JPS6368493A - Method of controlling output of shaft generator/motor - Google Patents

Method of controlling output of shaft generator/motor

Info

Publication number
JPS6368493A
JPS6368493A JP61213028A JP21302886A JPS6368493A JP S6368493 A JPS6368493 A JP S6368493A JP 61213028 A JP61213028 A JP 61213028A JP 21302886 A JP21302886 A JP 21302886A JP S6368493 A JPS6368493 A JP S6368493A
Authority
JP
Japan
Prior art keywords
power
generator
output
turbo
shaft generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61213028A
Other languages
Japanese (ja)
Other versions
JPH07106720B2 (en
Inventor
Sumio Hamahira
浜平 澄雄
Yasumitsu Takagi
康光 高木
Nobuhiro Kawabata
川端 庸弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP61213028A priority Critical patent/JPH07106720B2/en
Publication of JPS6368493A publication Critical patent/JPS6368493A/en
Publication of JPH07106720B2 publication Critical patent/JPH07106720B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To effectively use thermal energy in exhaust gas, by regarding a value which is obtained by subtracting an inboard demand power from the maximum possible power generated by a turbo-generator, as a surplus power, and by setting the output power of a shaft generator/motor in accordance with the value so that the output power is automatically controlled. CONSTITUTION:A supply valve 11 for feeding steam into a turbo-generator 4 is controlled so that a maximum possible generated power may be always obtained from steam pressure produced by thermal energy in exhaust gas at that time. Further, an inboard demand power is subtracted from the maximum possible generated power, and the remaining power is fed to a shaft generator/ motor 6. Accordingly, thermal energy in exhaust gas may be most effectively used as auxiliary propelling power, always and automatically. Further, since the output power of the shaft generator/motor 6 as a load is regulated in accordance with variation in steam pressure, the opening degree of the steam supply valve 11 for the turbo-generator 4 may be maintained to be constant, thereby it is possible to operate the turbo-generator 4 in a highest effective range with no throttling loss.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、船舶の出力軸に装着される発電動機(選択
により、発電機あるいは電動機として動作するものをい
う。本明細書において、軸発電動機という)の出力制御
方法、特に電動機として運転する際の出力制御方法に関
する。
Detailed Description of the Invention (Field of Industrial Application) This invention refers to a generator mounted on the output shaft of a ship (which operates as a generator or an electric motor depending on selection). This invention relates to a method for controlling the output of a motor (referred to as a motor), particularly when operating as an electric motor.

(従来技術) 近年、船舶においても他の分野と同様省エネルギー化が
促進されている。
(Prior Art) In recent years, energy conservation has been promoted in ships as well as in other fields.

例えば、省エネルギー化の一環として、船舶の主機から
の排気ガスに含まれる熱エネルギーをエコノマイザ−(
排ガスボイラー)等で回収し、この熱エネルギーで蒸気
を発生させてターボジェネレータを回転させることによ
り発電し、この電気で船内所要電力(船内で消費する電
力をいう)を賄い、さらに上記発電量が船内所要電力を
上回る場合にはその余剰分でプロペラシャフトに取着さ
れた軸発電動機を回転させ(この運転状態を電動機運転
時という)、主機の負担を軽減することによって主機の
燃費を向上させるよう構成されている推進補助動力シス
テムがある。
For example, as part of energy conservation efforts, economizers (
This heat energy is used to generate steam and rotate a turbo generator to generate electricity.This electricity covers the electricity required on board (the electricity consumed on board), and further increases the amount of electricity generated above. If the power exceeds the onboard power requirement, the surplus power is used to rotate the shaft generator attached to the propeller shaft (this operating state is called electric motor operation), reducing the load on the main engine and improving fuel efficiency of the main engine. There is a propulsion auxiliary power system configured as follows.

このシステムにおいては、船内所要電力が増加した場合
、エコノマイザ−の汚れにより上記蒸気の発生量が低下
した場合、あるいは減速等による主機の回転数の減少に
よって上記発電量が減少した場合、または外気温度が低
下した場合等の原因により、上記排気ガスから得られる
発電量が船内所要電力を下回った際には、主機の駆動力
を用い上記軸発電動機で発電して(この運転状態を発電
機運転時という)、不足電力を補充するよう構成されて
いる。
In this system, if the power required on board increases, if the amount of steam generated decreases due to dirt in the economizer, if the amount of power generated decreases due to a decrease in the rotational speed of the main engine due to deceleration, or if the outside temperature If the amount of power generated from the exhaust gas is less than the required power on board due to a decrease in the amount of power generated by the (referred to as time), the power supply is configured to replenish the power shortage.

ところで、上記システムにおいて、船内所要電力と排気
ガスの熱エネルギーから得られる電力とを比較し、上記
軸発電動機を電動機として用いるか、あるいは発電機と
して用いるかの切換に関する制御方法は、本出願人によ
り既に提供されている(特公昭56−30238号)。
By the way, in the above system, a control method for comparing the power required in the ship and the power obtained from the thermal energy of the exhaust gas and switching between using the shaft generator as an electric motor or as a generator has been proposed by the present applicant. (Japanese Patent Publication No. 56-30238).

しかし、排気ガス中の熱エネルギーから得られる電力が
船内所要電力を上回っている場合に、どの程度の電力を
軸発電動機に供給するかの判断(電動機運転時の出力制
御)は、専ら操作員が適宜その時の排気ガスエネルギー
から回収できる電力と船内所要電力を予測することによ
りなされ、手動で調整されていた。即ち、専ら操作員の
長年の経験による勘等によって、上記軸発電動機への電
力の供給を調整するボリュームを適宜操作することによ
り、電動機運転時の軸発電動機の出力制御がなされてい
た。
However, when the electric power obtained from the thermal energy in the exhaust gas exceeds the required electric power on board, the decision as to how much electric power to supply to the shaft generator (output control during electric motor operation) is solely up to the operator. This was done by predicting the power that could be recovered from the exhaust gas energy at that time and the power required on board, and the adjustments were made manually. That is, the output of the shaft generator during operation of the electric motor has been controlled by appropriately operating a volume that adjusts the supply of power to the shaft generator, based solely on the operator's intuition based on many years of experience.

(発明が解決しようとする問題点) このため、例えば、排気ガスの熱エネルギーから回収で
きる電力より上記電動機運転時軸発電動機と船内所要電
力に供給する合計電力の方が上回った場合には、上記タ
ーボジェネレータにそのときの供給蒸気圧力から出し得
る出力以上の負荷を強いることになり、この結果、蒸気
供給弁が全開となり、供給蒸気を急速に消費していくた
め、供給蒸気圧力が低下し、電動機運転ができなくなる
(Problem to be Solved by the Invention) For this reason, for example, if the total power supplied to the electric motor operating time axis generator and the required power on board exceeds the power that can be recovered from the thermal energy of the exhaust gas, This forces the turbo generator to carry out a load greater than the output it can produce based on the supply steam pressure at that time, and as a result, the steam supply valve becomes fully open and the supply steam is rapidly consumed, causing the supply steam pressure to drop. , the electric motor will no longer be able to operate.

また、逆の場合には、余剰エネルギーが上記ターボジェ
ネレータへ供給される蒸気圧力の上昇という形で蓄積さ
れ、この圧力が所定圧力以上になると余剰蒸気ダンプ弁
が開弁して蒸気を外方に放出するか、または、復水器に
導き復水する。かかる場合、推進補助動力として利用で
きる排気ガス中の熱エネルギーの一部を無駄に外部に捨
ててしまうこととなり、省エネルギー化の思想に反する
ことになる。
In the opposite case, surplus energy is accumulated in the form of an increase in the steam pressure supplied to the turbo generator, and when this pressure exceeds a predetermined pressure, the surplus steam dump valve opens and releases the steam to the outside. Either discharged or led to a condenser for condensation. In such a case, a portion of the thermal energy in the exhaust gas that can be used as propulsion auxiliary power is wasted to the outside, which goes against the idea of energy conservation.

一方、操作員にとっても、船内所要電力の変化、主機の
回転数の変化あるいは外気温度の変化等に絶えず注意を
払い、その都度どの程度電動機運転時の軸発電動機に電
力を供給すればよいか判断して、上記ボリュームをこま
めに調整するという煩わしい作業を強いられることとな
る。
On the other hand, it is also important for operators to constantly pay attention to changes in the onboard power requirements, changes in the rotational speed of the main engine, changes in outside temperature, etc., and determine how much power should be supplied to the shaft generator when the electric motor is operating. You will be forced to do the troublesome work of making judgments and frequently adjusting the volume.

このように、ポリューウムを言周整するということは、
ターボジェネレータの蒸気供給弁の開度を頻繁に調整す
ることにつながり、効率的な運転とは言えない。
In this way, regulating the wording of polyum means
This leads to frequent adjustment of the opening degree of the steam supply valve of the turbo generator, which cannot be said to be efficient operation.

本発明は、上記現況に鑑み行われたもので、自動的に、
排気ガス中の熱エネルギーを最も有効に利用できるよう
な、軸発電動機の電動機運転時の出力制御方法を提供す
ることを目的とする。
The present invention was made in view of the above-mentioned current situation, and automatically:
It is an object of the present invention to provide a method for controlling the output of a shaft generator during motor operation so as to make the most effective use of thermal energy in exhaust gas.

(問題を解決するための手段) 本発明にかかる軸発電動機の電動機運転時の出力制御方
法は、船舶における主機の排気ガス中の熱エネルギーを
利用して蒸気を発生させ、この蒸気でターボジェネレー
タを介して発電させ、この発電で得た電力を船内所要電
力として供給した後の余剰電力を電動機運転時の軸発電
動機へ供給する際の該軸発電動機の出力制御方法であっ
て、 ターボジェネレータへ供給される蒸気圧力を検出して、
その検出値における該ターボジェネレータの最大発生可
能電力を予め求められ記憶されているデータにもとづい
て算出するとともに、そのときの船内所要電力を検出し
、上記最大発生可能電力から上記船内所要電力を減算し
た値を余剰電力とみなし、この値にもとづいて、軸発電
動機の出力を設定し、変動する余剰電力に対応させて上
記軸発電動機の出力制御を自動的に行うことを特徴とす
る。
(Means for solving the problem) A method for controlling the output of a shaft generator during motor operation according to the present invention utilizes thermal energy in the exhaust gas of the main engine of a ship to generate steam, and this steam is used to power a turbo generator. A method for controlling the output of a shaft generator when supplying surplus power after generating power through a turbo generator and supplying the power obtained from this power generation as the required power on a ship to the shaft generator during operation of an electric motor, the method comprising: Detect the steam pressure supplied to
Calculate the maximum power that can be generated by the turbo generator based on the detected value based on data determined and stored in advance, detect the required power on board at that time, and subtract the required power on board from the maximum power that can be generated. This value is regarded as surplus power, the output of the shaft generator is set based on this value, and the output of the shaft generator is automatically controlled in response to the fluctuating surplus power.

(作用) しかして、本発明にかかる軸発電動機の出力制御方法は
、上述のように、そのときの排気ガス中の熱エネルギー
で生ずる蒸気圧から常に発生可能な最大の電力を得るよ
うターボジェネレータへの蒸気の供給弁を制御すれば、
その最大発生可能電力からそのときの船内所要電力を減
算し、残った電力分を軸発電動機に供給するため、排気
ガス中の熱エネルギーは常に且つ自動的に最も効率よく
推進補助動力として利用できる。しかも、蒸気圧力の変
動に対応して負荷である軸発電動機の出力が調整される
ため、ターボジェネレータの蒸気供給弁の開度は、はぼ
一定に保たれ、しぼり損失のない一番効率のよいところ
でターボジェネレータを運転できる。
(Function) As described above, the output control method of the shaft generator according to the present invention is such that the turbo generator always obtains the maximum power that can be generated from the steam pressure generated by the thermal energy in the exhaust gas at that time. If you control the steam supply valve to
The current onboard power requirement is subtracted from the maximum power that can be generated, and the remaining power is supplied to the shaft generator, so the thermal energy in the exhaust gas can always and automatically be used most efficiently as propulsion auxiliary power. . Moreover, since the output of the shaft generator, which is the load, is adjusted in response to fluctuations in steam pressure, the opening degree of the turbo generator's steam supply valve is kept almost constant, resulting in the most efficient system with no throttling loss. You can run a turbo generator in a good place.

(実施例) 以下、本発明の実施例を図面を参照しながら説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本実施例にかかる制御方法を実施するための装
置の構成を示す全体構成図、第2図は制御装置のメモリ
内に予め記憶されている「蒸気圧−ターボジェネレータ
最大発生可能電力」関係図、第3図は本実施例にかかる
制御方法を示すフローチャートである。
FIG. 1 is an overall configuration diagram showing the configuration of a device for carrying out the control method according to the present embodiment, and FIG. FIG. 3 is a flowchart showing the control method according to this embodiment.

まず、本実施例にかかる制御方法を実施するための装置
について説明する。第1図において、1は推進軸を駆動
する主機で、この主機1の排ガス通路1aにはエコノマ
イザ−2が配設されている。そして、このエコノマイザ
−2には、破線で示される配管3及び供給弁11を介し
てターボジェネレータ4が接続され、エコノマイザ−2
で発生した蒸気をターボジェネレータ4に供給するよう
構成されている。そして、上記ターボジェネレータ4の
インレット側4aには、供給される蒸気圧力を検出する
検出器5が装着されている。
First, a device for implementing the control method according to this embodiment will be described. In FIG. 1, reference numeral 1 denotes a main engine that drives a propulsion shaft, and an economizer 2 is disposed in an exhaust gas passage 1a of the main engine 1. A turbo generator 4 is connected to the economizer 2 via a piping 3 and a supply valve 11 shown by broken lines.
It is configured to supply the steam generated in the turbo generator 4 to the turbo generator 4. A detector 5 is mounted on the inlet side 4a of the turbo generator 4 to detect the pressure of the supplied steam.

また、先端に推進用のプロペラ13を備えた上記推進軸
には軸発電動s6が装着されており、この軸発電動機6
は、サイリスク変換器を具備した制御盤7を介して、船
内電力線に接続されている。負荷分担装置8は、船内電
力線に接続され、ターボジェネレータと軸発電動機の電
力分担を制御している。また、船内電力線9には、船内
所要電力を検出する検出器12が配設されている。
Further, a shaft power generator s6 is attached to the above-mentioned propulsion shaft, which is equipped with a propeller 13 for propulsion at the tip, and this shaft power generator 6
is connected to the onboard power line via a control panel 7 equipped with a SIRISK converter. The load sharing device 8 is connected to the inboard power line and controls power sharing between the turbo generator and the shaft generator. Further, the inboard power line 9 is provided with a detector 12 for detecting the required inboard power.

上記検出器5、検出器12、負荷分担装置8及び供給弁
11は、電気的に、制御装置10に接続されている。こ
の制御装置10は、軸発電動機6の出力制御値を演算し
、その出力制御値にもとづいて、負荷分担装置8に制御
信号を出力するコンピュータ(−示せず)を備えている
。このマイクロコンピュータのメモリ内には、予めデー
タとして求められた第2図に示す「蒸気圧−ターボジェ
ネレータ最大発生可能電力」関係図がデータとして予め
記憶されている。
The detector 5, detector 12, load sharing device 8, and supply valve 11 are electrically connected to the control device 10. This control device 10 includes a computer (not shown) that calculates an output control value of the shaft generator 6 and outputs a control signal to the load sharing device 8 based on the output control value. In the memory of this microcomputer, the "steam pressure-maximum power that can be generated by the turbo generator" relationship diagram shown in FIG. 2, which has been determined in advance as data, is stored in advance as data.

しかして、このように構成された装置において、軸発電
動機は以下のように制御される。
In the device configured as described above, the shaft generator is controlled as follows.

即ち、第3図のフローチャートに示すように、軸発電動
機6がある出力を得られるような状態、例えば、蒸気圧
5.5 kg/cnl−Gで稼動中に、エコノマイザ−
2からターボジェネレータ4への供給される蒸気圧が6
kg/cal−Gに上昇したとすると、この変化を検出
器5が検出し、この値を制wJ装置10に伝達する。こ
の検出器5からの変化した値の入力により、制御装置1
0のマイクロコンピュータは、この蒸気圧においてター
ボジェネレータの最大発生可能電力が得られるよう供給
弁11を制御するとともに、第2図に示すデータにもと
づいて、当該蒸気圧におけるターボジェネレータ4の最
大発生可能電力(本実施例の場合、550Kw :第2
図参照)を算出し、この値から、この時点での船内電力
(例えば、500 Kw)を、減算した値、即ち50 
Kw(550Kw:最大発生可能電力−500Kw :
船内所要電力)を軸発電動機6の制御出力値(目標値)
とじてみなし、その値に見合った制御信号を負荷分担装
置8に出力する。負荷分担装置8は、この制御信号にも
とづいて、出力を調整する。この結果、軸発電動機6は
、50 Kwの出力値に制御されることとなる。また、
上記蒸気圧が一定である場合において、船内所要電力が
例えば500 Kwから480 Kwに減少した場合に
は、そのときの最大発生可能電力(550Kw)から船
内所要電力(480にのを減算した値70 Kwを軸発
電動機6の制御出力値とみなし、その値に見合った制御
信号を負荷分担装置8に出力して、上記と同様に制御さ
れる。
That is, as shown in the flowchart of FIG. 3, the economizer
The steam pressure supplied from 2 to the turbo generator 4 is 6
kg/cal-G, the detector 5 detects this change and transmits this value to the wJ control device 10. By inputting the changed value from this detector 5, the control device 1
The microcomputer 0 controls the supply valve 11 so that the maximum power that can be generated by the turbo generator 4 is obtained at this steam pressure, and also controls the maximum power that can be generated by the turbo generator 4 at this steam pressure based on the data shown in FIG. Electric power (in the case of this example, 550Kw: 2nd
(see figure) and subtracted the current onboard power (for example, 500 Kw) from this value, that is, 50 Kw.
Kw (550Kw: Maximum power that can be generated - 500Kw:
The control output value (target value) of the shaft generator 6
A control signal commensurate with that value is output to the load sharing device 8. The load sharing device 8 adjusts the output based on this control signal. As a result, the shaft generator 6 is controlled to an output value of 50 Kw. Also,
When the above steam pressure is constant, if the required power on board decreases from 500 Kw to 480 Kw, the value of the required power on board (480 minus 70 Kw is regarded as the control output value of the shaft generator 6, and a control signal commensurate with that value is output to the load sharing device 8, and the control is performed in the same manner as above.

このように、軸発電動機6の出力は、エコノマイザ−2
からターボジェネレータ4に供給される蒸気圧の変動、
あるいは船内所要電力の変動に対応して制御されること
となる。従って、予め第2図に示す如き、「蒸気圧−タ
ーボジェネレータ最大発生可能電力」関係図を、当該船
舶のエコノマイザ−とターボジェネレータ等の機器性能
から計算してデータとして入力しておくだけで、主機か
らの排気ガスの有する熱エネルギーを最も効率よく、且
つターボジェネレータ等に無理な負荷をかけることなく
得ることができる。
In this way, the output of the shaft generator 6 is equal to the output of the economizer 2.
Fluctuations in the steam pressure supplied to the turbo generator 4 from
Alternatively, it will be controlled in response to fluctuations in the required power on board. Therefore, all you have to do is calculate the "steam pressure - maximum power that can be generated by the turbo generator" relationship diagram from the performance of the economizer, turbo generator, etc. of the ship and input it as data in advance, as shown in Figure 2. Thermal energy contained in the exhaust gas from the main engine can be obtained most efficiently and without imposing an unreasonable load on the turbo generator or the like.

尚、本発明にかかる出力制御方法は、排ガスターボジェ
ネレータと組み合わせて使用する軸発電動機の電動機運
転時の出力制御として、すべてのタイプの軸発電動機に
適用できる。
Note that the output control method according to the present invention can be applied to all types of shaft generators as output control during motor operation of shaft generators used in combination with an exhaust gas turbo generator.

(発明の効果) 本発明にかかる軸発電動機の出力制御方法は、以下のよ
うな種々の優れた効果を有する。
(Effects of the Invention) The shaft generator output control method according to the present invention has the following various excellent effects.

(1)、’エコノマイザーで回収される熱エネルギーが
無駄なく最大限に推進補助動力として利用でき、(2)
、特に、主機出力の変動、エコノマイザ−の汚れ等によ
る排気ガスエネルギーから回収できる電力の変動、及び
船内所要電力の変動に追従した適切な軸発電動機出力の
制御が可能になり、(3)、余剰電力を軸発電動機出力
として考えることにより、ターボジェネレータは常時そ
の時の蒸気条件に見合った最大発生可能電力を発生すれ
ばよく、安定的な運転が可能になり、(4)、軸発電動
機出力が自動的に制御されるので、その時の排気ガスエ
ネルギーより回収できる電力の予測とか、出力設定変更
操作等の人為的な操作が不用となり、このため操作員も
煩わしい作業から開放される。
(1), 'The thermal energy recovered by the economizer can be used to the maximum extent as propulsion auxiliary power without waste; (2)
In particular, it becomes possible to appropriately control the shaft generator output in accordance with fluctuations in the main engine output, fluctuations in the power that can be recovered from exhaust gas energy due to economizer dirt, etc., and fluctuations in the required power onboard the ship. (3) By considering the surplus power as the output of the shaft generator, the turbo generator only needs to generate the maximum power that can be generated according to the steam conditions at that time, and stable operation is possible. Since this is automatically controlled, there is no need for human operations such as predicting the power that can be recovered from the exhaust gas energy at that time or changing output settings, thereby freeing the operator from troublesome work.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例の全体の構成を示す全体構成図、第2
図は制御装置のメモリ内に予め記憶されている「蒸気圧
−ターボジェネレータ出力」関係図、第3図は本実施例
にかかる出力制御方法の流れを示すフローチャート閣で
ある。 1・・・主機、2・・・エコノマイザ−14・・・ター
ボジェネレータ、5・・・蒸気圧力の検出器、6・・・
軸発電動機、12・・・船内所要電力の検出器。
Figure 1 is an overall configuration diagram showing the overall configuration of this embodiment;
The figure is a "steam pressure-turbo generator output" relationship diagram stored in advance in the memory of the control device, and FIG. 3 is a flowchart showing the flow of the output control method according to this embodiment. DESCRIPTION OF SYMBOLS 1...Main engine, 2...Economizer-14...Turbo generator, 5...Steam pressure detector, 6...
Shaft generator, 12... Detector of the required power in the ship.

Claims (1)

【特許請求の範囲】[Claims] 船舶における主機の排気ガス中の熱エネルギーを利用し
て蒸気を発生させ、この蒸気でターボジェネレータを介
して発電させ、この発電で得た電力を船内所要電力とし
て供給した後の余剰電力を電動機運転時の軸発電動機へ
供給する際の該軸発電動機の出力制御方法であって、タ
ーボジェネレータへ供給される蒸気圧力を検出して、そ
の検出値における該ターボジェネレータの最大発生可能
電力を予め求められ記憶されているデータにもとづいて
算出するとともに、そのときの船内所要電力を検出し、
上記最大発生可能電力から上記船内所要電力を減算した
値を余剰電力とみなし、この値にもとづいて、軸発電動
機の出力を設定し、変動する余剰電力に対応させて上記
軸発電動機の出力制御を自動的に行うことを特徴とする
軸発電動機の電動機運転時の出力制御方法。
Thermal energy in the exhaust gas from the ship's main engine is used to generate steam, which is then used to generate electricity through a turbo generator.The electricity obtained from this generation is used to supply the necessary power onboard the ship, and then the surplus electricity is used to drive the electric motors. A method for controlling the output of a shaft generator when supplying power to the shaft generator at a time, the steam pressure being supplied to a turbo generator is detected, and the maximum power that can be generated by the turbo generator based on the detected value is determined in advance. It calculates based on the stored data, and also detects the required power on board at that time.
The value obtained by subtracting the above-mentioned onboard required power from the above-mentioned maximum generation power is regarded as surplus power, and based on this value, the output of the shaft generator is set, and the output of the above-mentioned shaft generator is controlled in response to the fluctuating surplus power. A method for controlling the output of a shaft generator during motor operation, characterized by automatically performing the following.
JP61213028A 1986-09-09 1986-09-09 Output control method of shaft generator Expired - Lifetime JPH07106720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61213028A JPH07106720B2 (en) 1986-09-09 1986-09-09 Output control method of shaft generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61213028A JPH07106720B2 (en) 1986-09-09 1986-09-09 Output control method of shaft generator

Publications (2)

Publication Number Publication Date
JPS6368493A true JPS6368493A (en) 1988-03-28
JPH07106720B2 JPH07106720B2 (en) 1995-11-15

Family

ID=16632311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61213028A Expired - Lifetime JPH07106720B2 (en) 1986-09-09 1986-09-09 Output control method of shaft generator

Country Status (1)

Country Link
JP (1) JPH07106720B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056011A1 (en) * 1998-04-28 1999-11-04 Hitachi, Ltd. Hybrid car, and method and apparatus for driving hybrid car
WO2010074043A1 (en) * 2008-12-25 2010-07-01 三菱重工業株式会社 Controller for ship equipped with thermal discharge recovery system and the ship equipped with the controller
JP2010222001A (en) * 2006-05-02 2010-10-07 Siemens Ag Method for operating ship propulsion system, and ship propulsion system
WO2012020568A1 (en) * 2010-08-10 2012-02-16 川崎重工業株式会社 Engine system and ship
JP2012066676A (en) * 2010-09-22 2012-04-05 Mitsubishi Heavy Ind Ltd Marine propulsion system, and marine vessel equipped with the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749005A (en) * 1980-09-08 1982-03-20 Mitsubishi Heavy Ind Ltd Marine electric power generation set
JPS57143112A (en) * 1981-02-27 1982-09-04 Mitsubishi Heavy Ind Ltd Power plant for ship
JPS6153531A (en) * 1984-08-24 1986-03-17 Mishima Seishi Kk Material for temperature and time display label

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749005A (en) * 1980-09-08 1982-03-20 Mitsubishi Heavy Ind Ltd Marine electric power generation set
JPS57143112A (en) * 1981-02-27 1982-09-04 Mitsubishi Heavy Ind Ltd Power plant for ship
JPS6153531A (en) * 1984-08-24 1986-03-17 Mishima Seishi Kk Material for temperature and time display label

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056011A1 (en) * 1998-04-28 1999-11-04 Hitachi, Ltd. Hybrid car, and method and apparatus for driving hybrid car
JP2010222001A (en) * 2006-05-02 2010-10-07 Siemens Ag Method for operating ship propulsion system, and ship propulsion system
WO2010074043A1 (en) * 2008-12-25 2010-07-01 三菱重工業株式会社 Controller for ship equipped with thermal discharge recovery system and the ship equipped with the controller
US8155813B2 (en) 2008-12-25 2012-04-10 Mitsubishi Heavy Industries, Ltd. Control device for vessel equipped with exhaust heat recovery system and the vessel equipped with the control device
JP5093703B2 (en) * 2008-12-25 2012-12-12 三菱重工業株式会社 Ship control device equipped with exhaust heat recovery system and ship equipped with the control device
JP2013014326A (en) * 2008-12-25 2013-01-24 Mitsubishi Heavy Ind Ltd Propulsion method of ship with waste heat recovery system mounted thereon, and ship
WO2012020568A1 (en) * 2010-08-10 2012-02-16 川崎重工業株式会社 Engine system and ship
JP2012066676A (en) * 2010-09-22 2012-04-05 Mitsubishi Heavy Ind Ltd Marine propulsion system, and marine vessel equipped with the same

Also Published As

Publication number Publication date
JPH07106720B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
KR101303985B1 (en) Control method and control device for exhaust heat recovery system for marine vessel
EP2371703A1 (en) Controller for ship equipped with thermal discharge recovery system and the ship equipped with the controller
JP3962137B2 (en) Method and apparatus for controlling the number of proportional control boilers
JPH0775214A (en) Method and device for regulating output dynamically in travelling vehicle provided with fuel cell
KR20090049087A (en) Method for the operation of a vessel, and vessel having a propulsion system with waste heat recovery
KR20160036076A (en) Ship propulsion device, ship, and ship propulsion method
US20170283023A1 (en) Electrical power distribution system, method for powering a corresponding task, propulsion system and method for a ship
JP2011027053A5 (en)
JP2011027053A (en) Method and device for controlling turbine generator
JPS6368493A (en) Method of controlling output of shaft generator/motor
CN110970926A (en) Auxiliary frequency modulation device based on energy-saving technology for thermal power plant and control method thereof
JP2013029111A (en) Power generation method, turbine power generator, method of controlling turbine power generator, control device, and ship including the turbine power generator
JPS60212622A (en) Supercharger
JPS6153531B2 (en)
JP3680329B2 (en) Method for controlling power generator
CN211266494U (en) Auxiliary frequency modulation device based on energy-saving technology of thermal power plant
JPH0331884B2 (en)
JPS63198706A (en) Control method for parallel operation of exhaust gas turbo-generator and diesel generator
JP2956066B2 (en) Generator control method
JPH0372807B2 (en)
JPS6145298Y2 (en)
JP4530514B2 (en) Generator control device
JP2000059915A (en) Control system for electric torque converter powered by internal combustion engine
JP3699735B2 (en) Control device for gas turbine equipment
JP2960607B2 (en) Cogeneration system