JPS6367705A - Manufacture of magnetic iron powder - Google Patents

Manufacture of magnetic iron powder

Info

Publication number
JPS6367705A
JPS6367705A JP61212119A JP21211986A JPS6367705A JP S6367705 A JPS6367705 A JP S6367705A JP 61212119 A JP61212119 A JP 61212119A JP 21211986 A JP21211986 A JP 21211986A JP S6367705 A JPS6367705 A JP S6367705A
Authority
JP
Japan
Prior art keywords
iron powder
aluminum
magnetic iron
magnetic
atomic ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61212119A
Other languages
Japanese (ja)
Inventor
Tetsue Munechika
宗近 哲衛
Yoshitane Watabe
渡部 淑胤
Akira Murakami
彰 村上
Isao Oota
勇夫 太田
Makoto Tsunoda
誠 角田
Shigeru Takagi
茂 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP61212119A priority Critical patent/JPS6367705A/en
Publication of JPS6367705A publication Critical patent/JPS6367705A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide excellent magnetic properties in magnetic iron powder thereby to improve dispersibility to paint by coating the surface of acicular or spinning goethite or hematite of its dehydrate with aluminum phosphate, and then reducing it. CONSTITUTION:The surface of acicular or spinning iron oxide is coated with aluminum phosphate of the same crystal state as silicon oxide, and then reduced. The quantity of the aluminum to be coated may satisfy a range of 0.5-10 % of atomic ratio of Al/Fe in the total amount of the aluminum of the aluminum phosphate to be coated. The source of nickel hydroxide includes nickel chloride and nickel nitrate. The quantity of the nickel hydroxide is preferably in a range of 0.3-10 % of atomic ratio of Ni/Fe. The nickel becomes a reducing assistant at the time of reducing the iron oxide in hydrogen stream in this range, and the saturated magnetization of the magnetic iron powder is increased. The surface-treated iron oxide is reduced by easily reducing it at 300-500 deg.C in hydrogen stream, thereby manufacturing acicular or spinning magnetic iron powder.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は高密度磁気記録媒体用磁性鉄粉の製造方法に関
するものであり、詳しくは針状又は紡錘状のゲータイト
或いはその脱水物であるヘマタイト(以下、酸化鉄と略
称する。)の表面への燐酸アルミニウムの被着処理、更
に燐酸アルミニウムの被着処理と組合わせて酸化珪素水
和物、酸化アルミニウム水和物及び水酸化ニッケルから
選ばれる1種以上の化合物を被着処理後、水素気流中で
還元することを特徴とする磁性鉄粉の製造方法に関する
ものである。
Detailed Description of the Invention (a) Field of Industrial Application The present invention relates to a method for producing magnetic iron powder for high-density magnetic recording media, and specifically, acicular or spindle-shaped goethite or its dehydrate. Aluminum phosphate deposition treatment on the surface of hematite (hereinafter abbreviated as iron oxide), and in combination with aluminum phosphate deposition treatment, selected from silicon oxide hydrate, aluminum oxide hydrate, and nickel hydroxide. The present invention relates to a method for producing magnetic iron powder, which comprises reducing one or more compounds in a hydrogen stream after deposition treatment.

(ロ)従来の技術 従来、磁気記録媒体用磁性鉄粉は、針状又は紡錘状の酸
化鉄の形状を保持した磁性鉄粉を得るために、酸化鉄表
面に酸化珪素水和物及び/又は酸化アルミニウム永和物
の被着処理、更に酸化珪素水和物及び/又は酸化アルミ
ニウム永和物の被着処理と組合わせて水酸化亜鉛、水酸
化ニッケル及び水酸化コバルト等を被着処理後、水素気
流中で還元することにより製造されている。
(B) Conventional technology Conventionally, magnetic iron powder for magnetic recording media has been prepared by adding silicon oxide hydrate and/or After the deposition treatment of aluminum oxide permanent, and further the deposition treatment of zinc hydroxide, nickel hydroxide, cobalt hydroxide, etc. in combination with the deposition treatment of silicon oxide hydrate and/or aluminum oxide permanent, hydrogen gas flow is applied. It is produced by reduction in

(ハ)発明が解決しようとする問題点 酸化鉄表面への酸化珪素水和物及び/又は酸化アルミニ
ウム永和物の被着処理、更に酸化珪素水和物及び/又は
酸化アルミニウム永和物の被若処理と組合わせて水酸化
亜鉛、水酸化ニッケル及び水酸化コバルト等の被着処理
を行っても、酸化鉄粒子の形状を保持し、凝集が少なく
且つ塗料分散性の良い磁性鉄粉を得ることは困難であっ
た。
(c) Problems to be solved by the invention Treatment for depositing silicon oxide hydrate and/or aluminum oxide permanent on the surface of iron oxide, and further treatment for depositing silicon oxide hydrate and/or aluminum oxide permanent. Even if adhesion treatment with zinc hydroxide, nickel hydroxide, cobalt hydroxide, etc. is performed in combination with It was difficult.

この原因としては、次の理由が挙げられる。This may be due to the following reasons.

第1に、酸化鉄表面に酸化珪素水和物を被着処理すると
、酸化珪素水和物の活性なシラノール基(Si−OH)
によって酸化鉄粒子が凝集し易く、従って磁性鉄粉も凝
集しており塗料分散性が悪い。
First, when silicon oxide hydrate is deposited on the surface of iron oxide, active silanol groups (Si-OH) of silicon oxide hydrate are formed.
The iron oxide particles tend to aggregate, and therefore the magnetic iron powder also aggregates, resulting in poor paint dispersibility.

又、酸化鉄の凝集防止のため表面処理量を少なくしたり
、シラノール基生成の少ない珪素化合物を使用すると磁
性鉄粉の形状保持性は不充分で磁気特性が悪化する。
Furthermore, if the amount of surface treatment is reduced to prevent agglomeration of iron oxide, or if a silicon compound with less silanol group formation is used, the shape retention of the magnetic iron powder will be insufficient and the magnetic properties will deteriorate.

第2に、酸化鉄表面に酸化アルミラム水和物を被着処理
すると、酸化アルミラム水和物はシラノール基はど活性
な水酸基を有していないので酸化鉄の凝集は少ないが、
酸化珪素水和物に比し酸化アルミニウム水和物の粒子径
が大きく表面被覆性が弱いため、形状保持性が不充分で
良好な磁気特性を持つ磁性鉄粉は得られない。
Second, when aluminum oxide hydrate is deposited on the surface of iron oxide, aluminum oxide hydrate does not have silanol groups or active hydroxyl groups, so iron oxide aggregation is small;
Compared to silicon oxide hydrate, aluminum oxide hydrate has a larger particle size and weaker surface coverage, so shape retention is insufficient and magnetic iron powder with good magnetic properties cannot be obtained.

又、酸化鉄の還元時における生成磁性鉄粉の焼結防止及
び磁気特性制御のために、酸化珪素水和物及び/又は酸
化アルミニウム水和物の被着処理と組合わせて水酸化ニ
ッケル、水酸化亜鉛、水酸化コバルト及び水酸化クロム
等の被着処理を行うと、酸化珪素水和物及び/又は酸化
アルミニウム永和物の被着処理の場合と同様に、処理量
を増加すると磁性鉄粉の飽和磁化が低下すると共に磁性
鉄粉の凝集が起こり塗料分散性が悪化する。
In addition, in order to prevent sintering and control the magnetic properties of the magnetic iron powder produced during the reduction of iron oxide, nickel hydroxide, water, etc. When depositing zinc oxide, cobalt hydroxide, chromium hydroxide, etc., as in the case of depositing silicon oxide hydrate and/or permanent aluminum oxide, increasing the amount of treatment increases the amount of magnetic iron powder. As saturation magnetization decreases, agglomeration of magnetic iron powder occurs, resulting in poor paint dispersibility.

(ニ)問題点を解決するための手段 本発明者らは、上記問題点を解決すべく種々の表面処理
方法について鋭意検討した結果、針状又は紡錘状の酸化
鉄表面を酸化珪素と同一結晶形態である燐酸アルミニウ
ムで被着処理後還元すると、凝集が少なく且つ塗料分散
性の良好な磁性鉄粉が得られることを見出し本発明を完
成したものである。
(d) Means for Solving the Problems As a result of intensive study on various surface treatment methods to solve the above problems, the inventors found that the needle-shaped or spindle-shaped iron oxide surface was made of the same crystal as silicon oxide. The inventors completed the present invention by discovering that magnetic iron powder with less agglomeration and good paint dispersibility can be obtained by reduction after deposition treatment with aluminum phosphate, which is a form of aluminum phosphate.

即ち、本発明は針状又は紡錘状の酸化鉄表面への燐酸ア
ルミニウムの被着処理、更に燐酸アルミニウムの被着処
理と組合わせて酸化珪素水和物、酸化アルミニウム水和
物及び水酸化ニッケルから選ばれる1種以上の化合物を
被着処理後、水素気流中で還元することを特徴とする磁
性鉄粉の製造方法に関するものである。
That is, the present invention involves applying aluminum phosphate to a needle-like or spindle-like surface of iron oxide, and furthermore, combining the process with applying aluminum phosphate to form a coating from silicon oxide hydrate, aluminum oxide hydrate, and nickel hydroxide. The present invention relates to a method for producing magnetic iron powder, which comprises reducing one or more selected compounds in a hydrogen stream after a deposition treatment.

本発明は酸化鉄表面を燐酸アルミニウムで被着処理する
際に、必要に応じ酸化アルミニウム水和物を被着しても
差し支えない。
In the present invention, when the iron oxide surface is coated with aluminum phosphate, aluminum oxide hydrate may be coated if necessary.

酸化鉄表面への燐酸アルミニウムの被着処理方法として
は、■酸化鉄の分散液に燐酸アルミニウムコロイド溶液
を添加する方法、■酸化鉄の分散液に塩基性塩化アルミ
ニウム水溶液と重燐酸アルミニウム水溶液を添加する方
法、■酸化鉄の分散液にアルミン酸ナトリウム水溶液と
、1;!f酸水溶液とを添加する方法、■酸化鉄の分散
液にアルミニウム塩水溶液と燐酸塩水溶液を添加する方
法等を挙げることができる。
Methods for adhering aluminum phosphate to iron oxide surfaces include: ■ adding an aluminum phosphate colloidal solution to an iron oxide dispersion; ■ adding a basic aluminum chloride aqueous solution and an aluminum biphosphate aqueous solution to an iron oxide dispersion. How to do this, ■ add sodium aluminate aqueous solution to iron oxide dispersion, 1;! (2) A method in which an aqueous solution of an aluminum salt and an aqueous phosphate solution are added to an iron oxide dispersion.

この場合、アルミニウムと燐の被着量を変化させること
により酸化鉄表面に燐酸アルミニウム単独、更に必要に
応じ燐酸アルミニウム及び酸化アルミニウム水和物を被
着することもできる。
In this case, by changing the amounts of aluminum and phosphorus deposited, it is possible to deposit aluminum phosphate alone or, if necessary, aluminum phosphate and aluminum oxide hydrate on the iron oxide surface.

アルミニウム及び燐の被着量は、Al/Fe原子比が0
.5〜10%、P/Fe原子比が0.5〜10%の範囲
が好ましい。
The amount of deposited aluminum and phosphorus is such that the Al/Fe atomic ratio is 0.
.. The P/Fe atomic ratio is preferably in the range of 5 to 10%, and the P/Fe atomic ratio is in the range of 0.5 to 10%.

へl/Fe原子比及びP/Fe原子比が0.5%未満で
は磁性鉄粉の形状保持性が不充分で、AA/Fe原子比
及びP/Fe原子比が10%を越えると磁性鉄粉の飽和
磁化が低下する。
When the Hel/Fe atomic ratio and P/Fe atomic ratio are less than 0.5%, the shape retention of the magnetic iron powder is insufficient, and when the AA/Fe atomic ratio and P/Fe atomic ratio exceed 10%, the magnetic iron powder The saturation magnetization of the powder decreases.

上記酸化鉄表面への燐酸アルミニウムの被着処理と組合
わせて、必要に応じ酸化珪素水和物、酸化アルミニウム
水和物及び水酸化ニッケルから選ばれる1種以上の化合
物で酸化鉄表面の被着処理を行っても良い。
In combination with the above-mentioned coating treatment of aluminum phosphate on the iron oxide surface, coating the iron oxide surface with one or more compounds selected from silicon oxide hydrate, aluminum oxide hydrate, and nickel hydroxide as necessary. Processing may be performed.

酸化珪素水和物の被着源としては、水ガラス、ケイ酸ソ
ーダ及びコロイダルシリカ等が挙げられる。
Examples of the deposition source of silicon oxide hydrate include water glass, sodium silicate, and colloidal silica.

珪素の被着量は、Si/Fe原子比が0.5〜6%の範
囲が好ましい。
The amount of silicon deposited is preferably in the range of a Si/Fe atomic ratio of 0.5 to 6%.

Si/Fe原子比が0.5%未満では添加効果がなく、
6%を越えると形状保持性は向上するが磁性鉄粉の凝集
が甚だしく、塗料分散性が悪化する。
When the Si/Fe atomic ratio is less than 0.5%, there is no addition effect;
When it exceeds 6%, shape retention improves, but agglomeration of magnetic iron powder becomes severe and paint dispersibility deteriorates.

又、水酸化アルミニウム水和物の被着源としては、塩化
アルミニウム、塩基性塩化アルミニウム、アルミン酸ナ
トリウム等が挙げられる。
Further, examples of the deposition source of aluminum hydroxide hydrate include aluminum chloride, basic aluminum chloride, sodium aluminate, and the like.

アルミニウムの被着量は、燐酸アルミニウムの被着にお
けるアルミニウムとの合計量が上記i/Fe原子比0.
5〜10%の範囲を満足すれば良い。
The amount of aluminum deposited is such that the total amount of aluminum and aluminum in the deposition of aluminum phosphate is the above i/Fe atomic ratio of 0.
It is sufficient to satisfy the range of 5 to 10%.

水酸化ニッケルの被着源としては、塩化ニッケル及び硝
酸ニッケル等が挙げられる。
Examples of the deposition source of nickel hydroxide include nickel chloride and nickel nitrate.

ニッケルの被着量は、Ni/Fe原子比が0.3〜10
%の範囲が好ましい。この範囲では、表面処理酸化鉄の
水素気流中における還元時にニッケルが還元助剤となり
、磁性鉄粉の飽和磁化が高くなる。
The amount of nickel deposited is such that the Ni/Fe atomic ratio is 0.3 to 10.
A range of % is preferred. In this range, nickel serves as a reduction aid during reduction of the surface-treated iron oxide in a hydrogen stream, and the saturation magnetization of the magnetic iron powder becomes high.

Ni/Fe原子比が0.3%未満では効果がなく、10
%を越えると磁性鉄粉の磁気特性が悪化する。
There is no effect when the Ni/Fe atomic ratio is less than 0.3%, and 10
%, the magnetic properties of the magnetic iron powder deteriorate.

本発明に使用される針状又は紡錘状酸化鉄には特に限定
はないが、例えば炭酸アンモニウム等の炭酸アルカリ及
び水酸化ナトリウム等の水酸化アルカリ水溶液に第一鉄
塩水溶液を添加し、酸素含有ガスを吹き込み製造したゲ
ーサイト、更には脱水を行ったヘマタイト等が使用され
る。
The needle-shaped or spindle-shaped iron oxide used in the present invention is not particularly limited, but for example, a ferrous salt aqueous solution is added to an aqueous solution of an alkali carbonate such as ammonium carbonate and an alkali hydroxide such as sodium hydroxide, and an oxygen-containing Goethite produced by blowing gas, and hematite produced by dehydration are used.

又、表面処理を行った針状又は紡錘状酸化鉄の還元は、
水素気流中300〜500℃で容易に還元を行うことが
でき、針状又は紡錘状磁性鉄粉を製造することができる
In addition, the reduction of surface-treated acicular or spindle-shaped iron oxides is as follows:
Reduction can be easily carried out at 300 to 500°C in a hydrogen stream, and acicular or spindle-shaped magnetic iron powder can be produced.

(ホ)発明の効果 本発明により得られる磁性鉄粉は次の特徴を有している
(e) Effects of the invention The magnetic iron powder obtained by the invention has the following characteristics.

第一に、磁性鉄粉は酸化鉄の形状を保持し、優れた磁気
特性を示す。
First, magnetic iron powder retains the shape of iron oxide and exhibits excellent magnetic properties.

第二に、磁性鉄粉は凝集が少なく、塗料への分散性が非
常に良い。
Second, magnetic iron powder has little agglomeration and has very good dispersibility in paints.

第三に、水酸化ニッケルを被着処理すると、磁性鉄粉は
更に飽和磁化が向上する。
Thirdly, by applying nickel hydroxide, the saturation magnetization of the magnetic iron powder is further improved.

(へ)実施例 次に実施例を挙げて本発明を説明するが、本発明はこれ
らに限定されるものではない。
(f) Examples The present invention will now be described with reference to Examples, but the present invention is not limited thereto.

実施例1 平均長軸径0.30μm、軸比15及び比表面積106
nr/gの針状ゲーサイト100gを21の水にpH1
1で分散する。
Example 1 Average long axis diameter 0.30 μm, axial ratio 15 and specific surface area 106
100 g of acicular goethite of nr/g was added to water of 21 pH 1.
Distributed by 1.

この分散液に、0.2モル/lの燐酸アルミニウムコロ
イド溶液180m1を添加し攪拌しながら徐々にpH9
とした。
To this dispersion, 180 ml of a 0.2 mol/l aluminum phosphate colloid solution was added and the pH was gradually adjusted to 9 with stirring.
And so.

このゲーサイトを水洗口過後、乾燥し表面処理ゲーサイ
トを得た。
This goethite was rinsed with water and then dried to obtain a surface-treated goethite.

アルミニウム及び燐の被着量は、Al/Pe原子比2.
3%及びP/Fe原子比2.1%であった。
The amount of deposited aluminum and phosphorus is determined by the Al/Pe atomic ratio of 2.
3% and the P/Fe atomic ratio was 2.1%.

この処理ゲーサイトを水素気流中400℃で還元し磁性
鉄粉を得た。
This treated goethite was reduced at 400° C. in a hydrogen stream to obtain magnetic iron powder.

得られた磁性鉄粉の磁気特性は 保持力(He) 15100e 、飽和磁化(σs)1
22emu/g 、角形比(SQ) 0.513 、比
表面積(SSA)56nf/gであった。
The magnetic properties of the obtained magnetic iron powder are coercive force (He) 15100e and saturation magnetization (σs) 1
22 emu/g, squareness ratio (SQ) 0.513, and specific surface area (SSA) 56 nf/g.

この磁性鉄粉を以下の処方で塗料化した。This magnetic iron powder was made into a paint using the following formulation.

磁性鉄粉             60部塩化ビニル
、酢酸ビニル共重合体   9部〔積水化学側製:エス
レフクC〕 ポリウレタン〔成田薬品n5 : E5511 6部界
面活性剤〔レシチン〕        2部トルエン 
            40部メチルエチルケトン 
       40部メチルイソブチルケトン    
  40部上記混合物をサンドミルで6時間分散して得
られた塗料を、ポリエステルフィルム上に乾燥塗膜厚3
.0μmになるように塗布し磁場配向後、乾燥し磁気テ
ープを得た。得られたテープの磁気特性を表1に示す。
Magnetic iron powder 60 parts Vinyl chloride, vinyl acetate copolymer 9 parts [Sekisui Chemical: S-Refuku C] Polyurethane [Narita Yakuhin N5: E5511 6 parts Surfactant [lecithin] 2 parts Toluene
40 parts methyl ethyl ketone
40 parts methyl isobutyl ketone
Disperse 40 parts of the above mixture in a sand mill for 6 hours and apply the resulting paint to a polyester film with a dry coating thickness of 3.
.. It was applied to a thickness of 0 μm, oriented in a magnetic field, and dried to obtain a magnetic tape. Table 1 shows the magnetic properties of the obtained tape.

実施例2 実施例1のゲーサイト100gを21の水にpH3で分
散する。
Example 2 100 g of goethite from Example 1 is dispersed in 21 water at pH 3.

この分散液に、0.2モル/1の塩化アルミニウム水溶
液150mj!及び、0.2モル/1の燐酸ナトリウム
水溶液150m1を添加し攪拌しながら徐々にpH1o
とし、更に0.2モル/lの水ガラス水溶液180mj
2を添加し攪拌した後徐々にpH9とした。
Add 150 mj of a 0.2 mol/1 aluminum chloride aqueous solution to this dispersion! Then, 150 ml of 0.2 mol/1 sodium phosphate aqueous solution was added and the pH was gradually adjusted to 1o while stirring.
and further 180 mj of 0.2 mol/l water glass aqueous solution
2 was added and stirred, and the pH was gradually adjusted to 9.

このゲーサイトを水洗口過後、乾燥し処理ゲーサイトを
得た。
This goethite was rinsed with water and then dried to obtain treated goethite.

アルミニウム、燐及び珪素の被着量はA1/Fe原子比
1.9%、P/Fe原子比1.2%及びSi/Fe原子
比2.5%であった。
The deposited amounts of aluminum, phosphorus, and silicon were A1/Fe atomic ratio 1.9%, P/Fe atomic ratio 1.2%, and Si/Fe atomic ratio 2.5%.

この処理ゲーサイトを水素気流中400℃で還元し磁性
鉄粉を得た。
This treated goethite was reduced at 400° C. in a hydrogen stream to obtain magnetic iron powder.

得られた磁性鉄粉の磁気特性は、 Hc 15400e 、 (FS 126 emu/g
 、 SQ O,520、SSA9m1g であった。
The magnetic properties of the obtained magnetic iron powder are as follows: Hc 15400e, (FS 126 emu/g
, SQO, 520, SSA 9ml/g.

この磁性鉄粉を実施例1と同じ処方で塗料化し磁気テー
プを得た。得られたテープの磁気特性を表1に示す。
This magnetic iron powder was made into a paint using the same recipe as in Example 1 to obtain a magnetic tape. Table 1 shows the magnetic properties of the obtained tape.

実施例3 実施例1の針状ゲーサイト100gを21の水にpH3
で分散する。
Example 3 100 g of acicular goethite from Example 1 was added to 21 water at pH 3.
Disperse with.

この分散液に、0.2モル/lの塩基性塩化アルミニウ
ム水溶液65m1.0.2モル/lの重燐酸アルミニウ
ム水溶液65mj2及び0.2モル/lの塩化ニッケル
水溶液250a+j!を添加し攪拌しながら徐々にpH
9とした。
To this dispersion were added 65ml of a 0.2 mol/l basic aluminum chloride aqueous solution, 65ml of a 0.2 mol/l aluminum biphosphate aqueous solution and 250ml of a 0.2 mol/l nickel chloride aqueous solution! and gradually adjust the pH while stirring.
It was set as 9.

このゲーサイトを水洗口過後、乾燥し表面処理ゲーサイ
トを得た。
This goethite was rinsed with water and then dried to obtain a surface-treated goethite.

アルミニウム、燐及びニッケルの被着量は、Al/Fe
原子比2.5%、P/Fe原子比1.6%及び:H/F
e原子比4.0%であった。
The amount of aluminum, phosphorus and nickel deposited is Al/Fe
Atomic ratio 2.5%, P/Fe atomic ratio 1.6% and :H/F
The e atomic ratio was 4.0%.

この処理ゲーサイトを水素気流中400℃でM元し磁性
鉄粉を得た。
This treated goethite was subjected to M at 400° C. in a hydrogen stream to obtain magnetic iron powder.

得られた磁性鉄粉の磁気特性は 11c 15050e 、 tys 128 emu/
g 、 SQ O,512、SSA34m/gであった
The magnetic properties of the obtained magnetic iron powder are 11c 15050e, tys 128 emu/
g, SQ O, 512, and SSA 34 m/g.

この磁性鉄粉を実施例1と同じ処方で塗料化し磁気テー
プを得た。得られたテープの磁気特性を表1に示す。
This magnetic iron powder was made into a paint using the same recipe as in Example 1 to obtain a magnetic tape. Table 1 shows the magnetic properties of the obtained tape.

実施例4 実施例1の針状ゲーサイh100gを2!の水にpH3
で分散する。
Example 4 100g of the needle-shaped gesai h of Example 1 was added to 2! pH 3 in water
Disperse with.

この分散液に、0.2モル/I!の塩化アルミニウム水
溶液165m+2.0.2モル/1の燐酸ナトリウム水
溶液165mff及び0.2モル/lの塩化ニッケル水
溶液170m1!を添加し攪拌しながら徐々にpH10
とし、更に0.2モル/lの水ガラス水溶液180n+
j!を添加し攪拌した後徐々にpH9とした。
This dispersion contains 0.2 mol/I! 165 m of aqueous aluminum chloride solution + 165 mff of 2.0.2 mol/l aqueous sodium phosphate solution and 170 m1 of 0.2 mol/l nickel chloride aqueous solution! and gradually raise the pH to 10 while stirring.
and further 0.2 mol/l water glass aqueous solution 180n+
j! After stirring, the pH was gradually adjusted to 9.

このゲーサイトを水洗口過後、乾燥し表面処理ゲーサイ
トを得た。
This goethite was rinsed with water and then dried to obtain a surface-treated goethite.

アルミニウム、燐、珪素及びニッケルの被着量は、Aj
2/Fe原子比2.0%、P/Fe原子比1.2%、S
i/Fe原子比2.2%及びN+/Fe原子比2.7%
であった。
The amount of aluminum, phosphorus, silicon and nickel deposited is Aj
2/Fe atomic ratio 2.0%, P/Fe atomic ratio 1.2%, S
i/Fe atomic ratio 2.2% and N+/Fe atomic ratio 2.7%
Met.

この処理ゲーサイトを水素気流中420℃で還元し磁性
鉄粉を得た。
This treated goethite was reduced at 420° C. in a hydrogen stream to obtain magnetic iron powder.

得られた磁性鉄粉の磁気特性は 11c 15100e 、 as 134 emu/g
 、 SQ O,518,5SA59 rd /gであ
った。
The magnetic properties of the obtained magnetic iron powder are 11c 15100e, as 134 emu/g
, SQO,518,5SA59rd/g.

この磁性鉄粉を実施例1と同じ処方で塗料化し磁気テー
プを得た。得られたテープの磁気特性を表1に示す。
This magnetic iron powder was made into a paint using the same recipe as in Example 1 to obtain a magnetic tape. Table 1 shows the magnetic properties of the obtained tape.

実施例5 平均長軸径0.15μm、軸比6、比表面積97m/g
の紡錘状ゲーサイト100gを2βの水にpH3で分散
する。
Example 5 Average major axis diameter 0.15 μm, axial ratio 6, specific surface area 97 m/g
100 g of spindle-shaped goethite is dispersed in 2β water at pH 3.

この分散液に、0.2モル/pの塩基性塩化アルミニウ
ム水溶液115+nA’、0.2モル/jl!の重リン
酸アルミニウム水溶液115m!!及び0.2モル/l
の塩化ニッケル水溶液140mAを添加し攪拌しながら
徐々にpH9とした。
To this dispersion was added a 0.2 mol/p basic aluminum chloride aqueous solution 115+nA', 0.2 mol/jl! 115m of aluminum biphosphate aqueous solution! ! and 0.2 mol/l
140 mA of an aqueous nickel chloride solution was added thereto, and the pH was gradually adjusted to 9 with stirring.

このゲーサイトを水洗口過後、乾燥し処理ゲーサイトを
得た。
This goethite was rinsed with water and then dried to obtain treated goethite.

アルミニウム、燐及びニッケルの被着量は、i/Fe原
子比4.3%、P/Fe原子比3.7%及びN+/’F
e原子比2.2%であった。
The deposited amounts of aluminum, phosphorus, and nickel were: i/Fe atomic ratio 4.3%, P/Fe atomic ratio 3.7%, and N+/'F.
The e atomic ratio was 2.2%.

この処理ゲーサイトを水素気流中390°Cで還元し磁
性鉄粉を得た。
This treated goethite was reduced at 390°C in a hydrogen stream to obtain magnetic iron powder.

得られた磁性鉄粉の磁気特性は、 tic 14800e 、 as 135 emu/g
 、  SQ O,495、SSA36m/g であった。
The magnetic properties of the obtained magnetic iron powder are as follows: tic 14800e, as 135 emu/g
, SQ O, 495, and SSA 36 m/g.

この磁性鉄粉を実施例1と同じ処方で塗料化し磁気テー
プを得た。得られたテープの磁気特性を表1に示す。
This magnetic iron powder was made into a paint using the same recipe as in Example 1 to obtain a magnetic tape. Table 1 shows the magnetic properties of the obtained tape.

比較例1 実施例1と同じゲーサイ)100gを22の水にpH3
で分散する。
Comparative Example 1 100 g of the same game machine as in Example 1 was added to 22 water at pH 3.
Disperse with.

この分散液に、0.2モル/1の塩化ニッケル水溶液1
30mj!を添加し攪拌しながらpH11とし、更に0
.2モル/lの水ガラス水溶液435m/を添加し攪拌
した後、徐々にpH9とした。
To this dispersion, add 1 part of a 0.2 mol/1 nickel chloride aqueous solution.
30mj! was added and adjusted to pH 11 with stirring, and further adjusted to 0.
.. After adding 435 m/l of a 2 mol/l water glass aqueous solution and stirring, the pH was gradually adjusted to 9.

このゲーサイトを水洗口過後、乾燥し処理ゲーサイトを
得た。
This goethite was rinsed with water and then dried to obtain treated goethite.

珪素及びニッケルの被着量は、Si/Fe原子比5゜4
%及びNi/Fe原子比2.1%であった。
The amount of silicon and nickel deposited is a Si/Fe atomic ratio of 5°4.
% and the Ni/Fe atomic ratio was 2.1%.

この処理ゲーサイトを水素気流中420℃で還元し磁性
鉄粉を得た。
This treated goethite was reduced at 420° C. in a hydrogen stream to obtain magnetic iron powder.

得られた磁性鉄粉の磁気特性は、 Hc 14600e 、as 127 emu/g 、
  SQ O,505,5SA57rJ/g であった。
The magnetic properties of the obtained magnetic iron powder are Hc 14600e, as 127 emu/g,
SQO,505,5SA57rJ/g.

この磁性鉄粉を実施例1と同じ処方で塗料化し磁気テー
プを得た。得られたテープの磁気特性を表1に示す。
This magnetic iron powder was made into a paint using the same recipe as in Example 1 to obtain a magnetic tape. Table 1 shows the magnetic properties of the obtained tape.

比較例2 実施例1と同じゲーサイ)100gを211の水にpH
11で分散する。
Comparative Example 2 100g of the same game machine as in Example 1 was added to water with a pH of 211.
Dispersed by 11.

この分散液に、0.2モル/lのアルミン酸ナトリウム
水溶液400mfを添加し撹拌した後、徐々にpH9と
した。
To this dispersion, 400 mf of a 0.2 mol/l aqueous sodium aluminate solution was added and stirred, and then the pH was gradually adjusted to 9.

このゲーサイトを水洗口過後、乾燥し処理ゲーサイトを
得た。
This goethite was rinsed with water and then dried to obtain treated goethite.

アルミニウムの被着量は、Al/Fe原子比5.7%で
あった。
The amount of aluminum deposited was an Al/Fe atomic ratio of 5.7%.

この処理ゲーサイトを水素気流中400℃で還元し磁性
鉄粉を得た。
This treated goethite was reduced at 400° C. in a hydrogen stream to obtain magnetic iron powder.

得られた磁性鉄粉の磁気特性は、 Hc 12500e 、 as 103 emu/g 
SSQ O,483、SS^51n?/g であり、磁性鉄粉は形状が崩れ磁気特性は不充分なもの
である。
The magnetic properties of the obtained magnetic iron powder are: Hc 12500e, as 103 emu/g
SSQ O,483, SS^51n? /g, the magnetic iron powder loses its shape and has insufficient magnetic properties.

比較例3 実施例1と同じゲーサイl−100gを21の水にpH
11で分散する。
Comparative Example 3 100 g of the same Gesai l as in Example 1 was added to water with a pH of 21.
Dispersed by 11.

この分散液に、0.2モル/lのアルミン酸ナトリウム
水溶液170II11及び0.2モル/lの水ガラス水
溶液300m1を添加し攪拌した後、徐々にpH9とし
た。
To this dispersion, 0.2 mol/l sodium aluminate aqueous solution 170II11 and 0.2 mol/l water glass aqueous solution 300 ml were added and stirred, and then the pH was gradually adjusted to 9.

このゲーサイトを水洗口過後、乾燥し処理ゲーサイトを
得た。
This goethite was rinsed with water and then dried to obtain treated goethite.

アルミニウム及び珪素の被着量は、All/Fe原子比
2.3%及びSi/Fe原子比3,8%であった。
The amounts of aluminum and silicon deposited were an All/Fe atomic ratio of 2.3% and a Si/Fe atomic ratio of 3.8%.

この処理ゲーサイトを水素気流中400℃で還元し磁性
鉄粉を得た。
This treated goethite was reduced at 400° C. in a hydrogen stream to obtain magnetic iron powder.

得られた磁性鉄粉の磁気特性は、 tic 14400e 、 as 121 emu/g
 XSQ O,490,5SA58 tri /g であった。
The magnetic properties of the obtained magnetic iron powder are as follows: tic 14400e, as 121 emu/g
XSQ O, 490, 5SA58 tri/g.

この磁性鉄粉を実施例1と同じ処方で塗料化し磁気テー
プを得た。得られたテープの磁気特性を表1に示す。
This magnetic iron powder was made into a paint using the same recipe as in Example 1 to obtain a magnetic tape. Table 1 shows the magnetic properties of the obtained tape.

比較例4 実施例5の紡錘状ゲーサイト200gを21!の水にp
H3で分散する。
Comparative Example 4 200g of the spindle-shaped goethite of Example 5 was added to 21! p in the water of
Disperse in H3.

この分散液に0.2モル/lの塩化ニッケル水溶FE1
55mlを添加し攪拌しながらpH11とし、更に0.
2モル/Ilのアルミン酸ソーダ440m1を添加し攪
拌した後、徐々にpH9とした。
In this dispersion, 0.2 mol/l of nickel chloride aqueous solution FE1 was added.
Add 55 ml and adjust the pH to 11 while stirring, and further adjust to 0.
After adding 440 ml of 2 mol/Il sodium aluminate and stirring, the pH was gradually adjusted to 9.

このゲーサイトを水洗口過後、乾燥し処理ゲーサイトを
得た。
This goethite was rinsed with water and then dried to obtain treated goethite.

アルミニウム及びニッケルの?& −f ffiは、A
ll/Fe原子比5.5%及びNi/Fe原子比2.5
%であった。
Of aluminum and nickel? & -f ffi is A
ll/Fe atomic ratio 5.5% and Ni/Fe atomic ratio 2.5
%Met.

この処理ゲーサイトを水素気流中390°Cで還元し磁
性鉄粉を得た。
This treated goethite was reduced at 390°C in a hydrogen stream to obtain magnetic iron powder.

得られた磁性鉄粉の磁気特性は、 11c 12300e 、 as 118 emu/g
 、  SQ O,475,5SA55イ/g であり、磁性鉄粉は形状が崩れ磁気特性は不充分なもの
である。
The magnetic properties of the obtained magnetic iron powder are: 11c 12300e, as 118 emu/g
, SQ O, 475,5SA55 i/g, and the magnetic iron powder loses its shape and has insufficient magnetic properties.

以下余白Margin below

Claims (1)

【特許請求の範囲】 1、針状又は紡錘状のゲータイト或いはその脱水物であ
るヘマタイトの表面に燐酸アルミニウムを被着処理後、
還元することを特徴とする磁性鉄粉の製造方法。 2、針状又は紡錘状のゲータイト或いはその脱水物であ
るヘマタイトの表面への燐酸アルミニウムの被着処理と
組合わせて酸化珪素水和物、酸化アルミニウム水和物及
び水酸化ニッケルから選ばれる1種以上の化合物を被着
処理後、還元することを特徴とする磁性鉄粉の製造方法
[Claims] 1. After applying aluminum phosphate to the surface of acicular or spindle-shaped goethite or its dehydrated hematite,
A method for producing magnetic iron powder characterized by reduction. 2. One type selected from silicon oxide hydrate, aluminum oxide hydrate, and nickel hydroxide in combination with a coating treatment of aluminum phosphate on the surface of acicular or spindle-shaped goethite or its dehydrated hematite. A method for producing magnetic iron powder, which comprises reducing the above-mentioned compound after being deposited thereon.
JP61212119A 1986-09-09 1986-09-09 Manufacture of magnetic iron powder Pending JPS6367705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61212119A JPS6367705A (en) 1986-09-09 1986-09-09 Manufacture of magnetic iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61212119A JPS6367705A (en) 1986-09-09 1986-09-09 Manufacture of magnetic iron powder

Publications (1)

Publication Number Publication Date
JPS6367705A true JPS6367705A (en) 1988-03-26

Family

ID=16617193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61212119A Pending JPS6367705A (en) 1986-09-09 1986-09-09 Manufacture of magnetic iron powder

Country Status (1)

Country Link
JP (1) JPS6367705A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443617A (en) * 1993-10-06 1995-08-22 Kawasaki Teitoku Co., Ltd. Powdery raw material composition for a permanent magnet
US5453137A (en) * 1994-03-30 1995-09-26 Kawasaki Teitoku Co., Ltd. Material for a permanent magnet
US5478409A (en) * 1994-01-12 1995-12-26 Kawasaki Teitoku Co., Ltd. Method of producing sintered-or bond-rare earth element-iron-boron magnets

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613411A (en) * 1979-07-16 1981-02-09 Kawasaki Steel Corp Manufacture of magnetic powder of metallic iron

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613411A (en) * 1979-07-16 1981-02-09 Kawasaki Steel Corp Manufacture of magnetic powder of metallic iron

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443617A (en) * 1993-10-06 1995-08-22 Kawasaki Teitoku Co., Ltd. Powdery raw material composition for a permanent magnet
US5562782A (en) * 1993-10-06 1996-10-08 Kawasaki Teitoku Co., Ltd. Method for producing magnetically anisotropic permanent magnet
US5580400A (en) * 1993-10-06 1996-12-03 Kawasaki Teitoku Co., Ltd. Magnetically anisotropic permanent magnet
US5478409A (en) * 1994-01-12 1995-12-26 Kawasaki Teitoku Co., Ltd. Method of producing sintered-or bond-rare earth element-iron-boron magnets
US5453137A (en) * 1994-03-30 1995-09-26 Kawasaki Teitoku Co., Ltd. Material for a permanent magnet
US5569333A (en) * 1994-03-30 1996-10-29 Kawasaki Teitoku Co., Ltd. Process for producing a material for a permanent magnet
US5569336A (en) * 1994-03-30 1996-10-29 Kawasaki Teitoku Co., Ltd. Bonded permanent magnet
US5569335A (en) * 1994-03-30 1996-10-29 Kawasaki Teitoku Co., Ltd. Sintered permanent magnet

Similar Documents

Publication Publication Date Title
US20020028353A1 (en) Particles for non-magnetic undercoat layer of magnetic recording medium, method thereof and magnetic recording medium
JPS6367705A (en) Manufacture of magnetic iron powder
JPS5856232A (en) Magnetic recording medium
JPS631003A (en) Magnetic powder
JPH0420241B2 (en)
JP2588875B2 (en) Spindle-shaped magnetic iron powder
JPS60217529A (en) Magnetic powder for magnetic recording medium
JPH01119519A (en) Magnetic particulate powder and its production
JPS63302420A (en) Production of magnetic iron powder
JPH0755832B2 (en) Method for producing cobalt-containing ferromagnetic iron oxide powder
JPH05283219A (en) Magnetic powder for magnetic recording and magnetic recording medium
JP2970706B2 (en) Method for producing acicular magnetic iron oxide particles
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JPS6163921A (en) Magnetic powder and its production
JPS58126907A (en) Production of powder of iron of magnetic metal consisting essentially of iron
JPS62156209A (en) Ferromagnetic metallic powder
JPS60216510A (en) Treating method of magnetic powder for magnetic record medium
JP3055308B2 (en) Method for producing acicular magnetic iron oxide particles
JP2982859B2 (en) Magnetic iron oxide particle powder
JPS6367704A (en) Manufacture of highly dispersive magnetic iron powder
JPH05283218A (en) Magnetic powder for magnetic recording and magnetic recording medium
JP2970699B2 (en) Method for producing acicular magnetic iron oxide particles
JPH0518766B2 (en)
JP2935292B2 (en) Method for producing acicular magnetic iron oxide particles
JPH01168801A (en) Manufacture of metal magnetic powder