JPS637240B2 - - Google Patents

Info

Publication number
JPS637240B2
JPS637240B2 JP15960779A JP15960779A JPS637240B2 JP S637240 B2 JPS637240 B2 JP S637240B2 JP 15960779 A JP15960779 A JP 15960779A JP 15960779 A JP15960779 A JP 15960779A JP S637240 B2 JPS637240 B2 JP S637240B2
Authority
JP
Japan
Prior art keywords
coal
clean coal
pulverized
water
granulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15960779A
Other languages
Japanese (ja)
Other versions
JPS5682731A (en
Inventor
Yasuyuki Nakabayashi
Sueji Yamamoto
Takuro Mikami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Mitsui Zosen KK
Original Assignee
Electric Power Development Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Mitsui Zosen KK filed Critical Electric Power Development Co Ltd
Priority to JP15960779A priority Critical patent/JPS5682731A/en
Publication of JPS5682731A publication Critical patent/JPS5682731A/en
Publication of JPS637240B2 publication Critical patent/JPS637240B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

【発明の詳細な説明】 本発明は石炭を産炭地より消費地まで輸送使用
する際、産炭地で特定の粉砕、脱灰、脱硫、造粒
操作を行ない、石炭ペレツトを製造したのち、水
スラリーまたはバルク輸送にて輸送する方法に関
する。 従来から石炭を産炭地から消費地に輸送する方
法として石炭を粉砕し、これを水に懸濁させ、適
当な濃度のスラリーにして配管輸送する方法は知
られている。 しかし、配管によつて、少なくとも山元から積
荷港まで、あるいは荷揚港から消費地までスラリ
ーを水力輸送するには途中で石炭が沈降しない程
度に安定なスラリーをつくる必要があり、そのた
めには、平均径0.1mm程度の粉炭スラリーの場合、
更に40μ以下の微粉炭を約20%程度混入する必要
があつた。このように、極めて粒径の小さい微粉
炭を混入すことによつてスラリーの安定性は向上
し、輸送中の沈降は防ぐことができるが、その反
面、このようなスラリーは末端において脱水性に
乏しく、かつ水処理に難点があつつた。 水力輸送された石炭スラリーは船積みの積荷効
率を上げるため、また消費地においては燃料とし
て供するために濃縮あるいは乾燥することは避け
ることができない。また、水処理も複雑で設備費
もかさみ、その用地も広大となる。したがつて、
上述した従来法のスラリーも消費地において脱水
処理を行なうが、配管輸送の安定をはかるための
微粉炭が混入されているため、濃縮、乾燥の効率
が極めて悪く、例えば、遠心分離器、シツクナ
ー、ドラムフイルター、熱風乾燥機などを組み合
わせて脱水を行なつているが、これらに要する設
備費、用地および動力は多大となり、また塊炭ま
たは粗粒炭で輸送する場合、貯蔵、荷役の際、発
塵、発火等環境保全、安全性に難があつた。 このような従来の石炭スラリー輸送の不利を改
善する目的で最近、一度粉砕した石炭を粘結剤で
乾式または湿式で造粒し、ペレツトをつくり、こ
のペレツトを輸送する試みが行なわれるようにな
つたが、経済的で実用に供しうる石炭粒をつくる
ことがむつかしく、十分満足のできる方法は見出
されていない。また、微粉炭を重油に混合し、ス
ラリー状で輸送する方法も試みられているが、ス
ラリーの安定性、長期間の貯蔵方法ならびに経済
性に難点があり、実用化に至つていない。 一方、産炭地で採れる原炭はかなりの量の無機
鉱物質を含んでおり、その含有量は石炭の種類に
よつて異なるが一般的には10〜25%を占める。無
機鉱物質は燃焼に寄与しないばかりでなく、実質
輸送コストを高め、また燃焼後の処理に多大の費
用を要するため、できるだけ事前に除去しておく
ことが望ましい。 石炭から無機鉱物質を除去する方法として、従
来石炭を微粉砕することにより無機鉱物質を石炭
からある程度解離させ、これを水でスラリーと
し、軽質油を加えて空気でバブリングを行なう等
の方法により、石炭/軽質油分を槽上に浮遊させ
て回収するフローテイシヨン法が一般的である。 しかしながら、この方法は精炭回収率が低く、
排出された水の処理が複雑で設備がかさむという
欠点があつた。 本発明者らは上述のような従来技術の欠点を改
善するため鋭意検討を重ねた結果、次のような本
発明に至つた。 すなわち本発明の石炭の造粒輸送方法は、石炭
を産炭地で100〜200メツシユに湿式粉砕し、得ら
れた微粉炭に超音波を作用させ、該微粉炭に付着
している無機鉱物質を解離して微粉精炭、無機鉱
物質および水の混合物を製造し、この混合物に軽
質油を加え前記微粉精炭を該軽質油に捕捉させて
前記微粉精炭を該軽質油との混合物として前記無
機鉱物質から比重差によつて分離し、この微粉精
炭―軽質油混合物から軽質油を分離して得られた
微粉精炭をバインダーの存在下に乾式造粒して造
粒精炭を製造し、この造粒精炭を整粒剤の存在下
に水と混合、撹拌して整粒し、整粒した造粒精
炭、整粒剤および水との混合物から整粒した造粒
精炭を分離し、得られた整粒した造粒精炭を輸送
することを特徴とするものである。 以下、図面を参照して本発明を具体的に説明す
る。 第1図は本発明の実施例を示す工程図である。 まず、採堀された石炭1は大体等量の水2と少
量の添加剤3と共に湿式微粉砕機4に投入されこ
こで約100〜200メツシユの粉炭に粉砕される。添
加剤3は、無機鉱物質抑制剤および凝集剤からな
つており、前者はイオウ等の無機鉱物質の表面を
界面化学的により親水性にして後述する軽質油へ
の混入を抑制する機能を有し、後者は無機鉱物質
表面に作用して凝集体を形成させ、沈降を促進す
る作用をする。かかる添加剤3は必ずしも添加す
る必要はないが、用いた方が好ましい。原炭は直
径25〜40mm程度であり、約10〜25%の無機鉱物質
を含んでいるが、ここで微粉砕することにより無
機鉱物質は一部分離し、また、完全に分離されな
くとも、分離されやすい状態になる。粉砕された
微粉炭は次に多段超音波洗浄装置5に送られ、複
数段に設置された超音波振動子および発信機6に
よつてミクロ的に加振され、微粉炭から解離され
やすい状態になつている無機鉱物質は効果的に解
離される。この超音波による無機鉱物質解離は従
来の単なる機械的撹拌に比べ粉炭粒子を直接振動
させるため、解離されやすい状態になつている無
機鉱物質が容易に解離し、また多段超音波洗浄装
置を使用することにより無機鉱物質の解離が促進
される。得られた微粉精炭、無機鉱物質、水の混
合物7は次に多段石炭抽出器8に送られ、微粉精
炭が抽出される。この抽出工程は、石炭が親油・
疎水性であり、無機鉱物質が逆に親水・疎油性で
あることを利用し、微粉精炭、無機鉱物質、水の
混合物を軽質油を抽剤として精炭を抽出するもの
である。 微粉精炭、無機鉱物質、水の混合物7は多段石
炭抽出器8に供給され、底部から上昇する軽質油
9と接触することにより、精炭は軽質油9に捕捉
され、この精炭と軽質油の混合物は無機鉱物質と
水の混合物よりも比重が軽いので更に上部に上昇
する。一方、無機鉱物質は重力沈降によつて抽出
器の底部に降下する。 また、多段石炭抽出器8には撹拌機が設けられ
ているので、抽出器下部においては軽質油の微細
粒化および精炭、無機鉱物質の分散が促進され、
抽出器上部においては軽質油に捕捉された精炭の
濃縮および精炭の抽出器下部への沈降が防止さ
れ、より効果的に精炭が抽出される。また、この
抽出器8は多段塔式であるため、従来のフローテ
イシヨン方式に比べて機器の設置面積が少なく、
フローテイシヨン用の空気供給設備、フロスかき
とり設備および消泡設備等の付帯設備が無い等の
利点を有している。 塔底部から出た無機鉱物質を含む水10はシツ
クナー11に入り、濃縮された無機鉱物質はいわ
ゆるぼた12として除去され、水2は湿式粉砕機
4へ循環使用される。一方、塔上部から出た精
炭/軽質油混合物は分離機13に送られる。分離
器13としては、ドラムフイルタ、デイスクフイ
ルタ、ベルトフイルタ、遠心分離機、フイルター
プレス等が用いられる。分離機13によつて、軽
質油9は分離されるが、精炭に一部付着している
軽質油を分離するために分離機13を出た精炭は
次に軽質油回収工程に送られる。 分離機13を出た軽質油を含む精炭はストリツ
パー14に入り、塔底から送られる高温(150〜
200℃)の不活性ガス(例えば窒素)15および
スチーム16によつて軽質油が分離回収される。
除去された軽質油(気体)/不活性ガスはストリ
ツパー14の塔頂から軽質油スクラバー17へ送
られ、ここで軽質油と不活性ガスを分離し、軽質
油9は前工程の分離機13から出た軽質油と合わ
せて多段石炭抽出装置8へ送られ循環使用され
る。また軽質油スクラバー17で分離された不活
性ガス15はストリツパー14へ循環使用され
る。 一方ストリツパー14で軽質油9が分離された
精炭は乾式造粒機18に入り造粒される。乾式造
粒機18としては、通常のドラム型または皿型等
の転動造粒機または撹拌機付皿型造粒機が用いら
れる。造粒の際には、バインダー19aとして、
水―油エマルジヨンが通常使用され、B重油、C
重油等の石油系重質燃料油および界面活性剤を超
音波の照射によつて高度にエマルジヨン化したも
のが好ましい。また油以外のバインダーとしてパ
ラフイン、ピツチ、ワツクス等、または上記以外
の石油系の油、タール等が用いられる。 乾式造粒機18で精炭をバインダー添加の下で
造粒した後に、造粒精炭20は整粒機21に送ら
れ、更にバインダー19b(エマルジヨン化油)
を加え、水中で撹拌して整粒する。 すなわち本発明では、乾式造粒と水中整粒を採
用する。そして乾式造粒では油―水エマルジヨン
をバインダーとして採用するので、油と水の両方
をバインダーとして機能させることができる。従
つて、湿式造粒では精炭当り15〜25wt%の油を
バインダーとして使用する必要があつたが、乾式
造粒と油―水エマルジヨンから成るバインダーを
採用することによつて精炭当りの油消費量を5〜
6wt%に削減することができる。 また整粒工程で増径、整粒に機能するものは、
バインダー中の油のみであるが、本発明では油―
水エマルジヨンをバインダーとして使用するの
で、水中での油滴の分散が瞬時に行なわれ、整粒
時間を短縮することができ、強度の大きい整粒造
粒整炭を得ることができる。 そして整粒工程で使用するバインダー中の油を
加えても、本発明における油使用量は合計で精炭
当り約10wt%であり、従来の湿式造粒に比較し
て油使用量を約50%削減することができる。これ
は上述のように、本発明では油に加えて水もバイ
ンダーとして機能しているためである。整粒され
た造粒精炭、エマルジヨン油、および水の混合物
はスクリーン22によつて整粒造粒精炭が分離さ
れ、一方、エマルジヨン油、水は油水分離器(図
示せず)に送られ、分離油19cは整粒機21へ
循環し、また分離水も整粒機21に送られ、循環
使用される。分離された整流造粒精炭の収率は、
原炭中の揮発分と固定炭素量を可燃分とし、この
可燃分回収率で見ると(バインダー中の油は可燃
分として計上)、軽質油抽出塔で抽出され、軽質
油が分離された精炭で90〜95%、整粒造粒精炭で
95〜98%であり、全体では約86〜93%である。 整粒造粒精炭は、スラリー調整槽23に送ら
れ、ここで水2を加え、適当な濃度の整粒造粒精
炭の水スラリーにしたのち、ポンプ24により、
例えばパイプライン25によつて船積港へパイプ
輸送する。また、脱水された整粒造粒精炭はバル
ク状で輸送することも可能である。 前述のように本発明では、造粒と整粒の二段方
式を採用しているため、造粒には油系以外のバイ
ンダーを使用し、整粒にはエマルジヨン油を使用
してコーテイングを行なうことにより二重構造ペ
レツトの造粒を行なうことも可能となり、またこ
の際、添加されたエマルジヨン油の消費されない
ものは循環再使用するため、高価な油の消費量を
極少化することが可能となる。 本発明によつて得られる整粒造粒精炭は表面に
油がコーテイングされた粒状物で、保形性が良
く、脱水性にもすぐれ、かつ比重が原炭より軽く
粒径は0.5〜3mmの粒度構成となつているため、
水スラリー輸送に適している。また、バルク輸送
の場合も保形性が良く、発塵、発火のおそれがな
く、環境保全および安全性にすぐれている。 水スラリーでパイプ輸送された整粒造粒精炭は
積出し地で脱水され、バルク状で貯蔵され、その
まま船舶または他の輸送手段により、バルク状で
輸送されることが可能であるが、第2図はスラリ
ー状で積出し地に貯蔵され、スラリー状で船舶に
より輸送される場合の一例を示す。 すなわち、ポンプ24、パイプライン25によ
つて輸送されたスラリーは港のスラリーポンド2
6に一時溜められ、沈降した濃縮スラリー27を
スラリー船28に積荷する。 スラリー船28からは更に船倉の上澄29をス
ラリーポンド26に戻し、スラリーポンド26の
上澄30はシツクナー31で濃縮し、濃縮液32
は再びスラリーポンド26に戻す。濃縮スラリー
を積んだスラリー船は目的の港に接岸し、水40
を加え、濃度調整を行ない、スラリーで揚荷さ
れ、スラリーポンド41に貯蔵される。スラリー
ポンド41よりスラリー42をスクリーン43に
かけ、整粒造粒精炭33は更に脱水機34で脱水
されたのち、粉砕機37に送られる。 一方、スクリーン43から出た水に混入する一
部の微粉炭はシツクナー35で濃縮され、脱水機
36で脱水されたのちペレツトと混合して、粉砕
機37に送られ、バーナー38に供する。一方、
シツクナー35を出た水と脱水機36を出た水は
スラリーポンド39に送られ船28のスラリー輸
送に再使用する。 本発明の方法は次のような利点を有する。 (1) 石炭を粉砕して得られた微粉炭に超音波を作
用させるので、粉砕によつて微粉炭から解離し
やすい状態になつている無機鉱物質を積極的に
微粉炭から解離することができ、すでに粉砕時
に微粉炭から分離した無機鉱物質を加えて、脱
灰率を高めることができる。 従つて、得られた造粒炭は燃焼効率がよく、
燃焼後の灰処理が大巾に軽減される。また原炭
をボイラー前で微粉砕する動力に比較して、整
粒造粒精炭は凝集物であるため、ボイラー前で
の再粉砕動力を軽減することができる。更に本
発明によれば造粒に必要な動力を低減すること
もできる。 すなわち、最初から湿式で造粒を実施する
と、水中では石炭粒子と油滴との間に水ぐ介在
するため、造粒のきつかけとなる石炭粒子と油
滴の衝突接触および他の石炭粒子との衝突接触
の確率が極端に低くなり、造粒の所要時間が非
常に長くなる。従来の湿式造粒では約30〜60分
である。 本発明では、あらかじめ乾式造粒で、石炭表
面に強制的に油を展着させて粒状化しているた
め、水中における整粒が極めて短時間で進行す
る。 すなわち、乾式造粒に5〜7分、湿式整粒が
8分であつた。この造粒時間の短縮は、単位電
力当りの石炭処理量の増加となつて、結果的に
所要動力の低減の効果が得られる。 更に、乾式造粒、湿式整粒の更に他の特徴と
して、従来湿式造粒では使用できないような、
粘度が高く粗悪な油を、乾式造粒で使用する事
によつて、バインダーコストの低減が計れると
いう、フレキシビリテイを有している事であ
る。 (2) 上記(1)で述べたように無機鉱物質の除去が促
進されることにともない、脱硫(多くの場合イ
オウ化合物として存在する)効率も向上するの
で、排煙脱硫設備が軽減される。 (3) 微粒精炭をバインダーの存在下に造粒し、得
られた造粒精炭を整粒剤の存在下に整粒するの
で、表面に油層が存在し、かつ粒度が比較的粒
粒でそろつている。従つて得られた整粒した造
粒精炭は脱水性が良好であり、積出し地や使用
地における脱水が容易で、バルク輸送や濃厚ス
ラリー状態での輸送が可能であり、積出し地及
び消費地における脱水・排水処理設備が簡略化
され且つ、設備費、動力費等が大巾に軽減され
る。 (4) バルク輸送も可能となるため、輸送、荷役手
段の多様化が可能となる。 (5) 油でコーテイングされているため、水スラリ
ー輸送の場合はパイプの摩耗腐食が軽減され、
バルク輸送及び貯蔵の場合、発塵、自然発火の
恐れがなく、環境保全、安全性にすぐれてい
る。 (6) 軽質油及びバインダーは回収再使用可能のた
め、それらの消費量を極少化できる。 (7) 洗炭の場合超音波方式を採用するため、洗浄
効果がよく且つ設備費、動力費が在来法に比し
軽減される。 (8) 軽質油による微粉精炭の抽出に多段抽出器を
使用すれば回収効率がよく、且つ設置面積、設
備費が節減出来る。 (9) バインダーによる造粒と、得られた造粒精炭
の整粒剤存在下における整粒を採用することに
より、バインダーを使用した湿式造粒方式に比
較して(1)で述べたように所要動力が小さく且
つ、異種のバインダー使用が可能となるため高
価な油系バインダーの消費量が従来方式に比べ
大巾に改善される。 (10) 大型火力ボイラー、産業用ボイラー、原料
炭、家庭用燃料等巾広い利用が可能となる。 以下、本発明の実施例を下記表に示す。 【表】
[Detailed Description of the Invention] When transporting coal from a coal producing area to a consuming area, the present invention performs specific crushing, deashing, desulfurization, and granulation operations at the coal producing area to produce coal pellets. It relates to a method of transporting water slurry or bulk transport. BACKGROUND ART Conventionally, as a method of transporting coal from coal producing areas to consuming areas, there has been known a method of pulverizing coal, suspending it in water, making a slurry of an appropriate concentration, and transporting it through pipes. However, in order to hydraulically transport slurry using piping from the base of the pile to the loading port, or from the unloading port to the consumption area, it is necessary to create a slurry that is stable enough that the coal does not settle on the way. For powdered coal slurry with a diameter of about 0.1mm,
Furthermore, it was necessary to mix approximately 20% of pulverized coal with a particle size of 40μ or less. In this way, by mixing pulverized coal with extremely small particle size, the stability of the slurry can be improved and sedimentation during transportation can be prevented, but on the other hand, such slurry has poor dewatering properties at the end. Water was scarce, and there were difficulties in water treatment. Coal slurry transported by hydraulic power must be concentrated or dried in order to increase shipping efficiency and to serve as fuel at the consumption site. In addition, water treatment is complicated, equipment costs are high, and the land required is vast. Therefore,
The slurry of the conventional method described above is also dehydrated at the consumption site, but since pulverized coal is mixed in to stabilize pipe transportation, the efficiency of concentration and drying is extremely low. Dehydration is carried out using a combination of drum filters, hot air dryers, etc., but the equipment costs, land, and power required for these are large, and when transporting lump coal or coarse granulated coal, it is difficult to generate water during storage and cargo handling. There were problems with environmental protection and safety due to dust, ignition, etc. In order to improve these disadvantages of conventional coal slurry transportation, attempts have recently been made to granulate once-pulverized coal using a binder in a dry or wet process to create pellets and transport the pellets. However, it is difficult to produce coal grains that are economical and can be used for practical purposes, and no fully satisfactory method has been found. In addition, attempts have been made to mix pulverized coal with heavy oil and transport it in the form of a slurry, but this method has not been put into practical use due to problems with the stability of the slurry, long-term storage methods, and economic efficiency. On the other hand, raw coal extracted from coal fields contains a considerable amount of inorganic minerals, and the content varies depending on the type of coal, but generally accounts for 10 to 25%. Inorganic minerals not only do not contribute to combustion, but also increase the actual transportation cost and require a large amount of processing costs after combustion, so it is desirable to remove them in advance as much as possible. Conventional methods for removing inorganic minerals from coal include pulverizing the coal to dissociate some of the inorganic minerals from the coal, making a slurry with water, adding light oil, and bubbling with air. A common method is the flotation method, in which coal/light oil is collected by floating it on a tank. However, this method has a low clean coal recovery rate;
The disadvantage was that the treatment of the discharged water was complicated and required equipment. The inventors of the present invention have made extensive studies to improve the drawbacks of the prior art as described above, and as a result, have arrived at the following invention. That is, the coal granulation and transportation method of the present invention wet-pulverizes coal into 100 to 200 mesh pieces at a coal-producing area, applies ultrasonic waves to the obtained pulverized coal, and removes inorganic mineral substances attached to the pulverized coal. is dissociated to produce a mixture of pulverized clean coal, inorganic mineral matter, and water, and light oil is added to this mixture to trap the pulverized clean coal in the light oil to form the pulverized clean coal as a mixture with the light oil. The pulverized clean coal is separated from the inorganic mineral substance based on the difference in specific gravity, and the light oil is separated from this pulverized clean coal-light oil mixture, and the resulting pulverized clean coal is dry-granulated in the presence of a binder to produce granulated clean coal. This granulated clean coal is mixed with water in the presence of a sizing agent and sized by stirring, and the granulated refined coal is sized from a mixture of the sized granulated clean coal, a sizing agent, and water. This system is characterized by separating coal and transporting the obtained granulated clean coal. Hereinafter, the present invention will be specifically explained with reference to the drawings. FIG. 1 is a process diagram showing an embodiment of the present invention. First, excavated coal 1 is fed into a wet pulverizer 4 together with approximately equal amounts of water 2 and a small amount of additives 3, and is pulverized there into powdered coal of about 100 to 200 meshes. Additive 3 consists of an inorganic mineral substance inhibitor and a coagulant, and the former has the function of making the surface of inorganic mineral substances such as sulfur more hydrophilic in terms of surface chemistry and suppressing their contamination with light oil, which will be described later. However, the latter acts on the surface of inorganic minerals to form aggregates and promotes sedimentation. Although it is not necessary to add such additive 3, it is preferable to use it. Raw coal is approximately 25 to 40 mm in diameter and contains approximately 10 to 25% inorganic minerals, but by pulverizing it, some of the inorganic minerals are separated, and even if they are not completely separated, they are separated. become susceptible to being attacked. The pulverized pulverized coal is then sent to a multistage ultrasonic cleaning device 5, where it is microscopically excited by ultrasonic vibrators and transmitters 6 installed in multiple stages, and is easily dissociated from the pulverized coal. The attached inorganic minerals are effectively dissociated. This dissociation of inorganic mineral substances by ultrasonic waves directly vibrates the powdered coal particles compared to conventional mechanical stirring, so inorganic mineral substances that are easily dissociated can be easily dissociated, and a multi-stage ultrasonic cleaning device is used. This promotes the dissociation of inorganic mineral substances. The resulting mixture 7 of pulverized clean coal, inorganic minerals, and water is then sent to a multi-stage coal extractor 8, where pulverized clean coal is extracted. In this extraction process, the coal is lipophilic and
Taking advantage of the fact that inorganic minerals are hydrophobic and inorganic minerals are hydrophilic and oleophobic, clean coal is extracted from a mixture of pulverized clean coal, inorganic minerals, and water using light oil as an extractant. The mixture 7 of pulverized clean coal, inorganic minerals, and water is fed to a multistage coal extractor 8, and by contacting the light oil 9 rising from the bottom, the clean coal is captured in the light oil 9, and the clean coal and light The oil mixture has a lower specific gravity than the inorganic mineral and water mixture, so it rises further to the top. On the other hand, the inorganic mineral material falls to the bottom of the extractor by gravity settling. In addition, since the multi-stage coal extractor 8 is equipped with a stirrer, the refinement of light oil and the dispersion of clean coal and inorganic minerals are promoted in the lower part of the extractor.
In the upper part of the extractor, the clean coal trapped in the light oil is prevented from concentrating and the clean coal is prevented from settling in the lower part of the extractor, and the clean coal is extracted more effectively. In addition, since this extractor 8 is a multi-stage column type, the installation area of the equipment is smaller compared to the conventional flotation type.
It has the advantage of not having additional equipment such as air supply equipment for flotation, floss scraping equipment, and defoaming equipment. Water 10 containing inorganic minerals discharged from the bottom of the column enters a thickener 11, where concentrated inorganic minerals are removed as so-called slag 12, and water 2 is recycled to a wet crusher 4. On the other hand, the clean coal/light oil mixture coming out of the upper part of the column is sent to the separator 13. As the separator 13, a drum filter, a disk filter, a belt filter, a centrifugal separator, a filter press, etc. are used. The light oil 9 is separated by the separator 13, but in order to separate the light oil that is partially attached to the clean coal, the clean coal that leaves the separator 13 is then sent to a light oil recovery process. . The clean coal containing light oil that comes out of the separator 13 enters the stripper 14, where it is sent from the bottom of the column to a high temperature (150~
Light oil is separated and recovered using an inert gas (for example, nitrogen) 15 and steam 16 at a temperature of 200°C.
The removed light oil (gas)/inert gas is sent from the top of the stripper 14 to the light oil scrubber 17, where light oil and inert gas are separated, and the light oil 9 is sent from the separator 13 in the previous step. Together with the light oil produced, it is sent to the multi-stage coal extraction device 8 and used for circulation. The inert gas 15 separated by the light oil scrubber 17 is recycled to the stripper 14. On the other hand, the clean coal from which the light oil 9 has been separated by the stripper 14 enters a dry granulator 18 and is granulated. As the dry granulator 18, an ordinary drum-type or plate-type rolling granulator or a plate-type granulator with an agitator is used. During granulation, as the binder 19a,
Water-oil emulsions are usually used, B heavy oil, C
It is preferable to use a product obtained by highly emulsifying petroleum-based heavy fuel oil such as heavy oil and a surfactant by ultrasonic irradiation. Further, as binders other than oil, paraffin, pitch, wax, etc., petroleum oils other than those mentioned above, tar, etc. are used. After the clean coal is granulated with the addition of a binder in the dry granulator 18, the granulated clean coal 20 is sent to the granulator 21, and is further granulated with a binder 19b (emulsion oil).
Add and stir in water to size the particles. That is, the present invention employs dry granulation and underwater granulation. Since dry granulation uses an oil-water emulsion as a binder, both oil and water can function as binders. Therefore, in wet granulation, it was necessary to use 15 to 25 wt% of oil per clean coal as a binder, but by using dry granulation and a binder made of oil-water emulsion, the amount of oil per clean coal can be reduced. Reduce consumption to 5~
It can be reduced to 6wt%. In addition, those that function to increase the diameter and size the particles in the particle size adjustment process are:
Although it is only oil in the binder, in the present invention, oil-
Since a water emulsion is used as a binder, oil droplets are instantly dispersed in water, the sizing time can be shortened, and highly strong sized granulated coal can be obtained. Even if the oil in the binder used in the granulation process is added, the total amount of oil used in the present invention is about 10 wt% based on clean coal, which is about 50% of the amount of oil used in conventional wet granulation. can be reduced. This is because, as mentioned above, in the present invention, water in addition to oil also functions as a binder. A mixture of sized granulated clean coal, emulsion oil, and water is separated into sized granulated clean coal by a screen 22, while emulsion oil and water are sent to an oil-water separator (not shown). The separated oil 19c is circulated to the sieving machine 21, and the separated water is also sent to the sieving machine 21 and used for circulation. The yield of separated rectified granulated clean coal is
The volatile content and fixed carbon content in raw coal are considered combustible content, and when looking at this combustible content recovery rate (oil in the binder is counted as combustible content), the light oil extracted in the light oil extraction column and the refined oil from which the light oil is separated. 90-95% with charcoal, granulated clean coal
It is 95-98%, and the total is about 86-93%. The sized and granulated clean coal is sent to a slurry adjustment tank 23, where water 2 is added to make a water slurry of sized and granulated clean coal with an appropriate concentration, and then the pump 24 is used to
For example, it is pipe-transported by a pipeline 25 to a loading port. Further, the dehydrated granulated clean coal can also be transported in bulk. As mentioned above, the present invention employs a two-stage method of granulation and granulation, so a binder other than oil is used for granulation, and emulsion oil is used for granulation for coating. This makes it possible to granulate double-structured pellets, and in this case, the added emulsion oil that is not consumed is recycled and reused, making it possible to minimize the consumption of expensive oil. Become. The sized granulated clean coal obtained by the present invention is a granular material whose surface is coated with oil, and has good shape retention and excellent dehydration properties, and has a lighter specific gravity than raw coal and a particle size of 0.5 to 3 mm. Because it has a particle size composition of
Suitable for water slurry transportation. In addition, even when transported in bulk, it has good shape retention, there is no risk of dust generation or ignition, and it is excellent in environmental protection and safety. The sized and granulated clean coal transported by pipe in a water slurry is dehydrated at the shipping port, stored in bulk form, and can be transported directly by ship or other means of transportation in bulk form. The figure shows an example of a case where the slurry is stored at the shipping port and transported by ship in the slurry form. That is, the slurry transported by the pump 24 and pipeline 25 is transported to the slurry pond 2 at the port.
The concentrated slurry 27 temporarily stored in the vessel 6 and settled is loaded onto a slurry ship 28. From the slurry ship 28, the supernatant 29 of the ship's hold is returned to the slurry pond 26, and the supernatant 30 of the slurry pond 26 is concentrated in a thickener 31, and the concentrated liquid 32 is
is returned to the slurry pond 26 again. The slurry ship loaded with concentrated slurry docked at the destination port and received 40 yen of water.
is added, the concentration is adjusted, the slurry is unloaded, and the slurry is stored in the slurry pond 41. A slurry 42 is passed through a screen 43 from a slurry pond 41, and the sized and granulated clean coal 33 is further dehydrated in a dehydrator 34 and then sent to a crusher 37. On the other hand, part of the pulverized coal mixed in the water coming out of the screen 43 is concentrated in a thickener 35, dehydrated in a dehydrator 36, mixed with pellets, sent to a crusher 37, and supplied to a burner 38. on the other hand,
The water exiting the thickener 35 and the water exiting the dehydrator 36 are sent to a slurry pond 39 and reused for transporting slurry to the ship 28. The method of the invention has the following advantages. (1) Since ultrasonic waves are applied to the pulverized coal obtained by pulverizing coal, inorganic mineral substances that are easily dissociated from the pulverized coal due to pulverization can be actively dissociated from the pulverized coal. The demineralization rate can be increased by adding inorganic minerals already separated from the pulverized coal during crushing. Therefore, the obtained granulated coal has good combustion efficiency and
Ash disposal after combustion is greatly reduced. In addition, compared to the power needed to pulverize raw coal in front of a boiler, since sized granulated clean coal is an aggregate, the power required to re-grind it in front of a boiler can be reduced. Furthermore, according to the present invention, it is also possible to reduce the power required for granulation. In other words, if granulation is performed wet from the beginning, water will be present between the coal particles and oil droplets in water, which will cause collisional contact between the coal particles and oil droplets and other coal particles, which will lead to granulation. The probability of collisional contact is extremely low and the time required for granulation becomes very long. Conventional wet granulation takes about 30-60 minutes. In the present invention, since oil is forcibly spread on the coal surface and granulated in advance by dry granulation, granulation in water progresses in an extremely short time. That is, dry granulation took 5 to 7 minutes, and wet granulation took 8 minutes. This shortening of the granulation time results in an increase in the amount of coal processed per unit electric power, resulting in the effect of reducing the required power. Furthermore, there are other features of dry granulation and wet granulation that cannot be used with conventional wet granulation.
It has flexibility in that binder costs can be reduced by using high-viscosity, poor-quality oil in dry granulation. (2) As mentioned in (1) above, as the removal of inorganic minerals is promoted, the efficiency of desulfurization (often present as sulfur compounds) is also improved, reducing the need for flue gas desulfurization equipment. . (3) Granulated clean coal is granulated in the presence of a binder, and the resulting granulated clean coal is sized in the presence of a sizing agent, so an oil layer exists on the surface and the particle size is relatively small. It's all there. Therefore, the resulting sized granulated clean coal has good dewatering properties and can be easily dehydrated at shipping and usage sites, and can be transported in bulk or in the form of a concentrated slurry, making it easy to remove water at shipping and consumption sites. The dewatering and wastewater treatment equipment in the system is simplified, and equipment costs, power costs, etc. are greatly reduced. (4) Bulk transportation is also possible, making it possible to diversify transportation and cargo handling methods. (5) Since it is coated with oil, wear and corrosion of the pipe is reduced when transporting water slurry.
In the case of bulk transportation and storage, there is no risk of dust generation or spontaneous combustion, and it has excellent environmental protection and safety. (6) Since light oil and binder can be recovered and reused, their consumption can be minimized. (7) Since the ultrasonic method is used for coal washing, the cleaning effect is good and equipment and power costs are reduced compared to conventional methods. (8) If a multistage extractor is used to extract pulverized clean coal using light oil, the recovery efficiency will be high, and the installation area and equipment costs can be reduced. (9) By adopting granulation using a binder and sizing the obtained granulated clean coal in the presence of a sizing agent, it is possible to achieve the same results as described in (1) compared to the wet granulation method using a binder. Since the required power is small and different types of binders can be used, the consumption of expensive oil-based binders is greatly improved compared to conventional methods. (10) It will be possible to use it in a wide range of applications, including large thermal boilers, industrial boilers, coking coal, and household fuel. Examples of the present invention are shown in the table below. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す工程図、第2図
はパイプ輸送後の工程を示す工程図である。 1……石炭、2……水、3……添加剤、4……
湿式粉砕機、5……多段超音波洗浄装置、8……
多段石炭抽出器、9……軽質油、13……分離
機、14……ストリツパー、15……不活性ガ
ス、18……乾式造粒機、19a,19b……バ
インダー、21……整粒機、22……スクリー
ン、25……パイプライン。
FIG. 1 is a process diagram showing an embodiment of the present invention, and FIG. 2 is a process diagram showing the process after pipe transportation. 1...Coal, 2...Water, 3...Additive, 4...
Wet crusher, 5...Multi-stage ultrasonic cleaning device, 8...
Multi-stage coal extractor, 9... Light oil, 13... Separator, 14... Stripper, 15... Inert gas, 18... Dry granulator, 19a, 19b... Binder, 21... Granulator , 22...screen, 25...pipeline.

Claims (1)

【特許請求の範囲】[Claims] 1 石炭を産炭地で100〜200メツシユに湿式粉砕
し、得られた微粉炭に超音波を作用させ、該微粉
炭に付着している無機鉱物質を解離して微粉精
炭、無機鉱物質および水の混合物を製造し、この
混合物に軽質油を加え前記微粉精炭を該軽質油に
捕捉させて前記微粉精炭を該軽質油との混合物と
して前記無機鉱物質から比重差によつて分離し、
この微粉精炭―軽質油混合物から軽質油を分離し
て得られた微粉精炭をバインダーの存在下に乾式
造粒して造粒精炭を製造し、この造粒精炭を整粒
剤の存在下に水と混合、撹拌して整粒し、整粒し
た造粒精炭、整粒剤および水との混合物から整粒
した造粒精炭を分離し、得られた整粒した造粒精
炭を輸送することを特徴とする石炭の造粒輸送方
法。
1 Wet-pulverize coal into 100 to 200 mesh pieces at a coal-producing area, apply ultrasonic waves to the resulting pulverized coal, and dissociate the inorganic mineral substances attached to the pulverized coal to produce pulverized clean coal and inorganic mineral substances. and water is produced, light oil is added to this mixture, the pulverized clean coal is captured in the light oil, and the pulverized clean coal is separated from the inorganic mineral as a mixture with the light oil based on the difference in specific gravity. death,
The pulverized clean coal obtained by separating light oil from this pulverized clean coal-light oil mixture is dry-granulated in the presence of a binder to produce granulated clean coal. The sized granulated clean coal is separated from the mixture of the sized granulated clean coal, a sizing agent, and water, and the sized granulated clean coal is separated from the mixture of the sized granulated clean coal, a sizing agent, and water. A coal granulation transportation method characterized by transporting clean coal.
JP15960779A 1979-12-08 1979-12-08 Coal pellet transporting process Granted JPS5682731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15960779A JPS5682731A (en) 1979-12-08 1979-12-08 Coal pellet transporting process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15960779A JPS5682731A (en) 1979-12-08 1979-12-08 Coal pellet transporting process

Publications (2)

Publication Number Publication Date
JPS5682731A JPS5682731A (en) 1981-07-06
JPS637240B2 true JPS637240B2 (en) 1988-02-16

Family

ID=15697398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15960779A Granted JPS5682731A (en) 1979-12-08 1979-12-08 Coal pellet transporting process

Country Status (1)

Country Link
JP (1) JPS5682731A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200022A (en) * 1988-02-05 1989-08-11 Sanwa Seiki Co Ltd Supercharger for automobile engine
WO2009019893A1 (en) 2007-08-08 2009-02-12 Kao Corporation Method for producing oil and fat with high diacylglycerol content

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200022A (en) * 1988-02-05 1989-08-11 Sanwa Seiki Co Ltd Supercharger for automobile engine
WO2009019893A1 (en) 2007-08-08 2009-02-12 Kao Corporation Method for producing oil and fat with high diacylglycerol content

Also Published As

Publication number Publication date
JPS5682731A (en) 1981-07-06

Similar Documents

Publication Publication Date Title
CA1168871A (en) Method for de-ashing and transportation of coal
US4575418A (en) Coal cleaning and the removal of ash from coal
EP0016536B1 (en) Method of removing hydrocarbon liquids from carbonaceous solid material with which they are mixed and using this method for deashing coal
CA2361574C (en) Fuel composition recycled from waste streams
EP0082470B1 (en) Upgrading method of low-rank coal
US4254560A (en) Method of drying brown coal
JPS637240B2 (en)
EP0029712B1 (en) An in-line method for the upgrading of coal
US4216082A (en) Method for processing a slurry of coal particles in water
US20080016757A1 (en) Reagent composition and method for reclaiming carbonaceous materials from settling ponds and coal preparation plants
JPH0633378B2 (en) Waste slurry recycling method
JPS6054798A (en) Dehydrating method of sludge
Wen et al. Centrifugal dewatering and reconstitution of fine coal: the GranuFlow process
JPH0128078B2 (en)
JPS60212483A (en) Pretreatment of coal for liquefaction
CA1107216A (en) Separation of hydrocarbons from oil shales and tar sands
JPS62187794A (en) Method of deashing coal
JPS6247475B2 (en)
JPH0367117B2 (en)
JPS5955389A (en) Treatment of polluted water with nature coke
JPS5880389A (en) Production of highly concentrated coal/water slurry
Biletskyi et al. Promising coal technologies
JPH0334396B2 (en)
JPS6128582A (en) Pretreatment of coal for liquefaction
JPS6025076B2 (en) Method for producing deashed coal/petroleum mixed fuel