JPS6370419A - Projection exposure device - Google Patents

Projection exposure device

Info

Publication number
JPS6370419A
JPS6370419A JP61212751A JP21275186A JPS6370419A JP S6370419 A JPS6370419 A JP S6370419A JP 61212751 A JP61212751 A JP 61212751A JP 21275186 A JP21275186 A JP 21275186A JP S6370419 A JPS6370419 A JP S6370419A
Authority
JP
Japan
Prior art keywords
light receiving
light
receiving elements
light source
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61212751A
Other languages
Japanese (ja)
Other versions
JPH0669015B2 (en
Inventor
Kazuhiro Takahashi
和弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61212751A priority Critical patent/JPH0669015B2/en
Publication of JPS6370419A publication Critical patent/JPS6370419A/en
Publication of JPH0669015B2 publication Critical patent/JPH0669015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70066Size and form of the illuminated area in the mask plane, e.g. reticle masking blades or blinds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70133Measurement of illumination distribution, in pupil plane or field plane
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70141Illumination system adjustment, e.g. adjustments during exposure or alignment during assembly of illumination system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To enable a light source to be automatically positioned quickly and correctly at a position such that illuminance on the surface of a wafer is maximized and variation in illuminance is minimized, by arranging a plurality of photodetectors on the plane conjugate with the wafer surface. CONSTITUTION: Masking mechanisms 14a and 14b are optically conjugate with a reticle 11 and serve to intercept light outside the exposure range of the reticle 11. The reticle 11 is projected onto a wafer 13 by a projection lens 11 at a certain magnification. Photodetectors 15a, 15b arranged on the side of the masking mechanisms 14a, 14b faced to the reticle 11 measure distribution of illuminance on the masking mechanisms 14a, 14b. Output signals from the light receiving elements are fed to a computer 16, and the computer 16 gives a drive command to a driving means 17 for driving a mercury lamp 1 so that the illuminance distribution is symmetrical on the masking mechanisms. The driving means 1 dislocates the mercury lamp 1 according to said command and regulates its position such that output signals from the photodetectors 15a and 15b are equal to each other.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、集積回路の製造に使用される投影露光装置に
関するものであり、特に基板(以下レチクルで総称する
)に対し半導体ウェハを歩進させながらレチクル上のパ
ターンをウェハ上に縮少投影し、これを反覆して全ウェ
ハ上に多数のパターンを焼付けるステップ・アンド・リ
ピート式の投影露光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a projection exposure apparatus used in the manufacture of integrated circuits, and in particular to a projection exposure apparatus used for stepping a semiconductor wafer onto a substrate (hereinafter collectively referred to as a reticle). The present invention relates to a step-and-repeat type projection exposure apparatus that reduces and projects a pattern on a reticle onto a wafer while repeating the process and prints a large number of patterns on all wafers.

[従来の技術] 従来の投影露光装置の光源の位置合せを第5図を参照し
て説明する。
[Prior Art] The alignment of the light source of a conventional projection exposure apparatus will be explained with reference to FIG.

第5図において、1は光源の水銀ランプ、2は楕円ミラ
ー、4はオブティカルインテグレータ、23はハーフミ
ラ−124はミラー、25はピンホール板、モして26
はアークモニタ板である。
In FIG. 5, 1 is a mercury lamp as a light source, 2 is an elliptical mirror, 4 is an optical integrator, 23 is a half mirror, 124 is a mirror, 25 is a pinhole plate, and 26 is a half mirror.
is the arc monitor board.

この構成においてランプ1からの光束の一部はハーフミ
ラ−(またはコールドミラー)23を透過し、ミラー2
4で反射された後、ピンホール板25を通過しアークモ
ニタ板26上に像をつくる。そこで作業者はランプの陰
極または陽極の像がこのアークモニタ板26上の所定の
位置にくるように光源の位置を調整して光源の位置合せ
を行なっていた。
In this configuration, a part of the luminous flux from the lamp 1 passes through the half mirror (or cold mirror) 23, and
After being reflected by 4, it passes through a pinhole plate 25 and forms an image on an arc monitor plate 26. Therefore, the operator adjusts the position of the light source so that the image of the cathode or anode of the lamp is at a predetermined position on the arc monitor plate 26.

光源が正規の位置にない場合にはウェハ面での照度のむ
らが無視できないくらいに大きくなる。
If the light source is not in the correct position, the unevenness of illuminance on the wafer surface becomes so large that it cannot be ignored.

特にこれはウェハ面上での照度の非対称的な分布となっ
て現れる。アークモニタ板26上での像は鮮明でないの
でこれを目視で正確な位置に合せることはきわめて困難
であり、アークモニタによる光源の位置合せたけではウ
ェハ面上での照度のむらが残ってしまうということが起
こり勝ちであった。
In particular, this appears as an asymmetric distribution of illuminance on the wafer surface. Since the image on the arc monitor plate 26 is not clear, it is extremely difficult to visually align it to an accurate position, and if the light source is aligned using the arc monitor, uneven illuminance will remain on the wafer surface. happened and we won.

このため従来の光源の位置合せはまずアークモニタ板2
6上で大体の位置合せを行なった後、ウェハ面の照度分
布を測定しその結果から光源位置の微調整を行ない、照
度分布の非対称を取り除いていたが、このため光源の位
置合せはかなり面倒であった。
For this reason, conventional light source alignment is first done using the arc monitor plate 2.
After the rough alignment was performed on the wafer, the illuminance distribution on the wafer surface was measured and the light source position was finely adjusted based on the results to remove asymmetry in the illuminance distribution, but as a result, aligning the light source was quite troublesome. Met.

[発明が解決しようとする問題点コ 本発明の目的は、ウェハ面の照度を最大とし、照度のむ
らを最小とするような理想的な位置に迅速正確に光源位
置を自動的に位置合せすることを可能とする投影露光装
置を提供することにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to quickly and accurately automatically align the light source position to an ideal position that maximizes the illuminance on the wafer surface and minimizes unevenness in illuminance. The object of the present invention is to provide a projection exposure apparatus that enables the following.

[問題点を解決するための手段と作用コこの目的を達成
するため本発明に従って照明光学系内でレチクルと共役
な位置に、レチクルの露光範囲外を遮光するマスキング
機構を配置し、マスキング機構をレチクルの位置に結像
させ、そして投影光学系を通してウェハ面にレチクルの
パターンを投影するようにし、前記のマスキング機構に
露光調整範囲の中心に対称に配置した複数の受光素子に
よってウェハ面と共役な面で、かつ露光可能範囲内での
照度分布を測定できるようにし、そして対称な位置にあ
る受光素子の出力信号が等しくなるように光源位置を自
動的に調整するようにしている。また、受光素子の出力
信号が最大となるように光源位置を自動的に調整し、そ
れによりウェハ面上の照度が最大になる位置に光源を自
動的に位置合せするようにしている。
[Means and operations for solving the problem] In order to achieve this object, according to the present invention, a masking mechanism that blocks light outside the exposure range of the reticle is arranged at a position conjugate with the reticle within the illumination optical system, and the masking mechanism is The image is formed at the position of the reticle, and the reticle pattern is projected onto the wafer surface through the projection optical system. It is possible to measure the illuminance distribution on the surface and within the exposure range, and the light source position is automatically adjusted so that the output signals of the light receiving elements located at symmetrical positions are equal. Further, the light source position is automatically adjusted so that the output signal of the light receiving element is maximized, and thereby the light source is automatically positioned at the position where the illuminance on the wafer surface is maximized.

また、上記の目的を達成するため本発明に従って照明光
学系内でレチクルに近−接して、レチクルの露光範囲外
を遮光するマスキング機構を配置し、このマスキング機
構に、露光調整範囲の中心に対称に配置した複数の受光
素子によってウェハ面と共役な面で、かつ露光可能範囲
内での照度分布を測定できるようにし、そして対称な位
置にある受光素子の出力信号が等しくなるように光源位
置を自力的に調整するようにしている。また、受光素子
の出力信号が最大となるようにように光源位置を自動的
に調整し、それによりウニ八面上の照度が最大になる位
置に光源を自動的に位置合せするようにしている。
In addition, in order to achieve the above object, according to the present invention, a masking mechanism that blocks light outside the exposure range of the reticle is disposed in the illumination optical system close to the reticle, and this masking mechanism is provided with a masking mechanism symmetrical to the center of the exposure adjustment range. The illuminance distribution can be measured on a plane conjugate to the wafer surface and within the exposure range using multiple photodetectors arranged in the same direction, and the light source position is adjusted so that the output signals of the photodetectors at symmetrical positions are equal. I am trying to adjust it on my own. Additionally, the light source position is automatically adjusted so that the output signal of the light receiving element is maximized, thereby automatically aligning the light source to the position where the illuminance on the eight faces of the sea urchin is maximized. .

[実施例] 第1図は本発明の第1の実施例を示す。同図において1
は光源である水銀ランプ、2は水銀ランプ1からの光束
を効率よく集光する楕円ミラーである。楕円ミラー2に
よって集光された光束はミラー3によって折りまげられ
オブテイカルインテグレータ4を照明する。このオブテ
ィカルインテグレータ4は2次光源であり、ミラー5を
介してコンデンサレンズ6により集光され、ミラー7を
介してマスキング機構14a、 14bの面を照明する
。マスキング機構はレンズ8.10によってレチクル保
持部材30に支持されたレチクル11に結像される。す
なわち、このマスキング機構はレチクル11と光学的に
共役関係にあり、そしてレチクル11の露光範囲外を遮
光する。レチクル11は投影レンズ12によっである倍
率でウェハ13上に投影される。15a、15bはマス
キング機構14a、14bのレチクル11側に配置され
た受光素子である。これらの受光素子15a、 15b
はマスキング機構14a、14b上の照度分布を測定す
る。その出力信号はコンピュータ16に取り込まれ、コ
ンピュータ16はマスキング機構面上での照度分布が対
称になるように水足ランプ1の駆動手段17に駆動命令
を出す。駆動手段17はこの命令に従って水銀ランプの
位置を肪かし受光素子15a、 15bの出力信号が等
しくなるようにその位置を調整する。
[Embodiment] FIG. 1 shows a first embodiment of the present invention. In the same figure, 1
2 is a mercury lamp as a light source, and 2 is an elliptical mirror that efficiently condenses the luminous flux from the mercury lamp 1. The light beam collected by the elliptical mirror 2 is bent by the mirror 3 and illuminates the objective integrator 4. This optical integrator 4 is a secondary light source, which is focused by a condenser lens 6 via a mirror 5, and illuminates the surfaces of the masking mechanisms 14a and 14b via a mirror 7. The masking feature is imaged by lens 8.10 onto reticle 11, which is supported on reticle holding member 30. That is, this masking mechanism has an optically conjugate relationship with the reticle 11 and blocks light outside the exposure range of the reticle 11. Reticle 11 is projected by projection lens 12 onto wafer 13 at a certain magnification. 15a and 15b are light receiving elements arranged on the reticle 11 side of the masking mechanisms 14a and 14b. These light receiving elements 15a, 15b
measures the illuminance distribution on the masking mechanisms 14a, 14b. The output signal is taken into the computer 16, and the computer 16 issues a driving command to the driving means 17 of the water foot lamp 1 so that the illuminance distribution on the masking mechanism surface becomes symmetrical. In accordance with this command, the driving means 17 adjusts the position of the mercury lamp so that the output signals of the light receiving elements 15a and 15b are equal.

このように本発明では、直接ウェハ13の面上の照度分
布を測定し、ウェハ13の面上の照度分布が対称となる
よう光源位置を調整する代りに、ウェハの面と共役な面
にあるマスキング機構14上の照度分布を測定し、この
面の照度分布を対称になるように光源位置を調整するこ
とにより、ウェハI3の面の照度分布を対称となるよう
にして”)る。
In this way, in the present invention, instead of directly measuring the illuminance distribution on the surface of the wafer 13 and adjusting the light source position so that the illuminance distribution on the surface of the wafer 13 is symmetrical, the illuminance distribution on the surface of the wafer 13 is directly measured. The illuminance distribution on the surface of the wafer I3 is made symmetrical by measuring the illuminance distribution on the masking mechanism 14 and adjusting the light source position so that the illuminance distribution on this surface is symmetrical.

第2図にマスキング機構に受光素子を配置した例を示す
。第2図(a)は最も簡単な例である。14aはマスキ
ング機構を構成する1枚の遮光板である。この遮光板1
4a上には照度測定のためのピンホール18をあけて光
を取り出す。ピンホール18と受光素子15aとの間に
はガラス板21から成る拡散板、または光量調整用のN
Dフィルタ、または焼付に使用する波長の光を取り出す
色フィルタを設けてもよい。
FIG. 2 shows an example in which a light receiving element is arranged in a masking mechanism. FIG. 2(a) is the simplest example. 14a is one light shielding plate that constitutes a masking mechanism. This light shielding plate 1
A pinhole 18 for illuminance measurement is made above 4a to extract light. Between the pinhole 18 and the light receiving element 15a, there is a diffuser plate made of a glass plate 21 or an N for adjusting the light amount.
A D filter or a color filter for extracting light of a wavelength used for printing may be provided.

第2図(b)はピンホール18と受光素子15aの間に
ミラーやレンズ等を配置した例である。19は光束を直
角に折り曲げるミラー、20は発散する光束を集光させ
る凸レンズ、21は光量調整用のNDフィルタもしくは
波長選択用の色フィルタである。
FIG. 2(b) shows an example in which a mirror, lens, etc. are arranged between the pinhole 18 and the light receiving element 15a. 19 is a mirror that bends the light beam at right angles; 20 is a convex lens that condenses the diverging light beam; and 21 is an ND filter for adjusting the light amount or a color filter for wavelength selection.

第3図は露光可能範囲とマスキング機構の関係を示す。FIG. 3 shows the relationship between the exposure range and the masking mechanism.

ウニ八面上、レチクル面上、マスキング機構面上が光学
的に共役であるためにレンズの倍率で大きさは変わるが
、相対的な位置関係は変化しない。22は投影露光装置
の露光可能範囲を示す円である。また露光範囲は一般に
正方形や長方形であるので露光しない範囲はマスキング
機構14a、b、c、dで遮光する。第3図(a)は露
光範囲が正方形である場合、第3図(b)は長方形であ
る場合をそれぞれ示す。遮光板、14a、b、c。
Since the eight surfaces of the sea urchin, the reticle surface, and the masking mechanism surface are optically conjugate, the size changes depending on the magnification of the lens, but the relative positional relationship does not change. A circle 22 indicates the exposure range of the projection exposure apparatus. Furthermore, since the exposure range is generally square or rectangular, the unexposed range is shielded from light by masking mechanisms 14a, b, c, and d. FIG. 3(a) shows the case where the exposure range is square, and FIG. 3(b) shows the case where it is rectangular. Light shielding plates, 14a, b, c.

dは矢印方向に独立に駆動されて、任意の露光範囲を形
成する。18a、b、c、dは照度測定用のピンホール
である。これらのピンホールの(立置はX、Y!I+h
上の対称位置に配置することが望ましい。また、第3図
(b)のごとく露光範囲が長方形の場合、遮光板14c
と14dとが露光可能範囲22を遮蔽する部分が小さく
なる。このため図に示すようにビンポールの位置はマス
キング機構の遮光板のなるべく露光範囲の中心に近い位
置に設置する必要がある。
d is independently driven in the direction of the arrow to form an arbitrary exposure range. 18a, b, c, and d are pinholes for measuring illuminance. These pinholes (vertical position is X, Y! I+h
It is desirable to place it in a symmetrical position above. In addition, when the exposure range is rectangular as shown in FIG. 3(b), the light shielding plate 14c
and 14d block the exposed range 22, which becomes smaller. Therefore, as shown in the figure, the position of the bin pole must be placed as close as possible to the center of the exposure range of the light shielding plate of the masking mechanism.

次に、調整の順序について説明する。光軸(この場合は
2軸)に対して直交する平面内にX、 Y軸をとり、第
3図のようにX軸方向に動く機構14a、14bに設け
られた受光素子をa、b(図示せず)Y軸方向のマスキ
ング機構14c、14dに設けられた受光素子をc、d
(図示せず)とする。受光素f a 、  b +f7
(S 1図の15a、15bに対応し、受光素子c、d
は第1図の紙面に垂直に設けられている。また第1図の
駆動手段17は光源1をX。
Next, the order of adjustment will be explained. The X and Y axes are set in a plane perpendicular to the optical axis (two axes in this case), and the light-receiving elements provided in the mechanisms 14a and 14b that move in the X-axis direction as shown in FIG. (not shown) The light receiving elements provided in the masking mechanisms 14c and 14d in the Y-axis direction are
(not shown). Photodetector f a , b + f7
(Corresponding to 15a and 15b in Figure S1, the light receiving elements c and d
is provided perpendicular to the plane of the paper of FIG. Further, the driving means 17 in FIG. 1 moves the light source 1 in an X direction.

Y、Z軸方向にそれぞれ独立に配力することができる。Force can be distributed independently in the Y and Z axis directions.

コンピュータ16は受光素子15a、15bの出力信号
a、bがa≠bの時に駆動手段17にX軸方向へ駆動命
令を送る。出力信号a、bがa>bの場合には駆動手段
17にaが小さくなりbが大きくなる方向にX軸方向の
駆動命令を出す。a==bとなったところでコンピュー
タ16は駆動手段17に停止命令を送る。X軸方向につ
いても同様に出力信号c、dの大小関係からコンピュー
タ16は駆動手段17にX軸方向の駆動命令または停止
命令を送る。このX、X軸方向の駆動で、a=b1かつ
C=dとなったところでウェハ13面上での照度分布は
対称になり、照度のむらが最小となる。クエへ面上の照
度分布が対称の時にa=b、c=dとなるように受光素
子の出力はあらかじめ調整しておく。
The computer 16 sends a driving command to the driving means 17 in the X-axis direction when the output signals a and b of the light receiving elements 15a and 15b are a≠b. When the output signals a and b satisfy a>b, a drive command is issued to the drive means 17 in the X-axis direction in the direction in which a becomes smaller and b becomes larger. When a==b, the computer 16 sends a stop command to the driving means 17. Similarly, in the X-axis direction, the computer 16 sends a drive command or a stop command in the X-axis direction to the drive means 17 based on the magnitude relationship of the output signals c and d. By driving in the X and X axis directions, when a=b1 and C=d, the illuminance distribution on the surface of the wafer 13 becomes symmetrical, and the unevenness of illuminance is minimized. The output of the light receiving element is adjusted in advance so that a=b and c=d when the illuminance distribution on the surface is symmetrical.

次にコンピュータ16に駆動手段17にZ軸方向への駆
動命令を出す。駆動手段17は命令に従って一足の区間
光源1をZ軸方向に駆動させこの間コンピュータ16は
受光素子の出力信号a、b、c、dの値を読み込み、a
+b+c+dの最大値を記憶する。
Next, a command is issued to the computer 16 to drive the drive means 17 in the Z-axis direction. The driving means 17 drives the pair of section light sources 1 in the Z-axis direction according to the command, and during this time the computer 16 reads the values of the output signals a, b, c, and d of the light receiving elements.
Store the maximum value of +b+c+d.

コンピュータ16は再び駆動手段17にZ軸方向への駆
動命令を出し、受光素子の出力信号の和a+b+c+d
が記憶した最大値と等しくなったところで停止命令を送
る。
The computer 16 again issues a driving command to the driving means 17 in the Z-axis direction, and the sum of the output signals of the light receiving elements is a+b+c+d.
When the value becomes equal to the stored maximum value, a stop command is sent.

以上の順序で光源1はウェハ13の面で照度のむらが最
小で照度が最大となる位置に正確迅速に調整される。
In the above order, the light source 1 is accurately and quickly adjusted to a position on the surface of the wafer 13 where the unevenness of illuminance is minimized and the illuminance is maximized.

第4図は本発明の第2の実施例を示す。14a。FIG. 4 shows a second embodiment of the invention. 14a.

14bは露光範囲外を遮光するマスキング機構で、レチ
クル11と照明光学系内のレンズ10との間でレチクル
11に近接する位置に置かれている。この実施例におい
ても光源位置の調整は第1の実方五例と同一の方法で行
なわれる。
14b is a masking mechanism that blocks light outside the exposure range, and is placed close to the reticle 11 between the reticle 11 and the lens 10 in the illumination optical system. In this embodiment as well, the light source position is adjusted in the same manner as in the first example.

第1図と第4図に示す受光素子15a、15bは露光量
を一定に制御するための光景モニタとして使用できる。
The light receiving elements 15a and 15b shown in FIGS. 1 and 4 can be used as a sight monitor to control the exposure amount to a constant value.

その場合光量モニタ用の光束を取り田すハーフミラ−等
を設ける必要もなく、ウェハと共役な面に受光素子を配
置しているため、有効光束をロスさせることなく高精度
な光量モニタとして使用できる。
In this case, there is no need to provide a half mirror to collect the light flux for light intensity monitoring, and since the light receiving element is placed on a surface that is conjugate with the wafer, it can be used as a highly accurate light intensity monitor without loss of effective light flux. .

[発明の効果] 以上説明したように、本発明の投影露光装置においては
ウェハ面と共役な面に複数個の受光素子を配置し、この
面での照度分布が対称でかつ照度が最大となるように駆
動手段によって自動的に光源位置を調整する。このため
光源の位置合せを正確、迅速に実施できる。
[Effects of the Invention] As explained above, in the projection exposure apparatus of the present invention, a plurality of light receiving elements are arranged on a plane conjugate to the wafer surface, and the illuminance distribution on this plane is symmetrical and the illuminance is maximum. The light source position is automatically adjusted by the driving means. Therefore, the positioning of the light source can be performed accurately and quickly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す。第2図(a) 
、 (b)はマスキング機構の遮光板と受光素子のそれ
ぞれ異なる配置を示す。第3図はマスキング機構と露光
可能範囲を示す。第4図は本発明の第2の実施例を示す
。第5図は従来のランプのモニタの概略図である。 1:水銀ランプ、2:楕円ミラー、3,5゜7.9・ミ
ラー、4;オブテイカルインテグレータ、6二コンデン
サレンズ、8,10:レンズ、11ニレチクル、12:
投影レンズ、13:ウェハ、14a、  b、  c、
 d :マスキング機構、15a、b:受光素子、16
;コンピュータ、17:駆動手段、18a、b、c、d
 :ビンホール、19:ミラー、20:凸レンズ、21
ニガラス板(フィルタ類)、22.露光可能範囲、23
  ハーフミラ−124・ミラー、25:ピンホール板
、26:アークモニタ板、30ニレチクル保持部材。 特許出願人   キャノン株式会社 代理人 弁理士   伊 東 辰 雄 代理人  弁理士     伊  東  哲  也16
 フンじ゛エータ 第1図 ○52図 第3図
FIG. 1 shows a first embodiment of the invention. Figure 2(a)
, (b) shows different arrangements of the light-shielding plate and the light-receiving element of the masking mechanism. FIG. 3 shows the masking mechanism and the exposed range. FIG. 4 shows a second embodiment of the invention. FIG. 5 is a schematic diagram of a conventional lamp monitor. 1: Mercury lamp, 2: Elliptical mirror, 3,5°7.9 mirror, 4: Obtical integrator, 6 two condenser lenses, 8, 10: Lens, 11 reticle, 12:
Projection lens, 13: Wafer, 14a, b, c,
d: Masking mechanism, 15a, b: Light receiving element, 16
; Computer, 17: Driving means, 18a, b, c, d
: Bin hole, 19: Mirror, 20: Convex lens, 21
Nigarasu plate (filters), 22. Exposure range, 23
Half mirror 124/mirror, 25: pinhole plate, 26: arc monitor plate, 30 nireticle holding member. Patent Applicant Canon Co., Ltd. Agent Patent Attorney Tatsuo Ito Agent Patent Attorney Tetsuya Ito 16
Fungiator Figure 1 ○52 Figure 3

Claims (1)

【特許請求の範囲】 1、照明光学系内の所定の位置に基板を配置するための
支持部材、 照明光学系内で前記の支持部材に支持された基板と共役
な位置に配置され、該基板の所定露光範囲外を遮光する
マスキング機構、および このマスキング機構に配置された複数の受光素子を備え
ていることを特徴とする投影露光装置。 2、照明光学系内の所定の位置に基板を配置するための
支持部材、 照明光学系内で前記の支持部材に支持された基板と共役
な位置に配置され、該基板の所定露光範囲外を遮光する
マスキング機構、 このマスキング機構に配置されている複数の受光素子、
および これらの受光素子からの信号に応答して光源位置を調整
する光源位置制御手段を備えたことを特徴とする投影露
光装置。 3、前記の光源位置制御手段が、前記の受光素子からの
信号を演算処理する手段と、この演算の結果から光源位
置を調整する3軸駆動手段とを含む特許請求の範囲第2
項に記載の投影露光装置。 4、前記の受光素子が露光調整範囲の中心に対して対称
な位置に配置された少なくとも4個の受光素子である特
許請求の範囲第1、2項または3項に記載の投影露光装
置。 5、照明光学系内の所定の位置に基板を配置するための
支持部材、 照明光学系内で前記の支持部材に支持された基板に近接
して配置され、該基板の所定露光範囲外を遮光するマス
キング機構、および このマスキング機構に配置した複数の受光素子を備えて
いることを特徴とした投影露光装置。 6、照明光学系内の所定の位置に基板を配置するための
支持部材、 照明光学系内で前記の支持部材に支持された基板に近接
して配置され、該基板の所定露光範囲外を遮光するマス
キング機構、 このマスキング機構に配置されている複数の受光素子、
および これらの受光素子からの信号に応答して光源位置を調整
する光源位置制御手段 を備えたことを特徴とする投影露光装置。 7、前記の光源位置制御手段が、前記の受光素子からの
信号を演算処理する手段と、この演算の結果から光源位
置を調整する3軸駆動手段とを含む特許請求の範囲第6
項に記載の投影露光装置。 8、前記の受光素子が露光調整範囲の中心に対して対称
な位置に配置された少なくとも4個の受光素子である特
許請求の範囲第5、6または7項に記載の投影露光装置
[Scope of Claims] 1. A support member for arranging a substrate at a predetermined position within the illumination optical system; 1. A projection exposure apparatus comprising: a masking mechanism for blocking light outside a predetermined exposure range; and a plurality of light receiving elements disposed in the masking mechanism. 2. A support member for arranging the substrate at a predetermined position within the illumination optical system, which is disposed within the illumination optical system at a position conjugate with the substrate supported by the support member, and which exposes the substrate outside the predetermined exposure range. A masking mechanism that blocks light, a plurality of light receiving elements arranged in this masking mechanism,
and a light source position control means for adjusting the light source position in response to signals from these light receiving elements. 3. Claim 2, wherein the light source position control means includes means for arithmetic processing of the signal from the light receiving element, and three-axis drive means for adjusting the light source position based on the result of this calculation.
The projection exposure apparatus described in . 4. The projection exposure apparatus according to claim 1, 2 or 3, wherein the light receiving elements are at least four light receiving elements arranged symmetrically with respect to the center of the exposure adjustment range. 5. A support member for arranging the substrate at a predetermined position within the illumination optical system, which is disposed close to the substrate supported by the support member within the illumination optical system, and shields light outside the predetermined exposure range of the substrate. 1. A projection exposure apparatus comprising: a masking mechanism; and a plurality of light receiving elements disposed in the masking mechanism. 6. A support member for arranging the substrate at a predetermined position within the illumination optical system, which is disposed in the illumination optical system in close proximity to the substrate supported by the support member, and shields light outside the predetermined exposure range of the substrate. a masking mechanism, a plurality of light receiving elements arranged in this masking mechanism,
and a light source position control means for adjusting the light source position in response to signals from these light receiving elements. 7. Claim 6, wherein the light source position control means includes means for arithmetic processing of the signal from the light receiving element, and three-axis drive means for adjusting the light source position based on the result of this calculation.
The projection exposure apparatus described in . 8. The projection exposure apparatus according to claim 5, 6 or 7, wherein the light receiving elements are at least four light receiving elements arranged symmetrically with respect to the center of the exposure adjustment range.
JP61212751A 1986-09-11 1986-09-11 Projection exposure device Expired - Fee Related JPH0669015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61212751A JPH0669015B2 (en) 1986-09-11 1986-09-11 Projection exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61212751A JPH0669015B2 (en) 1986-09-11 1986-09-11 Projection exposure device

Publications (2)

Publication Number Publication Date
JPS6370419A true JPS6370419A (en) 1988-03-30
JPH0669015B2 JPH0669015B2 (en) 1994-08-31

Family

ID=16627812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61212751A Expired - Fee Related JPH0669015B2 (en) 1986-09-11 1986-09-11 Projection exposure device

Country Status (1)

Country Link
JP (1) JPH0669015B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192995A (en) * 1993-12-27 1995-07-28 Nec Corp Aligner
JP2000277413A (en) * 1999-03-24 2000-10-06 Canon Inc Exposure amount control method, aligner and device manufacturing method
WO2001008205A1 (en) * 1999-07-23 2001-02-01 Nikon Corporation Exposure method, exposure system, light source, and method of device manufacture
US6661499B2 (en) 1998-06-12 2003-12-09 Nikon Corporation Projection exposure apparatus with a catadioptric projection optical system
JP2007123888A (en) * 2005-10-27 2007-05-17 Asml Holding Nv System, method, and apparatus related to scanning detector for module performing fast and frequent illumination uniformity correction
JP2010123714A (en) * 2008-11-19 2010-06-03 Ushio Inc Extreme ultraviolet light source device
WO2012127966A1 (en) * 2011-03-23 2012-09-27 岩崎電気株式会社 Lamp position adjusting method, lamp position adjusting tool, and illuminating device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192995A (en) * 1993-12-27 1995-07-28 Nec Corp Aligner
US5532497A (en) * 1993-12-27 1996-07-02 Nec Corporation Optical aligner equipped with luminance sensor on movable stage
US6661499B2 (en) 1998-06-12 2003-12-09 Nikon Corporation Projection exposure apparatus with a catadioptric projection optical system
JP2000277413A (en) * 1999-03-24 2000-10-06 Canon Inc Exposure amount control method, aligner and device manufacturing method
WO2001008205A1 (en) * 1999-07-23 2001-02-01 Nikon Corporation Exposure method, exposure system, light source, and method of device manufacture
JP2007123888A (en) * 2005-10-27 2007-05-17 Asml Holding Nv System, method, and apparatus related to scanning detector for module performing fast and frequent illumination uniformity correction
US8085383B2 (en) 2005-10-27 2011-12-27 Asml Holding N.V. System, method, and apparatus for scanning detector for fast and frequent illumination uniformity correction module
JP2010123714A (en) * 2008-11-19 2010-06-03 Ushio Inc Extreme ultraviolet light source device
WO2012127966A1 (en) * 2011-03-23 2012-09-27 岩崎電気株式会社 Lamp position adjusting method, lamp position adjusting tool, and illuminating device
JP2012199488A (en) * 2011-03-23 2012-10-18 Iwasaki Electric Co Ltd Lamp position adjusting method, lamp position adjusting tool, and radiation device

Also Published As

Publication number Publication date
JPH0669015B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
JP2893778B2 (en) Exposure equipment
US4492459A (en) Projection printing apparatus for printing a photomask
US4414749A (en) Alignment and exposure system with an indicium of an axis of motion of the system
US4473293A (en) Step-and-repeat projection alignment and exposure system
JPH0132649B2 (en)
US4573791A (en) Step-and-repeat projection alignment and exposure system
TWI722389B (en) Pattern forming apparatus, alignment mark detection method, and pattern forming method
JPH0785466B2 (en) Positioning device
EP0017759A2 (en) Improved step-and-repeat projection alignment and exposure system
GB2131167A (en) Alignment of mask and semiconductor wafer in exposure apparatus
JPH06118623A (en) Reticle and semiconductor aligner using the same
JPS6370419A (en) Projection exposure device
KR19980063768A (en) Exposure apparatus provided with an observation apparatus, a position detection apparatus, and its position detection apparatus
US4577958A (en) Bore-sighted step-and-repeat projection alignment and exposure system
JP2001297975A (en) Aligner and method of exposure
US4710029A (en) Projection type exposing apparatus
JPH06232027A (en) Projection aligner
US4577957A (en) Bore-sighted step-and-repeat projection alignment and exposure system
JPH01303721A (en) Plane inclination detector
JPH06252030A (en) Position detector and manufacture of semiconductor using the detector
JPH0645221A (en) Projection aligner
KR900004051B1 (en) Projection exposure and projection aligner
JP2002134392A (en) Apparatus and method for measuring position, aligner and device manufacturing method
JP3326446B2 (en) Exposure method and apparatus, lithography method, mark printing apparatus, and proximity exposure apparatus
JP3211246B2 (en) Projection exposure apparatus and element manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees