JPS6370008A - Growing fluid medium discharge system - Google Patents

Growing fluid medium discharge system

Info

Publication number
JPS6370008A
JPS6370008A JP21343186A JP21343186A JPS6370008A JP S6370008 A JPS6370008 A JP S6370008A JP 21343186 A JP21343186 A JP 21343186A JP 21343186 A JP21343186 A JP 21343186A JP S6370008 A JPS6370008 A JP S6370008A
Authority
JP
Japan
Prior art keywords
medium
discharge pipe
medium discharge
fluidized bed
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21343186A
Other languages
Japanese (ja)
Inventor
Susumu Yoneyama
米山 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP21343186A priority Critical patent/JPS6370008A/en
Publication of JPS6370008A publication Critical patent/JPS6370008A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/24Devices for removal of material from the bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/003Feeding of the particles in the reactor; Evacuation of the particles out of the reactor in a downward flow

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To exhaust only a fluid medium grown to a size being improper for a fluid medium, without the occurrence of poor working due to choking of a fluid medium discharge line, by a method wherein gas, caused to flow from the portion, positioned in the vicinity of a medium outlet, of a medium discharge pipe through the medium discharge pipe to the interior of a fluidized bed and at a speed exceeding the terminal speed of medium particle used in the fluidized bed, is continuously fed. CONSTITUTION:A fluid medium flows in a medium discharge pipe 12a, installed to a porous plate 1, along with fluidization of a fluid medium. Air having a quantity being large enough to provide a tube flow velocity being slightly below the terminal speed of thickening particle to be discharged is blown from the lower part of the medium discharge pipe through a regulating valve 20 to the medium discharge pipe 12a and flows toward the fluidized bed side. Therefore, particles having a terminal speed being below the speed of the discharge grain fractional air flow are blown back to the fluidized bed side by means of the air flow, and are prevented from discharging. Particles having a terminal speed exceeding that of the air flow are settled in the discharge pipe 12a, flow in a discharge outlet pipe 12b, and are discharged through a flapper 22.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は流動層ボイラ及び流動層焼却装置に係り、特に
流動媒体の排出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fluidized bed boiler and a fluidized bed incinerator, and particularly to a fluidized medium discharge device.

〔従来の技術〕[Conventional technology]

流動層ボイラおよび流動層焼却装置において、流動媒体
の流動状態を維持するためには、流動媒体の粒径分布、
空塔速度、密度分布を適正な値に維持することが肝要で
ある。
In fluidized bed boilers and fluidized bed incinerators, in order to maintain the fluid state of the fluidized medium, the particle size distribution of the fluidized medium,
It is important to maintain superficial velocity and density distribution at appropriate values.

中でも燃料が流動媒体となるボイラおよび焼却装置にお
いては、投入される燃料に含有又は付着している塩基性
物質等により流動媒体の粒子径が徐々に成長し、流動媒
体としての最適粒子径を超えたものは、流動層から排出
される。従来用いられている流動媒体の排出方法(流動
層の反応工学、鞭他著、培風館)を第8図に示す。第8
図(a)、(b)は溢流方式、(c)、(d)は底部抜
き取り方式である。第9,10図は媒体排出の制御の代
表例を示したもので、溢流管28にロータリーフィーダ
を設けて排出する形式と、底部抜き取り管12にスライ
ドゲート13を設けて排出する形式がある。いずれの例
にあっても流動媒体として適当な粒子なのか、不適当な
粒子なのかを分別することなしに排出するため、排出さ
れた媒体には、媒体として適当なものと不適当なものが
混在しており、一部の流動層ボイラでは排出された媒体
を振動ふるい機にかけて流動媒体として使用可能な粒子
を再度ボイラへ送りこむ装置を設けている。
In particular, in boilers and incinerators where fuel is the fluidized medium, the particle size of the fluidized medium gradually grows due to basic substances contained in or attached to the input fuel, and may exceed the optimum particle size for the fluidized medium. is discharged from the fluidized bed. A conventional method for discharging a fluidized medium (Fluidized Bed Reaction Engineering, by Whip et al., Baifukan) is shown in FIG. 8th
Figures (a) and (b) show the overflow method, and (c) and (d) show the bottom extraction method. Figures 9 and 10 show typical examples of media discharge control, including one type in which a rotary feeder is provided in the overflow pipe 28 for discharge, and one in which a slide gate 13 is provided in the bottom extraction pipe 12 to discharge the medium. . In either example, the particles are discharged without distinguishing between particles suitable for use as a fluidizing medium and particles unsuitable for use as a fluid medium, so the discharged medium contains particles suitable for use as a medium and particles not suitable as a medium. Some fluidized bed boilers are equipped with a device that passes the discharged medium through a vibrating sieve and sends the particles that can be used as a fluidized medium back into the boiler.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

流動層からの媒体排出方法には前述の方法が実用化又は
提案されているが、次のような問題点があった。
The above-mentioned methods have been put to practical use or proposed as methods for discharging a medium from a fluidized bed, but they have had the following problems.

A:溢流方式では、流動しない粒径にまで成長した不適
当な媒体を排出できない。
A: The overflow method cannot discharge unsuitable media that has grown to a particle size that does not flow.

B:底部抜き取り方式では正常な媒体をも抜き出すので
、振動ふるい機等による使用可能な媒体の分別と再使用
のための供給設備を必要とする。
B: Since the bottom extraction method also extracts normal media, it requires a supply facility such as a vibrating sieve to separate and reuse usable media.

C:排出管路内のブリッジ等による詰りかある。C: There is a blockage due to a bridge, etc. in the discharge pipe.

D:排出管に設けたスライドゲートや、ロータリーフィ
ーダ等の閉鎖装置あるいは排出機構における粒子の噛み
こみ、付着による作動不良がある。
D: There is malfunction due to particles getting caught or attached to the slide gate provided in the discharge pipe, the closing device such as the rotary feeder, or the discharge mechanism.

E:C,Dのため、定量排出が固壁である。E: Because of C and D, quantitative discharge is a solid wall.

本発明の課題は、流動媒体μト出管路の詰り、媒体排出
管末端の排出機構又は閉鎖装置の噛みこみ、付着等によ
る作動不良を起すことなく、流動媒体として不適当な大
きさに成長したdε動媒体(肥大粒子)のみを排出し、
肥大粒子による流動不良を防止する成長流動媒体排出装
置を提供するにある。
An object of the present invention is to prevent the fluid medium from growing to an inappropriate size as a fluid medium, without clogging the fluid outlet pipe, or causing malfunctions such as jamming or adhesion of the discharge mechanism or closing device at the end of the medium discharge pipe. Discharge only the dε dynamic medium (enlarged particles),
It is an object of the present invention to provide a growth fluid medium discharge device that prevents flow failure due to enlarged particles.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は、媒体排出管の媒体出口付近から媒体排出
管を通して流動層内へ向け、流動層に使用する媒体粒子
の終末速度を滅える速度の気体を、継続して送りこむ装
置を設けることにより達成される。
The above purpose is achieved by providing a device that continuously feeds gas from near the media outlet of the media discharge pipe into the fluidized bed through the media discharge pipe at a velocity that destroys the terminal velocity of the media particles used in the fluidized bed. achieved.

〔作用〕[Effect]

媒体粒子には、その大きさ、種類に応じて固有の流動化
の終末速度がある。媒体排出管内に、媒体出口側から流
動層側に向けて、排出したい媒体の大きさ、種ガ]に対
応した終末速度よりわずかに低い管内速度で気体を送給
すると、排出したい媒体は、管、内の気体の流れに逆ら
って媒体出口側へ移動してくるが、それ以下の大きさの
媒体粒子は、管内の気体の流れ速度が、終末速度以上に
なるために流動層へふきもどされる。
Media particles have a unique terminal velocity of fluidization depending on their size and type. When gas is fed into the medium discharge pipe from the medium outlet side toward the fluidized bed side at a velocity slightly lower than the terminal velocity corresponding to the size and species of the medium to be discharged, the medium to be discharged will flow through the pipe. , they move toward the media outlet side against the gas flow inside the tube, but media particles smaller in size are blown back into the fluidized bed because the gas flow velocity inside the tube exceeds the terminal velocity. .

〔実施例〕〔Example〕

次に本発明の実施例を第1〜5図により説明する。第1
図に示す実施例は、流動層ボイラにおいて、炉底下部の
多孔板lの下面に接続され、風箱3の下方にまで延びる
媒体排出管12aと、該媒体排出管12aの最下部に接
続された空気!23aと、一端を該空気管23aに設け
た分岐管に接続され他端を押込み通風機4に通ずる管2
3bに接続された調節弁20と、一端を前記空気管23
aに接続され他端を圧縮空気源に通ずる管23cに接続
された詰り除去空気弁21と、前記媒体排出管12aか
ら分岐する排出出口管12bと、該排出出口管12bの
末端の媒体出口部に設けたフラッパ22と、該フラッパ
開閉用の駆動機19と、フリーボード部30及び風′T
I3に検出部を設けた差圧計17と、媒体排出管12a
の圧力を検出する圧力計18と、差圧計17及び圧力計
18の計測値を入力して状態判定し、制御信号を出力し
て前記調節弁20、前記空気弁21、前記駆動機19を
介してフラッパ22、図示していない媒体補充制御器を
動作させる制御器とにより構成されている。
Next, embodiments of the present invention will be described with reference to FIGS. 1 to 5. 1st
The embodiment shown in the figure is a fluidized bed boiler in which a medium discharge pipe 12a is connected to the lower surface of a perforated plate l in the lower part of the furnace bottom and extends below the wind box 3, and a medium discharge pipe 12a is connected to the lowest part of the medium discharge pipe 12a. The atmosphere! 23a, and a pipe 2 whose one end is connected to a branch pipe provided in the air pipe 23a and whose other end is pushed in and leads to the ventilation fan 4.
3b, and one end connected to the air pipe 23.
a, and the other end connected to a pipe 23c leading to a compressed air source, a discharge outlet pipe 12b branching from the medium discharge pipe 12a, and a medium outlet section at the end of the discharge outlet pipe 12b. The flapper 22 provided in the
A differential pressure gauge 17 with a detection part provided at I3 and a medium discharge pipe 12a
The measured values of the pressure gauge 18 which detects the pressure of The controller includes a flapper 22 and a controller that operates a medium replenishment controller (not shown).

流動層ボイラでは、多種の低品位燃料を使用する場合が
多く、流動媒体の急成長と層高の変化による流動悪化及
び燃焼不良をおこしやすい。このため流動媒体成長具合
、層高上昇を検出し、媒体排出を円滑に行う為に、差圧
計17.圧力計18および制御装置25を設けている。
Fluidized bed boilers often use a variety of low-grade fuels, and are prone to poor fluidity and poor combustion due to rapid growth of the fluidized medium and changes in bed height. For this reason, in order to detect the growth of the fluidized medium and the rise in bed height, and to smoothly discharge the medium, a differential pressure gauge 17. A pressure gauge 18 and a control device 25 are provided.

流動層媒体の粒径と、流動化開始速度および終末速度の
関係は、流動媒体が砂の場合、第2図に示す曲線となる
6粒径によりそれぞれ異なる流動化開始速度と終末速度
とを有することは、第2図から明らかである。流動層が
定流法状態にあるとき、ある径の粒子の終末速度がその
定流法以下であれば、その粒子はσ;δ動層外へ吹きと
ばさ九ることになる。
The relationship between the particle size of the fluidized bed medium and the fluidization start speed and final speed is as shown in the curve shown in Figure 2 when the fluidized medium is sand.The six particle sizes have different fluidization start speeds and final speeds. This is clear from Figure 2. When the fluidized bed is in a constant flow state, if the terminal velocity of a particle of a certain diameter is less than the constant flow state, the particle will be blown out of the σ;δ fluidized bed.

次にこの装置の動作につき説明する。流動媒体2を最適
な流動状態にすると共に、必要な燃焼用空気を供給する
為、押込通IAI!4により、空気予熟器16、風道2
6、風箱3を経由して必要な空気量が多孔板1より流動
層2内へ吹きこまれる。
Next, the operation of this device will be explained. In order to bring the fluidized medium 2 into an optimal fluid state and supply the necessary combustion air, push through IAI! 4, air preconditioner 16, air passage 2
6. A necessary amount of air is blown into the fluidized bed 2 from the perforated plate 1 via the wind box 3.

燃料は、炉の上部の図示しない燃料供給装置から流動層
2へ供給され、流動状態の流動媒体と混じりながら燃焼
する。投入された燃料に付着又は含有されている塩基性
物質が流動媒体に付着し、流動媒体の粒径は徐々に大き
くなり(媒体の成長という)、これに伴って層高が上昇
する。
Fuel is supplied to the fluidized bed 2 from a fuel supply device (not shown) in the upper part of the furnace, and is combusted while being mixed with a fluidized medium in a fluidized state. Basic substances attached or contained in the input fuel adhere to the fluidized medium, and the particle size of the fluidized medium gradually increases (referred to as growth of the medium), and the bed height increases accordingly.

層高が上昇すると、流動化用空気が媚体間を透過する距
雅が長くなり、圧力損失が増加して、風箱3とフリーボ
ード30の間の差圧が上昇するので、この変化が差圧計
17で表示される。
As the bed height increases, the distance through which the fluidizing air passes between the aphrodisiacs increases, pressure loss increases, and the differential pressure between the wind box 3 and the freeboard 30 increases, so this change It is displayed on the differential pressure gauge 17.

一方、多孔板1に取付けた媒体排出管12aには流動媒
体の流動化に伴い、流動媒体が流れこむ。
On the other hand, the fluidized medium flows into the medium discharge pipe 12a attached to the perforated plate 1 as the fluidized medium is fluidized.

しかし媒体排出管12aには、排出すべき肥大粒子の終
末速度をわずかに下まわる速度の管内流速となる量の空
気(以下排出粒分別空気流という)が、媒体排出管の下
部から、調節弁20を経て吹きこまれ、流動層側へ向っ
て流れるので、終末速度が前記排出粒分別空気流の速度
よりも低い粒子、すなわち、排出すべき肥大粒子よりも
小さい粒子は、前記空気流により流動層側に吹きもどさ
れて、排出はされない。終末速度が前記空気流より大き
い粒子、すなわち、排出すべき肥大粒子およびそれより
大きい粒子は、流動層側に吹きもどされることなく、流
動状態で排出管12a内を沈降し、媒体圧と排出管内の
空気圧力により、排出出口管12bへ入り、フラッパ2
2を経て排出される。
However, in the medium discharge pipe 12a, an amount of air (hereinafter referred to as discharge particle separation air flow) whose flow velocity in the pipe is slightly lower than the terminal velocity of the enlarged particles to be discharged flows from the lower part of the medium discharge pipe into the control valve. 20 and flow toward the fluidized bed side, particles whose terminal velocity is lower than the velocity of the discharge particle separation air flow, that is, particles smaller than the enlarged particles to be discharged, are fluidized by the air flow. It is blown back to the layer side and is not discharged. Particles whose terminal velocity is higher than the air flow, that is, enlarged particles to be discharged and particles larger than that, settle in the discharge pipe 12a in a fluidized state without being blown back to the fluidized bed side, and the medium pressure and the inside of the discharge pipe are The air pressure enters the discharge outlet pipe 12b, and the flapper 2
It is discharged after 2 steps.

この排気粒分別空気流は、流動媒体を排出しない時でも
、流動層運転中は常時、管内に送給され、管内に滞留し
ている媒体を流動状態に保持して、粒子の付着による排
出不良をへらしている。
This exhaust particle separation air flow is constantly fed into the pipe during fluidized bed operation even when the fluidized medium is not being discharged, and keeps the medium stagnant in the pipe in a fluid state, resulting in poor discharge due to adhesion of particles. I'm getting tired of it.

フラッパ22は、第7図に示すように、排出出口管12
bのじ(40面の延長平面に支点を有し、その支点のま
わりに回動して開口を閉鎖するので、閉鎖の最終段階で
は開口面に対してほぼ垂直に動く。従って、開口閉鎖時
に開口付近に排出媒体があっても、フラッパ22は、そ
の媒体を排出出口管12 b内に押し戻して閉鎖するの
で、フラッパ22と排出出口管の開口面の間に排出媒体
をかみこむことがない。もし噛みこんでも数回の開閉!
PIJ作の繰り返しで容易に噛みこんだ媒体を排除する
ことができる。今、媒体排出管12aに吹きこまれる排
出粒分別空気流の排出管12a内の流速が6[II/s
であると、第2図から終末速度が6m/sである媒体粒
径はIInであり、従って、径が1m未満の媒体は前記
排出粒分別空気流により、媒体排出I′l?12aから
流動層に吹きもどされ、11m1以上の怪の媒体は流動
状態となって媒体排出管内を沈降する。
The flapper 22 is connected to the discharge outlet pipe 12 as shown in FIG.
b Noji (has a fulcrum on the extended plane of 40 planes and rotates around the fulcrum to close the opening, so in the final stage of closing it moves almost perpendicular to the opening plane. Therefore, when closing the opening Even if there is a discharge medium near the opening, the flapper 22 pushes the medium back into the discharge outlet pipe 12b and closes it, so the discharge medium is not caught between the flapper 22 and the opening surface of the discharge outlet pipe. .If it gets stuck, open and close it several times!
By repeating PIJ work, you can easily eliminate media that has become entangled. Now, the flow velocity in the discharge pipe 12a of the discharge particle separation air flow blown into the medium discharge pipe 12a is 6 [II/s
Then, from FIG. 2, the medium particle size with a terminal velocity of 6 m/s is IIn, and therefore, the medium with a diameter of less than 1 m is discharged by the discharge particle separation air flow, I'l? The medium of 11 ml or more is blown back into the fluidized bed from 12a, becomes fluid, and settles in the medium discharge pipe.

従って、排出しようとする肥大粒子径の終末速度をわず
から下まわる速度の排出粒分別空気流を、調節弁20の
操イ1;によって媒体排出管12aに送りこみ、流動媒
体として不適当な肥大粒子を確実に排出すると共に、使
用可能な媒体粒子の排出を避けることができる。また、
媒体排出管12a内の圧力を測定することにより、媒体
排出管内の排出粒分別室気流が正常であるか、排出媒体
のブリッジにより詰り等がないかを検知する。
Therefore, an air flow for separating the discharged particles at a speed slightly lower than the terminal velocity of the enlarged particles to be discharged is sent into the medium discharge pipe 12a by the operation 1 of the control valve 20, and the flow is carried out to prevent enlargement that is inappropriate as a fluid medium. It is possible to ensure the evacuation of particles and avoid evacuation of usable media particles. Also,
By measuring the pressure inside the medium discharge pipe 12a, it is detected whether the air flow in the discharge particle separation chamber in the medium discharge pipe is normal or whether there is any clogging due to bridges of the discharge medium.

第3図は、前記の差圧計17と媒体排出管12aに設け
た圧力計18とから圧力信号を受けとる制御器25が、
入力部、判定制御部および制御信号出力部から成ること
を示している。差圧計17からの風箱3とフリーボード
30間の差圧信号および圧力計18からの媒体排出管1
2a内圧力信号を取りこむ入力部は、取りこんだ差圧と
圧力のアナログ信号を、ディジタル化して判定制御部へ
送る。判定制御部は、前記差圧を媒体成長もしくは変化
として、また媒体排出管12a内圧力を、排出管路の詰
り、空気速度、媒体排出量変化としてとらえて、層高、
媒体状態、空気速度、媒体排出状態を判定し、調節弁2
0、空気弁21、フラッパ22の動作指令を制御信号出
方部へ送る。制御信号出力部はこの指令を制御信号に変
換して。
FIG. 3 shows that the controller 25 receives pressure signals from the differential pressure gauge 17 and the pressure gauge 18 provided in the medium discharge pipe 12a.
It is shown that it consists of an input section, a determination control section, and a control signal output section. Differential pressure signal between wind box 3 and freeboard 30 from differential pressure gauge 17 and medium discharge pipe 1 from pressure gauge 18
The input section that takes in the internal pressure signal 2a digitizes the taken-in differential pressure and pressure analog signals and sends them to the determination control section. The determination control section takes the differential pressure as medium growth or change, and the pressure inside the medium discharge pipe 12a as clogging of the discharge pipe, air velocity, and change in medium discharge amount, and determines the layer height,
Determine the medium condition, air velocity, and medium discharge condition, and control valve 2
0. Send operation commands for the air valve 21 and flapper 22 to the control signal output unit. The control signal output section converts this command into a control signal.

各動作部分へ出力する。Output to each operating part.

次に第4図に基き判定制御部の動作条件を説明する。Next, the operating conditions of the determination control section will be explained based on FIG.

イは差圧、排出管12a内圧力共に正常値と判定し、調
節弁20の開度、フラッパ22の開度は現状維持とする
6空気弁21は閉のままとする。   □口は差圧が徐
々に下降しているので層高が低下しており、媒体が不足
気味であるが、媒体排出管圧力は正常故、媒体の付着等
はなく、燃焼速度も早く粒径が小となり、ボイラ外へ飛
散し、層としての対流時間が少なく、燃焼状態は良好と
判定し、調節弁20の開度、フラッパ22の開度は現状
維持とし、不足している流動媒体の補充の信号を図示し
ていない媒体補充制御器へ出力する。
In case A, both the differential pressure and the internal pressure of the discharge pipe 12a are determined to be normal values, and the opening degree of the control valve 20 and the opening degree of the flapper 22 are maintained as they are. 6. The air valve 21 is kept closed. □At the port, the differential pressure is gradually decreasing, so the bed height is decreasing, and there seems to be a shortage of media. However, the media discharge pipe pressure is normal, so there is no media adhesion, and the combustion speed is fast and the particle size is small. It is determined that the combustion condition is good because the convection time as a layer is small, and the convection time as a layer is small, so the opening degree of the control valve 20 and the opening degree of the flapper 22 are maintained as they are, and the insufficient fluidizing medium is removed. A replenishment signal is output to a medium replenishment controller (not shown).

ハは差圧、排出管内圧力が共に徐々に低下している。差
圧の低下は、層高の低下すなわち流動媒体の減少を示し
、排出管内圧力の低下は、排出粒分別室気流流速の減少
すなわち排出されるべきでない小径粒子が、排出管12
a内から流動層2へ吹きもどされないで、フラッパ22
を経て排出されているのを示している。媒体排出量を減
らす為に、排出粒分別室気流流速を増すよう調節弁20
を開方向へ動作させる指示と、フラッパ22を閉方向に
動作させる指示とを出力する。
In c, both the differential pressure and the pressure inside the discharge pipe are gradually decreasing. A decrease in the differential pressure indicates a decrease in the bed height, i.e. a decrease in the fluidizing medium, and a decrease in the pressure inside the discharge pipe indicates a decrease in the discharge particle separation chamber air flow rate, i.e., small diameter particles that should not be discharged are transferred to the discharge pipe 12.
The flapper 22 is not blown back into the fluidized bed 2 from inside a.
It shows that it is being discharged through the process. A control valve 20 is installed to increase the airflow velocity in the waste particle separation chamber in order to reduce the amount of media discharged.
An instruction to operate the flapper 22 in the opening direction and an instruction to operate the flapper 22 in the closing direction are output.

ホは、差圧が徐々に上昇しており、層高上昇すなわち媒
体量増加を示し、排出管12a内圧力は正常で媒体排出
状況は問題ないことを示している。
E shows that the differential pressure is gradually increasing, indicating an increase in the bed height, that is, an increase in the amount of medium, and that the pressure inside the discharge pipe 12a is normal and there is no problem in the medium discharge situation.

媒体補充量が多すぎると判定して、媒体補充量を減する
よう媒体補充制御器への指令を出力する。
It is determined that the amount of medium replenishment is too large, and a command is output to the medium replenishment controller to reduce the amount of medium replenishment.

へは、差圧が徐々に上昇しており、層高上昇すなわち媒
体量増加を示し、排出管12a内圧力は上昇すなわち排
出粒分別室気流速が上昇し、排出すべき肥大粒子を流動
層2内へ吹きもどしているのを示している。排出粒分別
室気流速を減らすよう調節弁20を閉方向に動作させる
指示と、フラッパ22からの排出量を増すようフラッパ
22を開方向に動、作させる指令とを出力する。
The differential pressure gradually increases, indicating an increase in bed height, that is, an increase in the amount of medium, and the pressure inside the discharge pipe 12a increases, that is, the air flow rate in the discharge particle separation chamber increases, and the enlarged particles to be discharged are transferred to the fluidized bed 2. This shows that it is blowing back inward. An instruction to operate the control valve 20 in the closing direction so as to reduce the air flow velocity in the exhaust particle separation chamber, and an instruction to operate the flapper 22 in the opening direction so as to increase the amount of discharge from the flapper 22 are outputted.

二は、差圧および排出管内圧力が共に急激に変化してお
り、何か他の要因による風筒内空気圧力急上昇又はフリ
ーボード部の圧力異常低下による吹き抜は現象等が考え
られ、層内異常警報を出して、調節弁20.フラッパ2
2の閉動作指令を出力し1層内状態の自然回復又は、人
為的操作による回復を、待つ。
Second, both the differential pressure and the pressure inside the discharge pipe are changing rapidly, and the blowout is thought to be due to a sudden rise in the air pressure inside the wind tube due to some other factor or an abnormal drop in pressure at the freeboard section. Issue an abnormality alarm and close the control valve 20. flapper 2
It outputs the closing operation command No. 2 and waits for the state within the first layer to recover naturally or due to human operation.

トの、差圧急上昇は、層内媒体相互付着による流動停止
又は媒体補給量の異状増加による層高の急上昇等による
と考えられ、層内異状警報を出し、層内状態の自然回復
又は人為的操作による回復を待つ。
The sudden rise in differential pressure is thought to be due to flow stoppage due to mutual adhesion of media in the layer, or a sudden increase in layer height due to an abnormal increase in the amount of media replenishment. Wait for the operation to recover.

りは、差圧正常にも拘らず排出管内圧力急上昇しており
、排出管詰り発生と判定して、調整弁20、フラッパ2
2の閉指令と、空気弁21の開指令を出力する。空気弁
21からの高圧空気により詰りを解消する。
Although the differential pressure is normal, the pressure inside the discharge pipe is rising rapidly, and it is determined that the discharge pipe is clogged, and the regulating valve 20 and flapper 2 are closed.
2 close command and an open command for air valve 21 are output. The blockage is cleared by high pressure air from the air valve 21.

この制御装置により、層高や、排出粒分別室気流の圧力
が変動しても、自動的に修正動作が行われ、安定した運
転が可能となる。
With this control device, even if the bed height or the pressure of the airflow in the discharged particle separation chamber changes, corrective actions are automatically performed and stable operation is possible.

尚、差圧および排出管内圧力の高低の判断の基準となる
数値は、任意の値に設定することが可能である。
Note that the numerical values that serve as standards for determining the height of the differential pressure and the discharge pipe internal pressure can be set to arbitrary values.

第5図は、本発明の他の実施例を示す図であり、先に述
べた実施例に更に、媒体排出量を計る流量計(ロードセ
ルによる重量計測等)を設けている。
FIG. 5 is a diagram showing another embodiment of the present invention, in which a flow meter (weight measurement using a load cell, etc.) for measuring the amount of medium discharged is further provided in the embodiment described above.

流量計により媒体排出量を直接計測して排出状態を検知
し、圧力計18と併せて媒体排出状態のくわしい把握を
可能としている。
The flow meter directly measures the amount of medium discharged to detect the discharge state, and in conjunction with the pressure gauge 18, it is possible to grasp the medium discharge state in detail.

第6図は、更に他の実施例を示す図である。前述の実施
例に含まれる制御器25に記憶部を設け、ボイラの負荷
状態、媒体種類に対応した複数の条件を記憶させておき
、負荷状態、媒体種類によって判定、制御量を変える装
置としている。すなわち、媒体投入量は、ボイラの負荷
状態や媒体の種類によって変動するので、負荷状態と媒
体種類の複数の組合せに対応して、差圧、排出管内圧力
、媒体排出量を記憶部に入力しておき、実際の燃焼条件
に該当する負荷状態、媒体種類の組合せに対応する条件
を基準として前述のイ〜りの判定を行わせるのである。
FIG. 6 is a diagram showing still another embodiment. The controller 25 included in the above-mentioned embodiment is provided with a storage section to store a plurality of conditions corresponding to the load state of the boiler and the type of medium, and is a device that changes the determination and control amount depending on the load state and the type of medium. . In other words, since the amount of medium input varies depending on the boiler load condition and type of medium, the differential pressure, pressure inside the discharge pipe, and amount of medium discharged are input into the storage unit in response to multiple combinations of load condition and medium type. Then, the above-mentioned judgments are made based on the conditions corresponding to the combination of the load state and the type of medium that correspond to the actual combustion conditions.

入力した組合せの中間の組合せの場合は、計算で補間す
ることにより、流動層ボイラの特徴である多種低品位燃
料の使用に対応可能としている。
In the case of a combination between the input combinations, interpolation is performed by calculation, making it possible to use a wide variety of low-grade fuels, which is a characteristic of fluidized bed boilers.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、流動媒体として不適な肥大粒子を確実
に流動層から排出し、又、流動媒体の詰りによる排出不
良をなくすことができるので、’dtt動層燃焼装置の
円滑な運転が可能となる。また使用可能な媒体粒子の排
出を避けられるので、排出された再使用可能粒子の分別
、供給設備を設ける必要がなくなる。
According to the present invention, enlarged particles unsuitable as a fluidized medium can be reliably discharged from the fluidized bed, and defective discharges due to clogging of the fluidized medium can be eliminated, so that smooth operation of the 'dtt fluidized bed combustion apparatus is possible. becomes. Furthermore, since the discharge of usable media particles can be avoided, there is no need to provide equipment for separating and supplying the discharged reusable particles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す図、第2図は流動媒体の
粒径と、流動化開始速度および終末速度の関係を示す図
、第3図は制御器の構成の実施例を示す図、第4図は制
御器の作動条件の実施例を示す図、第5図は本発明の他
の実施例を示す図、第6図は、制御器の構成の他の実施
例を示す図、第7図は、本発明によるフラッパの実施例
を示す図、第8図は流動媒体排出方法の従来の技術の例
を示す図、第9図は媒体排出の制御の従来の技術の例を
示す図であり、第10図は、第9図のB−B線に沿った
平面断面図である。 1・・・多孔板、      2・・・流動層、3・・
・風箱、       12a・・・媒体排出管、12
b・・・排出出口管、  17°°゛差圧計・18・・
・圧力計、     20・・・調節弁、21・・・詰
り除去空気弁、 22・・・フラッパ(排出機構) 25・・・制御器、     27・・・流量計、30
・・・フリーボード。
Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing the relationship between the particle size of the fluidizing medium, the fluidization start speed and the final velocity, and Fig. 3 is a diagram showing an example of the configuration of the controller. 4 is a diagram showing an example of the operating conditions of the controller, FIG. 5 is a diagram showing another example of the present invention, and FIG. 6 is a diagram showing another example of the configuration of the controller. , FIG. 7 is a diagram showing an embodiment of the flapper according to the present invention, FIG. 8 is a diagram showing an example of a conventional technique for a fluidized medium discharge method, and FIG. 9 is a diagram showing an example of a conventional technique for controlling medium discharge. FIG. 10 is a plan sectional view taken along line BB in FIG. 9. 1... Porous plate, 2... Fluidized bed, 3...
・Wind box, 12a...media discharge pipe, 12
b...Discharge outlet pipe, 17°° differential pressure gauge, 18...
・Pressure gauge, 20... Control valve, 21... Clogging removal air valve, 22... Flapper (discharge mechanism) 25... Controller, 27... Flow meter, 30
...Free board.

Claims (7)

【特許請求の範囲】[Claims] (1)流動層と風箱の境界をなす多孔板と、該多孔板に
取付けられ流動層内に開口を有すると共に前記風箱の下
方にまで延びる媒体排出管と、該媒体排出管の末端開口
部に設けられた排出機構とから成る流動層装置の媒体排
出装置において、媒体排出管内に、流動層に向けて、流
動層に使用する媒体粒子の終末速度を越える速度の気体
を、継続して送りこむことを特徴とする成長流動媒体排
出装置。
(1) A perforated plate forming a boundary between the fluidized bed and the wind box, a medium discharge pipe attached to the perforated plate having an opening in the fluidized bed and extending below the wind box, and an opening at the end of the medium discharge pipe. In the media discharge device of the fluidized bed device, which consists of a discharge mechanism installed in the fluidized bed, gas is continuously supplied into the media discharge pipe toward the fluidized bed at a velocity exceeding the terminal velocity of the media particles used in the fluidized bed. A growth fluid medium discharge device characterized by feeding.
(2)媒体排出管に、圧縮空気を送りこむことを特徴と
する特許請求の範囲第1項に記載の成長流動媒体排出装
置。
(2) The growth fluid medium discharge device according to claim 1, wherein compressed air is fed into the medium discharge pipe.
(3)媒体排出管の媒体出口開口面に、該開口面にほぼ
重直に移動しながら開口を閉鎖する排出機構を設けたこ
とを特徴とする特許請求の範囲第1項又は第2項に記載
の成長流動媒体排出装置。
(3) Claim 1 or 2 is characterized in that the medium outlet opening surface of the medium discharge pipe is provided with a discharge mechanism that closes the opening while moving substantially perpendicularly to the opening surface. A growth fluid medium discharge device as described.
(4)風箱の圧力とフリーボード部の圧力の差圧と媒体
排出管の内圧力を測定し、その結果により、媒体排出管
に気体を送りこむ装置と、前記媒体排出管に圧縮空気を
送りこむ装置と、前記媒体排出管に設けた排出機構と、
媒体補充制御器との動作を制御する制御器を設けたこと
を特徴とする特許請求の範囲第3項に記載の成長流動媒
体排出装置。
(4) Measure the differential pressure between the pressure in the wind box and the pressure in the freeboard section and the internal pressure in the medium discharge pipe, and based on the results, install a device to feed gas into the medium discharge pipe and send compressed air into the medium discharge pipe. a device; a discharge mechanism provided in the medium discharge pipe;
4. The growth fluidic medium discharging apparatus according to claim 3, further comprising a controller for controlling operation with a medium replenishment controller.
(5)媒体排出管から排出される媒体の量を計測する媒
体排出量計量装置を設けたことを特徴とする特許請求の
範囲第1項から第4項までのいずれかの項に記載の成長
流動媒体排出装置。
(5) The growth according to any one of claims 1 to 4, characterized in that a medium discharge amount measuring device is provided to measure the amount of medium discharged from the medium discharge pipe. Fluid media discharge device.
(6)制御器に記憶部を設け、流動層装置の負荷状態お
よび使用する流動媒体の種類の組合せに対応して媒体投
入量、層高、媒体排出管へ送りこむ気体の量、排出機構
の開度の条件を前記記憶部に記憶させ、この条件に応じ
て制御を行う前記制御器を設けたことを特徴とする特許
請求の範囲第4項又は第5項に記載の成長流動媒体排出
装置。
(6) A memory section is provided in the controller, and the amount of medium input, bed height, amount of gas sent to the medium discharge pipe, and opening of the discharge mechanism are adjusted according to the load condition of the fluidized bed apparatus and the type of fluidized medium used. 6. The growth fluid medium discharging apparatus according to claim 4, further comprising: a controller which stores conditions for the growth rate in the storage section and performs control according to the conditions.
(7)媒体排出管に圧縮空気を送りこむ装置が、一端を
媒体排出管に接続され、他端を圧縮空気源に接続された
空気管と、該空気管の中間に設けられた空気弁から成る
ことを特徴とする特許請求の範囲第2項に記載の成長流
動媒体排出装置。
(7) A device for feeding compressed air into a medium discharge pipe, consisting of an air pipe whose one end is connected to the medium discharge pipe and the other end connected to a compressed air source, and an air valve provided in the middle of the air pipe. A growth fluid medium discharge device according to claim 2, characterized in that:
JP21343186A 1986-09-10 1986-09-10 Growing fluid medium discharge system Pending JPS6370008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21343186A JPS6370008A (en) 1986-09-10 1986-09-10 Growing fluid medium discharge system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21343186A JPS6370008A (en) 1986-09-10 1986-09-10 Growing fluid medium discharge system

Publications (1)

Publication Number Publication Date
JPS6370008A true JPS6370008A (en) 1988-03-30

Family

ID=16639112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21343186A Pending JPS6370008A (en) 1986-09-10 1986-09-10 Growing fluid medium discharge system

Country Status (1)

Country Link
JP (1) JPS6370008A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0434945A2 (en) * 1989-12-28 1991-07-03 ITALIMPIANTI S.p.A. Fluid-bed incinerator
US5469994A (en) * 1991-09-09 1995-11-28 Buhler Ag Apparatus and method for dosing a particulate phase present in a gas/particle flow from a fluidized bed
EP1058051A1 (en) * 1998-02-27 2000-12-06 Ebara Corporation Fluidized bed gasification furnace
FR3007105A1 (en) * 2013-06-13 2014-12-19 IFP Energies Nouvelles METHOD AND INSTALLATION OF COMBUSTION BY OXYDO-CHEMICAL LOOP REDUCTION OF A SOLID HYDROCARBON LOAD WITH REMOVAL OF HOME ASHES

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0434945A2 (en) * 1989-12-28 1991-07-03 ITALIMPIANTI S.p.A. Fluid-bed incinerator
US5469994A (en) * 1991-09-09 1995-11-28 Buhler Ag Apparatus and method for dosing a particulate phase present in a gas/particle flow from a fluidized bed
US5579588A (en) * 1991-09-09 1996-12-03 Buhler Ag Method for dosing a particulate phase in a gas/particle flow in a fluidized bed
EP1058051A1 (en) * 1998-02-27 2000-12-06 Ebara Corporation Fluidized bed gasification furnace
EP1058051A4 (en) * 1998-02-27 2001-09-19 Ebara Corp Fluidized bed gasification furnace
FR3007105A1 (en) * 2013-06-13 2014-12-19 IFP Energies Nouvelles METHOD AND INSTALLATION OF COMBUSTION BY OXYDO-CHEMICAL LOOP REDUCTION OF A SOLID HYDROCARBON LOAD WITH REMOVAL OF HOME ASHES

Similar Documents

Publication Publication Date Title
EP0988243B1 (en) A method and a device for transporting bulk material, granular material or powdery material
US6994497B1 (en) Method and apparatus for treating high pressure particulate material
JP2996963B1 (en) Fluidized bed drying / classifying equipment
US20100034599A1 (en) Vacuum Conveying Velocity Control Apparatus and Method for Particulate Material
JP5058567B2 (en) Fluidized drying method and fluidized bed drying apparatus
US4662798A (en) Method and a device for measuring and/or regulating the mass flow of solid particles
US5013342A (en) Centrifugal separator and granular filter unit
US2916441A (en) Process and apparatus for controlling the rate of addition of fluidized particles
CN105621105A (en) Pneumatic conveying device and auxiliary pipeline control system of pneumatic conveying device
EP0108505A1 (en) Apparatus for conveying particulate material from a pressurized container
EP0663855B1 (en) Method and device for discharging particulate material from a pressurized container
JPS6067325A (en) Granular powder collecting device
CN113716347B (en) System, device, method and control device for pneumatic conveying of particulate matters
JPS6370008A (en) Growing fluid medium discharge system
JP2825734B2 (en) Control device for coal drying / classifying device
CN208560956U (en) A kind of equipment of powder material Dense Phase Pneumatic Conveying
JP2825726B2 (en) Control method for preventing accumulation and blow-by of coal drying and classification equipment
US6338306B1 (en) Ash handling system
JPH0151407B2 (en)
JPH0356274B2 (en)
CN210972441U (en) A feed bin for producing expandable polystyrene
CN216449935U (en) Sulfur particle level control device used in sulfur wet forming device
JPH10109754A (en) Hopper for powder and grain
WO1986002912A1 (en) A particulate solid feeding device
JPH09257236A (en) Granule supply device