JPS6367534B2 - - Google Patents

Info

Publication number
JPS6367534B2
JPS6367534B2 JP13489681A JP13489681A JPS6367534B2 JP S6367534 B2 JPS6367534 B2 JP S6367534B2 JP 13489681 A JP13489681 A JP 13489681A JP 13489681 A JP13489681 A JP 13489681A JP S6367534 B2 JPS6367534 B2 JP S6367534B2
Authority
JP
Japan
Prior art keywords
matrix
metal
melting point
fibers
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13489681A
Other languages
Japanese (ja)
Other versions
JPS5837141A (en
Inventor
Koji Yamatsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP13489681A priority Critical patent/JPS5837141A/en
Publication of JPS5837141A publication Critical patent/JPS5837141A/en
Publication of JPS6367534B2 publication Critical patent/JPS6367534B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】 本発明は無機質繊維を強化材とし、金属または
合金(以下マトリツクス金属類と略記する)をマ
トリツクスとする繊維強化金属複合材料(図下
FRMと略記する)の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a fiber-reinforced metal composite material (see the figure below) that uses inorganic fibers as a reinforcing material and a metal or alloy (hereinafter abbreviated as matrix metals) as a matrix.
(abbreviated as FRM)).

FRMは比強度、比弾性率、耐熱性などの点で
他材料に見られない大きな特徴を有しており、宇
宙、航空、自動車などの産業分野で用途を広げつ
つある。FRMの製造方法として溶融金属含浸法
のような液相法、拡散接合のような固相法、粉末
治金(焼結、溶結)法、溶射、電析、蒸着などの
沈積法、押出、圧延などの塑性加工法などがある
が、加工上の容易さ、製造コストなどの点から液
相法が実用的である。
FRM has significant characteristics not seen in other materials in terms of specific strength, specific modulus of elasticity, and heat resistance, and its use is expanding in industrial fields such as space, aviation, and automobiles. FRM manufacturing methods include liquid phase methods such as molten metal impregnation, solid phase methods such as diffusion bonding, powder metallurgy (sintering, welding) methods, deposition methods such as thermal spraying, electrodeposition, and vapor deposition, extrusion, and rolling. There are plastic working methods such as , but the liquid phase method is practical from the viewpoint of ease of processing and manufacturing cost.

液相法によるFRM製造には下に示すような問
題点がある。即ち無機質繊維とマトリツクス金属
類との濡れは一般に悪く、繊維間隙にマトリツク
ス金属類が含浸せず、良好なFRMを得られない
場合が多い。また、繊維束が溶湯圧力により一方
に押しやられ偏在し、所望の位置に設置できない
事がしばしば起こる。この問題を解決するために
無機質繊維表面にコーテイングを施し、マトリツ
クス金属類との濡れ性を改善する方策が考えられ
ているが、繊維1本1本毎に均一にコーテイング
する事が困難で予期される効果が出にくい事と工
程の複雑さによつて、実用上問題がある。
FRM production using the liquid phase method has the following problems. That is, wetting between inorganic fibers and matrix metals is generally poor, and matrix metals do not impregnate the fiber gaps, often making it impossible to obtain a good FRM. Furthermore, the fiber bundles are often pushed to one side by the pressure of the molten metal and become unevenly distributed, making it impossible to install them at desired positions. In order to solve this problem, a method has been considered to improve the wettability with matrix metals by applying a coating to the surface of the inorganic fibers, but it is difficult to uniformly coat each fiber, which is expected. However, there are practical problems due to the difficulty in achieving the desired effect and the complexity of the process.

また、溶湯鍛造法やガス加圧含浸法を用いる事
によつて、濡れ性の悪いマトリツクス金属類と無
機質繊維を強制的に複合化する事は可能である
が、この方法の用いられるマトリツクス金属類は
比較的低融点を有しているものでなくてはならな
い。高融点を有するマトリツクス金属類にこの方
法を用いようとすると装置材質、規模等に特別の
配慮が必要であり、経済的でなくなる。
Furthermore, by using the molten metal forging method or the gas pressure impregnation method, it is possible to forcibly composite matrix metals with poor wettability and inorganic fibers; must have a relatively low melting point. If this method is used for matrix metals having a high melting point, special consideration must be given to the equipment material, scale, etc., making it uneconomical.

本発明者らは液相法によるFRM製造方法にで
特に高融点を有するマトリツクス金属類を用いて
も安価かつ容易に良好なFRMを製造する方法を
鋭意検討した結果、本発明に至つた。
The present inventors have intensively studied a method for producing a good FRM inexpensively and easily even when matrix metals having a particularly high melting point are used in the FRM production method using a liquid phase method, and as a result, the present invention has been achieved.

即ち、無機質繊維を強化材とし金属または合金
をマトリツクスとするFRMにおいて、マトリツ
クス金属類の融点より低く、かつ50℃以上の融点
を有し、更に該マトリツクス金属類への溶解度が
該マトリツクス金属類の融点より10℃高い温度で
10本積%以上であるような金属(以下集束金属元
素類と略記する)の一種または二種以上で、予め
無機質繊維を収束した後、この集束繊維束を該マ
トリツクス金属類の溶融体と一体化し、冷却する
事により複合化する事を特徴とするFRMの製造
方法である。
That is, in an FRM in which inorganic fibers are used as reinforcement materials and metals or alloys are used as a matrix, the FRM has a melting point that is lower than the melting point of the matrix metals and 50°C or higher, and has a solubility in the matrix metals that is higher than that of the matrix metals. At a temperature 10℃ higher than the melting point
After converging the inorganic fibers in advance with one or more metals (hereinafter abbreviated as convergent metal elements) having a volume of 10% or more, the convergent fiber bundle is integrated with the melt of the matrix metal. This is a manufacturing method for FRM, which is characterized by compounding by oxidizing and cooling.

以下に本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明に用いられる無機質繊維とは、炭素繊
維、シリカ繊維、シリコンカーバイド繊維、ボロ
ン繊維及びアルミナ質繊維などである。使用目
的、強化目的に従つてこれら無機質繊維の適当な
のを選択する事が好ましい。
Inorganic fibers used in the present invention include carbon fibers, silica fibers, silicon carbide fibers, boron fibers, and alumina fibers. It is preferable to select an appropriate inorganic fiber according to the purpose of use and reinforcement.

また、使用目的に基づいてロービング状、繊布
状、不織布状またはチヨツプドストランド状など
如何なる形態にても本発明に用いる事ができる。
Moreover, it can be used in the present invention in any form such as roving, fabric, nonwoven fabric, or chopped strand depending on the purpose of use.

無機質繊維の体積含有率(Vf1)はFRMに対し
て5%以75%以下が望ましい。5%以下では繊維
による強化効果が発揮しがたい。75%以上では複
合化が困難であるばかりか、繊維間の接触確率が
高まり、逆に強度が低下するほどの悪影響が見ら
れる。
The volume content (V f1 ) of the inorganic fibers is preferably 5% to 75% of the FRM. If it is less than 5%, it is difficult to achieve the reinforcing effect of the fibers. If it exceeds 75%, it is not only difficult to form a composite, but also the probability of contact between fibers increases, which has such an adverse effect that the strength decreases.

マトリツクス金属類として用いられるものはマ
グネシウム、アルミニウム、銅、ニツケル、チタ
ン、鉄、鉛、錫、亜鉛などである。軽量かつ高強
度を望む時はマグネシウム、アルミニウムなど、
耐熱高強度を望む時は銅、ニツケル、チタン、鉄
などが望ましいが、使用目的、用途などによつて
好適なマトリツクス金属類が選択される。
The matrix metals used include magnesium, aluminum, copper, nickel, titanium, iron, lead, tin, and zinc. When you want light weight and high strength, use magnesium, aluminum, etc.
When heat resistance and high strength are desired, copper, nickel, titanium, iron, etc. are preferable, but suitable matrix metals are selected depending on the purpose and application.

集束金属元素類はマトリツクス金属類の融点よ
り低く、かつ50℃以上の融点をもち、更に該マト
リツクス金属類への溶解度が該マトリツクス金属
類の融点より10℃高い温度で10体積%以上でなけ
ればならない。融点が50℃よりも低いと集束金属
元素類で集束された無機質繊維束(集束繊維束)
とマトリツクス金属類を複合化する前に集束金属
元素類が液化してしまい、集束繊維束形状が崩れ
るなどの不都合が生ずる。
The focused metal elements must have a melting point lower than the melting point of the matrix metals and at least 50°C, and have a solubility in the matrix metals of 10% by volume or more at a temperature 10°C higher than the melting point of the matrix metals. No. When the melting point is lower than 50℃, it is an inorganic fiber bundle that is bundled with a metal element (bundled fiber bundle).
The focused metal elements are liquefied before they are combined with the matrix metals, causing problems such as the shape of the focused fiber bundle being distorted.

また集束金属元素類の融点が、マトリツクス金
属類の融点より高い場合は集束繊維束とマトリツ
クス金属類を複合化する際集束金属元素類は固体
状態であるため、マトリツクス中への拡散が遅
く、集束繊維束がマトリツクス中に元の状態のま
まで残るため複合化の本来の目的が発揮されない
場合が多い。また該集束金属元素類のマトリツク
ス金属類への溶解度が、マトリツクス金属類の融
点より10℃高い温度で10体積%より少ない場合
は、集束金属元素類がマトリツクス金属類中に溶
解し切らずに無機質繊維の周囲に集束金属元素類
が残在したまま複合化される事になり、マトリツ
クス金属の効果が発揮されなくなる。
In addition, if the melting point of the focusing metal elements is higher than the melting point of the matrix metals, when the focusing fiber bundle and the matrix metals are combined, the focusing metal elements are in a solid state, so diffusion into the matrix is slow, and the focusing metal elements are in a solid state. Since the fiber bundles remain in their original state in the matrix, the original purpose of compositing is often not achieved. In addition, if the solubility of the focused metal elements in the matrix metals is less than 10% by volume at a temperature 10°C higher than the melting point of the matrix metals, the focused metal elements will not completely dissolve in the matrix metals and become inorganic. The focused metal elements will remain around the fibers and will be composited, and the effect of the matrix metal will no longer be exhibited.

この様な集束金属元素類の好適なものは、マト
リツクス金属類の種類により制限を受けるが、リ
チウム、ナトリウム、カリウム、マグネシウム、
カルシウム、ストロンチウム、バリウム、銅、亜
鉛、カドミウム、アルミニウム、インジウム、ゲ
ルマニウム、錫、鉛、アンチモン、ビスマスなど
があげられる。勿論マトリツクス金属類が決定さ
れれば上記条件に含まれる金属元素これらのうち
から選択される。
Suitable focusing metal elements are limited by the type of matrix metal, but include lithium, sodium, potassium, magnesium,
Examples include calcium, strontium, barium, copper, zinc, cadmium, aluminum, indium, germanium, tin, lead, antimony, and bismuth. Of course, once the matrix metals are determined, metal elements that meet the above conditions are selected from among these metal elements.

集束繊維束における繊維の体積含有率(Vf2
は如何なる範囲をも取り得るが、望ましくは30℃
以上である。Vf2が30%以下の場合、マトリツク
ス金属類と複合化後、マトリツクス金属中の該集
束金属元素類の濃度が高まり、マトリツクス金属
類の特性を著しく損なう。
Volume content of fibers in focused fiber bundle (V f2 )
can be in any range, but preferably 30℃
That's all. When V f2 is 30% or less, the concentration of the focused metal elements in the matrix metal increases after being composited with the matrix metal, significantly impairing the properties of the matrix metal.

集束金属元素類にて無機質繊維を集束する方法
は種々取り得るが、例えば液体金属含浸法や溶湯
鍛造法などは好適な方法の1つである。集束金属
元素類の融点は比較的低い事により、簡易な装置
を用いてこれらの集束繊維束を製造する事が可能
である。
Various methods can be used to bundle the inorganic fibers with a binding metal element, and examples of suitable methods include liquid metal impregnation and molten metal forging. Since the melting point of the focusing metal elements is relatively low, it is possible to produce these focused fiber bundles using simple equipment.

この様にして作られた集束繊維束とマトリツク
ス金属類の複合化には、一般に用いられている
FRM製造技術を適用できるが、本発明の効果を
より一層顕著に表わす方法は、液層相による製造
方法である。これは集束金属元素類がマトリツク
ス金属中に拡散溶解しやすいためである。この方
法の一例として重力鋳造法、低圧鋳造法、高圧鋳
造法、溶湯鋳造法などがあげられる。
Generally used methods are used to composite the focused fiber bundle made in this way with matrix metals.
Although FRM manufacturing technology can be applied, a method that exhibits the effects of the present invention even more clearly is a manufacturing method using a liquid phase. This is because the focused metal elements tend to diffuse and dissolve into the matrix metal. Examples of this method include gravity casting, low pressure casting, high pressure casting, and molten metal casting.

以下本発明を実施例により更に詳しく説明する
が、本発明はこれらにより限定されるものではな
い。
EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited thereto.

実施例 1 Al2O3:SiO2=78:12の重量組成比を有し、平
均径15μmのアルミナ質繊維を約1000本束ね、黒
鉛製のボビンに巻き取り、不活性雰囲気下、700
℃で溶融しているアルミニウム中に浸漬した。こ
の液面を10Kg/cm2の圧力で加圧した後、常圧に戻
し、このボビンからアルミナ質繊維を繰り出し、
アルミニウム融液から取り出す事により、アルミ
ニウムで集束されたアルミナ質繊維束を得た。
Example 1 Approximately 1,000 alumina fibers having a weight composition ratio of Al 2 O 3 :SiO 2 =78:12 and an average diameter of 15 μm were bundled, wound around a graphite bobbin, and heated under an inert atmosphere for 700 min.
immersed in molten aluminum at °C. After pressurizing this liquid level with a pressure of 10 kg/cm 2 , it is returned to normal pressure, and the alumina fiber is paid out from this bobbin.
By taking it out from the aluminum melt, an alumina fiber bundle bundled with aluminum was obtained.

この集束繊維束のVf2を測定したところ42体積
%であつた。
When the V f2 of this focused fiber bundle was measured, it was 42% by volume.

この集束繊維束を鋳型に中の強化を要する場所
に50体積%で充填した。鋳型中の平均体積含有量
Vf1は25体積%であつた。
This focused fiber bundle was filled in the mold at 50% by volume in areas where reinforcement was required. Average volume content in the mold
V f1 was 25% by volume.

次いでこの鋳型の中に1600℃に加熱溶解した鉄
を鋳込み放冷する事により、繊維強化鉄複合材料
を得た。この材料を切断して断面を走査電子顕微
鏡で観察した結果、繊維とマトリツクス間にボイ
ドはなく、この複合材料を分析した結果、アルミ
ニウムはほぼ平均的にマトリツクスの鉄中に存在
しており、本発明の効果が認められた。
Next, iron heated and molten at 1600°C was poured into this mold and allowed to cool, thereby obtaining a fiber-reinforced iron composite material. When this material was cut and the cross section was observed using a scanning electron microscope, it was found that there were no voids between the fibers and the matrix.As a result of analyzing this composite material, it was found that aluminum was present almost on average in the iron of the matrix. The effectiveness of the invention was recognized.

比較例 1 鋳型の中に実施例1で用いたアルミナ質繊維
を、実施例1とほぼ同じ場所に同じ割合で設置し
た。この鋳型中に1600℃に加熱溶解した鉄を鋳込
み、放冷して得た材料を切断して断面を観察した
ところ、繊維間には鉄は全く入つておらず強化効
果の発揮される複合化がなされていなかつた。
Comparative Example 1 The alumina fibers used in Example 1 were placed in a mold at approximately the same locations and in the same proportions as in Example 1. Iron heated and molten at 1600°C was cast into this mold, and when the material was cut and observed in cross section, it was found that there was no iron between the fibers, making it a composite material with a reinforcing effect. had not been done.

Claims (1)

【特許請求の範囲】[Claims] 1 無機質繊維を強化材とし、金属または合金を
マトリツクスとする繊維強化金属複合材料におい
て、マトリツクス金属類の融点より低く、かつ50
℃以上の融点を有し、更に該マトリツクス金属類
への溶解度が該マトリツクス金属類の融点より10
℃高い温度で、10体積%以上であるような金属の
一種または二種以上で予め無機質繊維を集束した
後、この集束繊維束を該マトリツクス金属類の溶
融体と混合し、冷却する事により複合化する事を
特徴とする繊維強化金属複合材料の製造方法。
1 Fiber-reinforced metal composite materials with inorganic fibers as reinforcing material and metal or alloy as matrix, which have a melting point lower than the melting point of the matrix metal and 50%
It has a melting point of 10°C or higher, and its solubility in the matrix metal is 10°C or higher
After pre-bundling inorganic fibers with one or more metals having a concentration of 10% by volume or more at a high temperature of °C, the bundle of inorganic fibers is mixed with a melt of the matrix metal and cooled to form a composite. A method for producing a fiber-reinforced metal composite material characterized by
JP13489681A 1981-08-27 1981-08-27 Production of fiber-reinforced composite metallic material Granted JPS5837141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13489681A JPS5837141A (en) 1981-08-27 1981-08-27 Production of fiber-reinforced composite metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13489681A JPS5837141A (en) 1981-08-27 1981-08-27 Production of fiber-reinforced composite metallic material

Publications (2)

Publication Number Publication Date
JPS5837141A JPS5837141A (en) 1983-03-04
JPS6367534B2 true JPS6367534B2 (en) 1988-12-26

Family

ID=15139050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13489681A Granted JPS5837141A (en) 1981-08-27 1981-08-27 Production of fiber-reinforced composite metallic material

Country Status (1)

Country Link
JP (1) JPS5837141A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3808248A2 (en) 2019-10-15 2021-04-21 Tomey Corporation Ophthalmic apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104213057B (en) * 2014-09-15 2016-04-13 河南科技大学 A kind of copper carbon fiber strengthens Al-Li Alloy Matrix Composites and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3808248A2 (en) 2019-10-15 2021-04-21 Tomey Corporation Ophthalmic apparatus

Also Published As

Publication number Publication date
JPS5837141A (en) 1983-03-04

Similar Documents

Publication Publication Date Title
US5127969A (en) Reinforced solder, brazing and welding compositions and methods for preparation thereof
US3770488A (en) Metal impregnated graphite fibers and method of making same
US4223075A (en) Graphite fiber, metal matrix composite
US4072516A (en) Graphite fiber/metal composites
US4839238A (en) Fiber-reinforced metallic composite material
JPH01246486A (en) Production of silicon carbide fiber-reinforced aluminum-based perform wire
US6082436A (en) Method of centrifugally casting reinforced composite articles
US4831707A (en) Method of preparing metal matrix composite materials using metallo-organic solutions for fiber pre-treatment
JP3530792B2 (en) Metal-based composite material and method for producing the same
KR960001715B1 (en) Fiber-reinforced metal
US5295528A (en) Centrifugal casting of reinforced articles
JPS6367534B2 (en)
US5435374A (en) Fiber reinforced aluminum matrix composite with improved interfacial bonding
JP3182939B2 (en) Manufacturing method of composite material
Miyase et al. Compatibility of chromium carbide coated graphite fibres with metallic matrices
EP0312295A1 (en) Metal matrix composite with coated reinforcing preform
KR102324737B1 (en) Manufacturing method carbon fiber reinforced metal composites and carbon fiber reinforced aluminum composites manufactured thereby
JP2909546B2 (en) Manufacturing method of metal matrix composite material
CN114921673A (en) Nano oxide particle dispersion strengthened copper and preparation method thereof
US5697421A (en) Infrared pressureless infiltration of composites
US4847167A (en) Fiber-reinforced metallic composite material
US4419389A (en) Method for making carbon/metal composite pretreating the carbon with tetraisopropyltitanate
JP3261874B2 (en) Method and apparatus for manufacturing composite material
JPS6140740B2 (en)
JPS5912733B2 (en) Method of forming fiber-metal composites