌いお加熱される材料ずしお、タング
ステン、モリブデン、チタン、バラゞりム、癜金、アル
ミニりム、金、コバルト、ニッケルなどの金属ず、これ
らの金属を母䜓ずしおシリサむドなどの化合物の䞭の少
なくずも䞀぀を、加熱されない材料ずしお、シリコン、
ガリりムヒ玠、ガリりムりん、むンゞりムりん、アルミ
ニりムヒ玠およびむンゞりムアンチモンなどの化合物半
導䜓の単結晶ず、これらの混晶およびシリコン酞化膜、
シリコン窒化膜などの絶瞁膜の䞭から、少なくずも䞀぀
の組合わせに斌いお遞択的に加熱、遞択的に堆積を行う
こずを特城ずする特蚱請求の範囲第項蚘茉の金属遞択
堆積法。
(2) Materials to be heated in selective heating include metals such as tungsten, molybdenum, titanium, palladium, platinum, aluminum, gold, cobalt, and nickel, and compounds such as silicide using these metals as a matrix. One is silicon, which is not heated.
Single crystals of compound semiconductors such as gallium arsenide, gallium phosphide, indium phosphide, aluminum arsenide and indium antimony, their mixed crystals and silicon oxide films,
2. The metal selective deposition method according to claim 1, wherein at least one combination of insulating films such as silicon nitride films is selectively heated and selectively deposited.
甚いる加熱光源からの熱および光を、光フィルタ
ヌを甚い攟射光のスペクトルの䞀郚を枛衰、たたは倉化
させた埌に、加熱に甚いるこずを特城ずする特蚱請求の
範囲第蚘茉の金属の遞択堆積法。
(3) The metal according to claim 1, wherein the heat and light from the heating light source used are used for heating after attenuating or changing a part of the spectrum of the emitted light using an optical filter. selective deposition method.
甚いる光フィルタヌずしお、加熱したくない半導
䜓基板材料、たたはこの材料の吞収特性ず類䌌たたはこ
の基板材料の基瀎吞収端よりからΌ長波長偎に遮
断波長を有する材料を、高波長域通過フィルタヌずしお
甚いるこずを特城ずする特蚱請求の範囲第項蚘茉の金
属の遞択堆積法。
(4) As the optical filter to be used, use a semiconductor substrate material that you do not want to heat, or a material that has similar absorption characteristics to this material or has a cutoff wavelength 0 to 2 ÎŒm longer than the basic absorption edge of this substrate material in the high wavelength range. 2. The selective metal deposition method according to claim 1, wherein the method is used as a pass filter.
この遞択堆積法に斌いお、圓初この光フィルタヌ
を甚いずに、たたは通垞の抵抗加熱方法などによっお、
金属、半導䜓基板結晶、絶瞁膜を同時にほが均䞀に加熱
、䞀床膜の堆積たたはプレアニヌルを行った埌、光フィ
ルタヌを甚いるか、前の加熱ず異なった攟射スペクトル
を有した加熱光源を甚い、膜を遞択的に加熱膜の堆積、
たたは加熱を行うこずを特城ずする特蚱請求の範囲第
蚘茉の金属の遞択堆積法。
(5) In this selective deposition method, initially without using this optical filter or by ordinary resistance heating method, etc.
Metals, semiconductor substrate crystals, and insulating films are heated almost uniformly at the same time, and once the film has been deposited or pre-annealed, the film is heated using an optical filter or a heating light source with a different radiation spectrum from the previous heating. selectively heated film deposition;
or the first claim characterized in that heating is performed.
Selective deposition of metals as described.
堆積過皋の途䞭で、少なくずも回以䞊攟射スペ
クトルの異なった加熱光源に切換えお、膜の堆積および
加熱を行うこずを特城ずする特蚱請求の範囲第項蚘茉
の金属の遞択堆積法。
(6) The selective metal deposition method according to claim 1, characterized in that the film is deposited and heated by switching to a heating light source with a different emission spectrum at least once during the deposition process. .
異なった攟射スペクトルを有した少なくずも぀
以䞊の加熱光源を甚い、これを切換えお膜の堆積、たた
は加熱を行うこずを特城ずする特蚱請求の範囲第項蚘
茉の金属の遞択堆積法。
(7) Selective deposition of metal according to claim 1, characterized in that film deposition or heating is performed by using at least two or more heating light sources having different radiation spectra and switching between them. Law.
䞀方の加熱を基板り゚ファの裏面、たたは衚面䞀
方の加熱をり゚ファの反察面から行うこずを特城ずする
特蚱請求の範囲第項蚘茉の金属の遞択堆積法。
(8) The selective metal deposition method according to claim 1, characterized in that one heating is performed from the back side of the substrate wafer, or one of the front surfaces is heated from the opposite side of the wafer.
぀の加熱をり゚ファの䞊䞋、巊右たたは前埌か
ら、それぞれ行うこずを特城ずする特蚱請求の範囲第
項蚘茉の金属の遞択堆積法。
(9) Claim 1, characterized in that two heatings are performed from the top and bottom, left and right, or front and back of the wafer, respectively.
Selective deposition method of metals as described in Section.
半導䜓基板を反応容噚内の冷华した保持板䞊に
眮き、か぀膜の加熱を遞択的に行うこずを特城ずする特
蚱請求の範囲第項蚘茉の金属の遞択堆積法。
(10) The method for selective metal deposition according to claim 1, characterized in that the semiconductor substrate is placed on a cooled holding plate in a reaction vessel, and the film is selectively heated.
堆積に斌いお、堆積を行いたい郚分の金属衚面
の枩床を膜の堆積に必芁な枩床に、堆積したくないシリ
コン酞化膜などのマスク材料は、半導䜓基板偎から冷华
衚面の枩床が膜の堆積枩床以䞊にならないようにし、膜
を遞択的に堆積するこずを特城ずする特蚱請求の範囲第
項蚘茉の金属の遞択堆積法。
(11) During deposition, the temperature of the metal surface of the part where you want to deposit is the temperature required for film deposition, and the temperature of the cooling surface of the mask material such as silicon oxide film that you do not want to deposit is lowered from the semiconductor substrate side. 2. The selective metal deposition method according to claim 1, wherein the film is selectively deposited at a temperature not exceeding the film deposition temperature.
加熱、堆積工皋に斌いお、膜の堆積に際し、系
の加熱を連続ではなく、時間的に間欠的に行い膜を遞択
的に堆積するこずを特城ずする特蚱請求の範囲第項蚘
茉の金属の遞択堆積法。
(12) In the heating and deposition process, when depositing a film, the system is heated not continuously but intermittently in time to selectively deposit the film. Selective deposition of metals as described.
膜の堆積ず堆積した膜のアニヌル、たたぱッ
チング工皋を亀互に行いながら膜を䞍連続的に堆積、た
たは堆積した膜の加熱を行うこずを特城ずする特蚱請求
の範囲第項蚘茉の金属の遞択堆積法。
(13) Claim 1, characterized in that the film is discontinuously deposited or the deposited film is heated while alternately performing film deposition, annealing of the deposited film, or etching process. selective deposition of metals.
反応容噚を少なくずも぀以䞊蚭け、䞀方の容
噚で膜の堆積を、䞀方の容噚では膜のアニヌルたたぱ
ッチング、基板の冷华などの䜕れか、或いはこれらの過
皋を぀の反応容噚で同時に、たたは亀互に行うこずを
特城ずする特蚱請求の範囲第項蚘茉の金属の遞択堆積
法。
(14) At least two reaction vessels are provided, and one vessel is used for film deposition, and the other vessel is used for film annealing or etching, substrate cooling, etc., or these processes are performed simultaneously in two reaction vessels. 2. The selective metal deposition method according to claim 1, wherein the selective metal deposition method is performed alternately.
反応容噚を少なくずも぀以䞊蚭け、䞀方の容
噚では半導䜓基板、絶瞁膜、電極を均䞀に加熱、䞀方の
容噚では金属、半導䜓基板、絶瞁膜を遞択的に加熱し、
膜を堆積するこずを特城ずする特蚱請求の範囲第項蚘
茉の金属の遞択堆積法。
(15) Providing at least two reaction vessels, uniformly heating the semiconductor substrate, insulating film, and electrode in one vessel, and selectively heating the metal, semiconductor substrate, and insulating film in the other vessel;
A method for selectively depositing a metal according to claim 1, characterized in that a film is deposited.
加熱光源をり゚ファを挟んで䞊䞋、巊右、たた
は前埌に、攟射スペクトルが異なった぀の加熱光源を
眮き、亀互に、たたは同時に加熱するこずを特城ずする
特蚱請求の範囲第項蚘茉の金属の遞択堆積法。
(16) Claim 1, characterized in that two heating light sources with different radiation spectra are placed above and below, left and right, or front and back across the wafer, and heating is performed alternately or simultaneously. selective deposition of metals.
半導䜓基板ずしお自由キャリア吞収が少ない䞍
玔物濃床が×−以䞋の高抵抗半導䜓結
晶を甚いるこずにより、電極郚ず半導䜓基板、絶瞁膜ず
の加熱の遞択性を向䞊するこずを特城ずする特蚱請求の
範囲第項蚘茉の金属の遞択堆積法。
(17) By using a high-resistance semiconductor crystal with low free carrier absorption and an impurity concentration of 5 x 10 cm^-^3 or less as the semiconductor substrate, the selectivity of heating between the electrode part, the semiconductor substrate, and the insulating film can be improved. A selective metal deposition method according to claim 1, characterized in that:
光フィルタヌずしお基板結晶ず同䞀材料を甚い
る堎合、この光フィルタヌ材料の膜厚を基板結晶の膜厚
ず同じか、それ以䞊の厚さにするこずを特城ずする特蚱
請求の範囲第項蚘茉の金属の遞択堆積法。
(18) When the same material as the substrate crystal is used as the optical filter, the thickness of the optical filter material is equal to or greater than the thickness of the substrate crystal. Selective deposition method of metals as described in Section.
半導䜓基板䞊たたはシリコン酞化膜䞊に遞択的
に堆積した金属を遞択的に加熱、金属郚分ずこの金属郚
分に盎接接觊した半導䜓基板、ポリシリコン、シリコン
酞化膜などのごく薄い衚面のみを必芁な枩床に加熱する
電極のアニヌルを行うこずを特城ずする特蚱請求の範囲
第項蚘茉の金属の遞択堆積法。
(19) Selectively heats the metal selectively deposited on the semiconductor substrate or silicon oxide film, heating only the metal part and the very thin surface of the semiconductor substrate, polysilicon, silicon oxide film, etc. that is in direct contact with the metal part. The selective metal deposition method according to claim 1, characterized in that annealing of the electrode is performed by heating the electrode to a required temperature.
遞択加熱に甚いる加熱源ずしお、高呚波加熱源
、たたはこれずランプ光源の䜵甚による遞択加熱するこ
ずを特城ずする特蚱請求の範囲第項蚘蚘茉の金属の遞
択堆積法。
(20) The method for selectively depositing metal according to claim 1, wherein the selective heating is performed using a high frequency heating source or a combination of a high frequency heating source and a lamp light source.
JP21625586A 1986-09-13 1986-09-13 Selective deposition method for metal Pending JPS6372880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21625586A JPS6372880A (en) 1986-09-13 1986-09-13 Selective deposition method for metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21625586A JPS6372880A (en) 1986-09-13 1986-09-13 Selective deposition method for metal

Publications (1)

Publication Number Publication Date
JPS6372880A true JPS6372880A (en) 1988-04-02

Family

ID=16685695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21625586A Pending JPS6372880A (en) 1986-09-13 1986-09-13 Selective deposition method for metal

Country Status (1)

Country Link
JP (1) JPS6372880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039522A (en) * 1989-06-07 1991-01-17 Nec Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039522A (en) * 1989-06-07 1991-01-17 Nec Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US5685949A (en) Plasma treatment apparatus and method
KR100473996B1 (en) Cystallization method of amorphous silicon
EP0449524A2 (en) Optical annealing method for semiconductor layer and method for producing semiconductor device employing the same semiconductor layer
US4672740A (en) Beam annealed silicide film on semiconductor substrate
JPH10291897A (en) Formation of polycrystalline film by crystallization of microcrystalline film, formation of thin-film transistors and liquid crystal display formed by the method
JPS60254614A (en) Method of chemically depositing conductive titanium silicidefilm by light induction
JPH0620896A (en) Manufacture of semiconductor wafer
EP0257917A2 (en) Method of producing soi devices
JPH07235502A (en) Method of manufacturing semiconductor device
US5094966A (en) Method for the manufacture of an insulated gate field effect semiconductor device using photo enhanced CVD
JP3728467B2 (en) Method for forming single crystal diamond film
JPS6372880A (en) Selective deposition method for metal
EP0946783B1 (en) Semiconducting devices and method of making thereof
KR100305255B1 (en) Method for manufacturing a poly-crystal silicon thin film
JPS63299322A (en) Formation of single crystal silicon film
EP0496382B1 (en) Intrinsic gettering for a semiconducteur epitaxial wafer
JP3082164B2 (en) Laser processing method and semiconductor device
JPH0345534B2 (en)
JPS6313340B2 (en)
GB2202236A (en) Manufacture of electronic devices comprising cadmium mercury telluride involving vapour phase deposition
JPH04286318A (en) Polycrystalline semiconductor thin film and method and device for manufacture thereof
JPS63299321A (en) Formation of single crystal silicon film
JP3341361B2 (en) Manufacturing method of ultrafine particle dispersion material
JP2628911B2 (en) Heat treatment method for compound semiconductor
JP2000068203A (en) Polycrystalline silicon formed by crystallization of microcrystalline silicon and its forming method