JPS6367323B2 - - Google Patents

Info

Publication number
JPS6367323B2
JPS6367323B2 JP55091386A JP9138680A JPS6367323B2 JP S6367323 B2 JPS6367323 B2 JP S6367323B2 JP 55091386 A JP55091386 A JP 55091386A JP 9138680 A JP9138680 A JP 9138680A JP S6367323 B2 JPS6367323 B2 JP S6367323B2
Authority
JP
Japan
Prior art keywords
magnetic
alloy
powder
present
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55091386A
Other languages
Japanese (ja)
Other versions
JPS5717109A (en
Inventor
Itaru Okonogi
Tatsuya Shimoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP9138680A priority Critical patent/JPS5717109A/en
Publication of JPS5717109A publication Critical patent/JPS5717109A/en
Publication of JPS6367323B2 publication Critical patent/JPS6367323B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、希土類金属のSm、遷移金属(TM)
のFe、Cu、Co、Znが2種以上で構成されたSm2
(Co Cu Fe Zr)17型永久磁石合金の製造方法に係
るものである。 従来Sm2(Co Cu Fe Zr)17型永久磁石の製造方
法としては、例えば(1)一般式Sm(CobalCu0.12Fe0.2
Zr0.027.0で表わされる金属間化合物を粉砕して、
粒度2μm〜10μmに粒度調整し、この粉末を磁場
中で所望形状に成形した後焼結する方法が行われ
ている。焼結法では、磁石の磁気特性は(BH)
max22〜30MGOeと大変高い磁気性能が得られ
ている。しかしSm2Co17型合金は希土類元素
(Sm)量は、磁石特性に大きい影響力があるとい
われている。すなわち所望の磁気特性を得る条件
としてR(TM)zのZの範囲は非常に狭い範囲
であることが知られている。例えばR=Smの場
合、概算±0.5%重量の変位は、Zが1も変位す
ることになり少くとも±0.3重量%の範囲に入ら
なければならない。しかし希土類元素は活性であ
り、その蒸気圧も高いので磁石化工程で、組成変
動が大きく所望の磁気性能を安定して維持出来な
い。すなわち溶解によるSm元素の蒸発、粉末化
工程における酸化、焼結、溶体化熱処理(以下
SSTと呼称)、時効処理(以下AGEと呼称)、に
よるSm元素の蒸発、及び酸化を生じ易い。又焼
結磁石は、硬く脆いため機械加工、あるいは取り
扱い上欠け、割れを生じ易い欠点があつた。一方
RTM5合金、例えばSmCo5合金を微粉砕して樹
脂結合した永久磁石材料も知られているが、最大
磁気エネルギー積は、5〜10MGOeと低いもの
である。 さらに、Sm2Co17型永久磁石の磁気性能の一番
の決め手である酸化防止に多大な工程技術管理が
要求される。粉末法による焼結磁石は、焼結温度
1150℃〜1200℃で不活性雰囲気中又は還元性ガス
中で焼結を行なうが、この際粉末表面は空気中の
酸素および水蒸気を吸着し易く、これらによりど
うしても酸化を生じ易い欠点があつた。 この発明は、上述した従来方法の欠点を改善し
たもので希土類元素の酸化、蒸発による変動を押
え所定組成を容易に得られる製造方法を提供する
ことを目的とするものである。 さらに他の目的は、従来Sm2Co17型焼結磁石で
は得られなかつた、高鉄系組成で高い保磁力を得
ることにある。 以下本発明を工程に従つて順次詳細に説明す
る。本発明における磁性合金は、いずれも重量比
でSmが22%を越え26%以下、Feが16%を越え30
%以下、Cuが5〜10%、Zrが1.5〜3.5%、残部が
実質的にCoからなるSm2Co17型磁性合金である。 まず上記組成の合金をアルゴンガス中で高周波
溶解してインゴツトに鋳造する。この場合、鋳型
の構造材質は金型とし、冷却速度をコントロール
しながら、柱状晶を現出させることにより、4πIs
(飽和磁化)及びiHc(保磁力)を高められる。更
に該合金インゴツトをアルゴンガスなどの非酸化
性雰囲気中で1100℃〜1220℃に加熱して1時間〜
24時間熱処理を行ない、室温まで冷却する。この
時の冷却速度は、10〜100℃/分に調整すること
により、大きな保磁力が得られる。次に室温まで
冷却した磁性合金を500〜900℃に加熱して、時効
処理を行ない、磁気的硬化をさせる。前記2種類
の熱処理を、磁性合金インゴツトのまま、すなわ
ち塊状で行なうので、合金組成の変動を極めて少
なく出来る利点がある。磁性合金の表面積は、イ
ンゴツト塊状のまま熱処理を行なうので、大変小
さく出来る。その結果、当然磁性合金の表面酸化
を著るしく減少出来る利点を有する、溶体化で均
一相を続いて時効によつて、析出硬化を促進さ
せ、磁気的に硬化するものと考えられる。次に熱
処理したインゴツトを、ジヨークラツシヤー、ト
ツプミルなどを用いて粗粉砕する。この時の粒度
は−30メツシユとかなり粗粒子粉末である。該粗
粒子粉末を、ボールミル、ジエツトミル、などの
機械装置を用いて、微粉砕を行なう。この場合磁
石の保磁力は熱処理により、形成された合金中の
微細構造組織に起因するため、これが破壊されな
い程度に粉砕する。粉末の粒度は、3μm〜85μm
に粉砕することが望ましい。なお粒径が3μ以下
になると、微細組織が破壊されるため、飽和磁化
および保磁力が減小し易いので3μ以上とした。
又85μmを越えると保磁力、及び飽和磁化が減小
する問題がある。さらに粉末の充填率及び磁場中
配向性の低下を来たし易い。従つて好ましくは、
平均粒度10〜15μmで、粒度3μm〜50μmの磁性粉
末粒子が良い。このようにして得られた微粉状粒
子に有機物バインダーあるいは融点が400℃以下
のメタルバインダーを添加して、混合した後、非
磁性材料からなる金型内に充填し、12〜30KGの
磁場をかけて、粒子を磁場配向させながら1〜
7ton/cm2の圧力で加圧成形して所望形状に圧粉成
形し、焼成して永久磁石を製造せんとするもので
ある。ここで有機物バインダーは、熱硬化性、熱
可塑性のいずれでも良く好ましくは、エポキシ樹
脂、EVA樹脂、フエノール系樹脂、ポリエステ
ル系樹脂などがあり、その量は、0.5%(重量比)
〜10%である。有機物バインダーの好ましい量
は、重量比で1%〜5%でこの場合、加圧成形に
おける、磁性粉末の充填率が60%以上となり、密
度ρ=5.0以上を得られる。 又メタルバインダーは、Sn、Pb、In、Bi、
Cd、Tlなどの低融点金属及びその合金でM.P(融
点)が概ね、400℃以下のものを用いる。メタル
バインダーの効果は、永久磁石の機械的な強度、
靭性及び磁気特性の中の温度特性を改良すること
が出来る。 なお本発明において、希土類金属のSmを前記
組成に限定した理由は、22%以下では、Sm2Co17
型結晶からずれて、Fe―Co相があらわれ、保磁
力が低下するためであり、26%をこえると、
RTM5相が多くなり、飽和磁化(4πIs)が6000G
以下に低下し、最大エネルギー積が5.0MGOe以
下になるからである。なお希土類金属は1種に限
らず2種以上複合しても同様の効果を得られる。
Cuは5%未満では、保磁力の増大が認められず、
10%をこえると、4πIsが低下するからである。又
Zrは1.5%未満では、保磁力の改善効果がなく3.5
%をこえると、4πIsが低下する。さらにFeは16
%以下では4πIs8000G以上が得られず、30%をこ
えると、保磁力が低下するからである。 次に本発明の実施例について説明する。 実施例 1 組成式がSm(Co0.9−vCu0.08FevZr0.028.35の組
成になる原料を秤量し、各1Kgを高周波溶解炉を
用いて、Arガス雰囲気中で溶解し、金型に鋳込
んだ。金型の冷却速度は、600℃まで500〜700
℃/分で行つたが、その結果インゴツト全体の90
%以上柱状晶であつた。 次に得られたインゴツト7種類(V(Fe)=
0.22、0.24 0.26 0.28 0.30 0.32 0.34)各100gを以
下の条件で熱処理を行なつた。 溶体化処理:1150℃×10時間(Arガス雰囲気
中)冷却速度:50〜100℃/分で
冷却 時効処理 :800℃×24時間(Arガス雰囲気
中)冷却速度:30〜80℃/分で冷
却 熱処理上りのインゴツト表面は、金属光沢を呈
し、ほとんど酸化は認められなかつた。本発明法
の特徴は、磁性合金を塊状のまま行うので、表面
酸化及びSmの蒸発等の問題が防止出来る利点が
ある。従つてインゴツトの組成がそのまま永久磁
石完成品まで維持出来るので、性能のバラツキが
小さくなる。次にこの合金をボールミルを用い
て、ダイフロン中で湿式粉砕し、平均粒径13μm
で且つ、3μm〜50μmの分布の微粉末を得た。こ
の微粉状粒子を液状で粘度1000CPSのエポキシ樹
脂を2重量%加えて乳鉢中で混和した。なおボー
ルミル上りの粉末は、常温で真空中乾燥を行なつ
てある。エポキシ樹脂と混和した微粉状粒子を、
第1図に示す磁場プレス中で加圧成形した。 1は励磁コイル、2は純鉄製のボールピースで
この間に15KGの磁場を発生させた。5は非磁性
材のステライト、3,4も同材質の上パンチ、下
パンチである。3と4の間に、前記エポキシ樹脂
と混和した粉末8gを装入し、印加磁場15KG中で
7,8から油圧を加え、磁場方向と加圧方向を直
角にして成形した。この時の加圧力は2.5ton/cm2
であつた。次に磁場中成形したままの状態で成形
型を別設の油圧プレスで、一軸方向に5ton/cm2
え成形し、型より抜き出した。この時の試料形状
は第2図に示した角柱状試料である。続いて、
150℃×1時間オーブン中で焼成した成形体の形
状寸法は、a=8m/m、b=14m/m、h=7.9±
0.1m/mで矢印方向が異方性の方向である。 第3図及び第4図は本実施例におけるSm
(Co0.9−vCu0.08、Fev Zr0.028.35合金のv(Fe)の
変化と4πIs、iHcの関係を示す。4πIs(飽和磁化)
は、Feの量がモル比0.24以上(重量比で16%以
上)多くなるに従い増加することがわかつた。一
方永久磁石として必要な保磁力はv=0.34(重量
比でv=24%)でもiHcは8〜15KOeと大変高い
値が得られた。第3図、第4図の中で○・印は比較
例のv=0.22における性能を示す。このように従
来法に比べv=0.24以上の高鉄組成系でも、永久
磁石材料として有望なことがわかつた。これは、
本発明法がインゴツト状態で、磁気的硬化のため
の熱処理を行なうことによつて、酸化、Smの蒸
発など組成変動を極力防止出来たためである。そ
して、時効処理における複雑な析出を、インゴツ
トの柱状組織と併せてコントロールし易くなつた
ためと考えられる。 実施例 2 実施例1で得た本発明合金と比較例合金2種を
用いて、磁石材料製造方法のうち、含浸法により
つくつた試料でB―Hカーブと4πI―Hカーブを
調べた。先ず実施例1と同様の熱処理工程、微粉
砕工程を経て、磁性粉末をつくつた。ここで用い
た磁石材料の組成は以下の通りである。 本発明法…Sm(Co0.6Cu0.08Fe0.3Zr0.028.35 比較例…Sm(Co0.68Cu0.08Fe0.22Zr0.028.35 この粉末20gにオレイン酸を0.2重量%添加、乳
鉢中で混和し、第1図に示した磁場成形装置で加
圧成形した。この成形体は第2図に示したブロツ
ク形状のもので、これを粘度100CPSの一液型エ
ポキシ樹脂液中に浸漬し、両者とも真空脱気を行
なつた。真空度は10-2Torrに約3時間保持した
後、大気圧に戻して成形体を液中より取り出し、
エタノールで洗浄し、恒温槽に移し温度150℃×
1.5時間保持して、十分に焼成後室温まで冷却す
る。この試料を自記磁束計で測定したところ下記
の特性が得られた。 本発明法4πIs―9300(G) Br―9200(G) bHc―7200(Oe) iHc―11500(Oe) (BH)max―18.5MGOe ρ(g/c.c.)―7.23 比較例4πIs―8400(G) Br―8.350(G) bHc―6400(Oe) iHc―9250(Oe) (BH)max―15.3MGOe ρ(g/c.c.)―7.21 第5図は、B―H及び4πI―Hカーブを示した
ものであるが、図中11,12が本発明法、1
3,14が比較例である。このように高鉄に組成
をずらすことによつて、4πIsを高め、且つiHcを
10KOe以上にも増加出来た。又従来法のSm2Co17
型の焼結磁石では、本発明法のような高鉄(v=
0.24以上)、高Z(z=7.5以上)組成でこのよう
にすぐれた磁気性能は全く得られていない。本発
明法は、合金のまま熱処理し必要な磁気的硬化を
行なうので、酸化、組成変動が極めて小さいこと
が、性能向上の主因と考えられる。 実施例 3 実施例1で得られたSm(Co0.58Cu0.08Fe0.32
Zr0.028.35磁性合金粉末にメタルバインダーを混
合し、第1図に示した磁場成形装置で加圧成形
し、第2図と同じブロツクをつくつた。以下に製
造条件と特性を示す。
The present invention deals with rare earth metals Sm, transition metals (TM)
Sm 2 composed of two or more types of Fe, Cu, Co, and Zn
(Co Cu Fe Zr) This relates to a method for manufacturing type 17 permanent magnet alloy. Conventional methods for manufacturing Sm 2 (Co Cu Fe Zr) 17 type permanent magnets include (1) general formula Sm (Co bal Cu 0.12 Fe 0.2
By crushing the intermetallic compound represented by Zr 0.02 ) 7.0 ,
A method is used in which the particle size is adjusted to 2 μm to 10 μm, the powder is molded into a desired shape in a magnetic field, and then sintered. In the sintering method, the magnetic properties of the magnet are (BH)
A very high magnetic performance of max22~30MGOe has been obtained. However, in Sm 2 Co 17 type alloys, the amount of rare earth element (Sm) is said to have a large influence on the magnetic properties. That is, it is known that the range of Z of R(TM)z is a very narrow range as a condition for obtaining desired magnetic properties. For example, in the case of R=Sm, a displacement of approximately ±0.5% by weight means that Z will be displaced by 1, which must fall within the range of at least ±0.3% by weight. However, rare earth elements are active and have a high vapor pressure, so their composition fluctuates greatly during the magnetization process, making it impossible to stably maintain the desired magnetic performance. In other words, evaporation of Sm element by melting, oxidation in the powdering process, sintering, and solution heat treatment (hereinafter referred to as
(hereinafter referred to as SST) and aging treatment (hereinafter referred to as AGE), the Sm element tends to evaporate and oxidize. Furthermore, sintered magnets are hard and brittle, so they have the disadvantage of being susceptible to chipping and cracking during machining or handling. on the other hand
Permanent magnet materials made by finely pulverizing RTM 5 alloys, such as SmCo 5 alloys and bonding them with resin, are also known, but the maximum magnetic energy product is as low as 5 to 10 MGOe. Furthermore, a great deal of process technology control is required to prevent oxidation, which is the most decisive factor in the magnetic performance of Sm 2 Co 17 type permanent magnets. Sintered magnets made using the powder method are manufactured at a sintering temperature of
Sintering is carried out at 1150° C. to 1200° C. in an inert atmosphere or in a reducing gas, but at this time, the powder surface tends to adsorb oxygen and water vapor in the air, which inevitably causes oxidation. The present invention improves the drawbacks of the conventional methods described above, and aims to provide a manufacturing method that can easily obtain a predetermined composition while suppressing fluctuations due to oxidation and evaporation of rare earth elements. Another objective is to obtain a high coercive force with a high iron composition, which has not been achieved with conventional Sm 2 Co 17 type sintered magnets. The present invention will be explained in detail below step by step. The magnetic alloys of the present invention all have a weight ratio of Sm of more than 22% and less than 26%, and Fe of more than 16% and 30%.
It is a Sm 2 Co 17 type magnetic alloy consisting of 5 to 10% Cu, 1.5 to 3.5% Zr, and the remainder substantially Co. First, an alloy having the above composition is melted at high frequency in argon gas and cast into an ingot. In this case, the structural material of the mold is a mold, and by controlling the cooling rate and exposing columnar crystals, 4πIs
(saturation magnetization) and iHc (coercive force) can be increased. Further, the alloy ingot is heated to 1100°C to 1220°C in a non-oxidizing atmosphere such as argon gas for 1 hour.
Heat treatment is performed for 24 hours and cooled to room temperature. A large coercive force can be obtained by adjusting the cooling rate at this time to 10 to 100°C/min. Next, the magnetic alloy that has been cooled to room temperature is heated to 500 to 900°C to perform an aging treatment and magnetically harden it. Since the above two types of heat treatments are performed on the magnetic alloy ingot as it is, that is, in the form of a block, there is an advantage that fluctuations in the alloy composition can be extremely minimized. The surface area of the magnetic alloy can be made very small because the heat treatment is performed while the ingot is still in the form of a block. As a result, it is believed that precipitation hardening is promoted by solution treatment followed by aging, which has the advantage of significantly reducing surface oxidation of the magnetic alloy, and is magnetically hardened. Next, the heat-treated ingot is coarsely crushed using a geocrusher, top mill, or the like. The particle size at this time is -30 mesh, which is a fairly coarse powder. The coarse powder is pulverized using a mechanical device such as a ball mill or a jet mill. In this case, since the coercive force of the magnet is due to the fine structure in the alloy formed by heat treatment, the magnet is crushed to an extent that this is not destroyed. Powder particle size is 3μm~85μm
It is preferable to crush it into Note that if the particle size is 3μ or less, the fine structure is destroyed, and saturation magnetization and coercive force tend to decrease, so it was set to 3μ or more.
Moreover, if the thickness exceeds 85 μm, there is a problem that coercive force and saturation magnetization decrease. Furthermore, the filling rate of the powder and the orientation in a magnetic field tend to decrease. Therefore, preferably,
Magnetic powder particles with an average particle size of 10-15 μm and a particle size of 3 μm-50 μm are preferred. An organic binder or a metal binder with a melting point of 400°C or less is added to the fine powder particles obtained in this way, and after mixing, the particles are filled into a mold made of non-magnetic material and a magnetic field of 12 to 30 kg is applied. 1 to 1 while aligning the particles in a magnetic field.
It is intended to produce a permanent magnet by pressure molding at a pressure of 7 tons/cm 2 to form a powder into a desired shape and firing. Here, the organic binder may be either thermosetting or thermoplastic, and preferable examples include epoxy resin, EVA resin, phenolic resin, polyester resin, etc., and the amount thereof is 0.5% (weight ratio).
~10%. A preferable amount of the organic binder is 1% to 5% by weight, and in this case, the filling rate of the magnetic powder in pressure molding is 60% or more, and a density ρ of 5.0 or more can be obtained. Also, metal binders include Sn, Pb, In, Bi,
Low melting point metals such as Cd and Tl and their alloys with MP (melting point) of approximately 400°C or less are used. The effect of the metal binder is the mechanical strength of the permanent magnet,
Temperature characteristics among the toughness and magnetic properties can be improved. In the present invention, the reason why the rare earth metal Sm is limited to the above composition is that at 22% or less, Sm 2 Co 17
This is because the Fe-Co phase deviates from the type crystal and the coercive force decreases, and if it exceeds 26%,
RTM 5- phase increases, saturation magnetization (4πIs) is 6000G
This is because the maximum energy product becomes 5.0 MGOe or less. Note that the same effect can be obtained by combining not only one kind of rare earth metal but two or more kinds.
When Cu is less than 5%, no increase in coercive force is observed.
This is because when it exceeds 10%, 4πIs decreases. or
If Zr is less than 1.5%, there is no effect of improving coercive force and 3.5
%, 4πIs decreases. Furthermore, Fe is 16
% or less, 4πIs8000G or more cannot be obtained, and if it exceeds 30%, the coercive force decreases. Next, examples of the present invention will be described. Example 1 Raw materials having the composition formula Sm (Co 0.9 - vCu 0.08 FevZr 0.02 ) 8.35 were weighed, 1 kg of each was melted in an Ar gas atmosphere using a high frequency melting furnace, and cast into a mold. . Mold cooling rate is 500~700 up to 600℃
℃/min, and the result was that the overall ingot was 90
% or more were columnar crystals. Next, seven types of ingots were obtained (V(Fe)=
0.22, 0.24 0.26 0.28 0.30 0.32 0.34) 100g of each was heat treated under the following conditions. Solution treatment: 1150°C x 10 hours (in Ar gas atmosphere) Cooling rate: 50 to 100°C/min Aging treatment: 800°C x 24 hours (in Ar gas atmosphere) Cooling rate: 30 to 80°C/min Cooling: The surface of the ingot after heat treatment had a metallic luster, and almost no oxidation was observed. A feature of the method of the present invention is that since the magnetic alloy is processed in bulk, problems such as surface oxidation and Sm evaporation can be prevented. Therefore, the composition of the ingot can be maintained as it is until the finished permanent magnet is manufactured, so that variations in performance are reduced. Next, this alloy was wet-milled in a Daiflon using a ball mill, and the average particle size was 13 μm.
A fine powder with a distribution of 3 μm to 50 μm was obtained. To the fine powder particles, 2% by weight of a liquid epoxy resin having a viscosity of 1000 CPS was added and mixed in a mortar. The ball milled powder was dried in vacuum at room temperature. Fine powder particles mixed with epoxy resin,
Pressure molding was carried out in the magnetic field press shown in FIG. 1 is an excitation coil, 2 is a pure iron ball piece, and a 15KG magnetic field is generated between them. 5 is a non-magnetic material called stellite, and 3 and 4 are also made of the same material as an upper punch and a lower punch. Between No. 3 and No. 4, 8 g of powder mixed with the epoxy resin was charged, and hydraulic pressure was applied from No. 7 and No. 8 in an applied magnetic field of 15 KG, and molding was carried out with the direction of the magnetic field and the direction of pressure perpendicular. The pressing force at this time is 2.5ton/cm 2
It was hot. Next, while still being molded in the magnetic field, the mold was molded using a separate hydraulic press to add 5 ton/cm 2 in the uniaxial direction, and the mold was extracted from the mold. The sample shape at this time was the prismatic sample shown in FIG. continue,
The shape and dimensions of the molded product baked in an oven at 150°C for 1 hour are: a = 8 m/m, b = 14 m/m, h = 7.9 ±
At 0.1 m/m, the direction of the arrow is the direction of anisotropy. Figures 3 and 4 show Sm in this example.
(Co 0.9 −vCu 0.08 , Fev Zr 0.02 ) 8.35 The relationship between the change in v (Fe) of the alloy and 4πIs and iHc is shown. 4πIs (saturation magnetization)
was found to increase as the amount of Fe increases by a molar ratio of 0.24 or more (16% or more by weight). On the other hand, even though the coercive force required for a permanent magnet is v=0.34 (v=24% by weight), a very high iHc value of 8 to 15 KOe was obtained. In FIGS. 3 and 4, the circles indicate the performance of the comparative example at v=0.22. In this way, compared to the conventional method, it was found that even a high iron composition system with v=0.24 or higher is promising as a permanent magnet material. this is,
This is because in the method of the present invention, compositional changes such as oxidation and evaporation of Sm can be prevented as much as possible by performing heat treatment for magnetic hardening in the ingot state. This is thought to be due to the fact that it became easier to control complex precipitation during aging treatment together with the columnar structure of the ingot. Example 2 Using the alloy of the present invention obtained in Example 1 and two comparative alloys, the B-H curve and 4πI-H curve were examined for samples made by the impregnation method among magnet material manufacturing methods. First, a magnetic powder was produced through the same heat treatment process and pulverization process as in Example 1. The composition of the magnet material used here is as follows. Method of the present invention...Sm (Co 0.6 Cu 0.08 Fe 0.3 Zr 0.02 ) 8.35 Comparative example...Sm (Co 0.68 Cu 0.08 Fe 0.22 Zr 0.02 ) 8.35 0.2% by weight of oleic acid was added to 20 g of this powder, mixed in a mortar, and Pressure molding was performed using the magnetic field molding apparatus shown in Figure 1. This molded article had a block shape as shown in FIG. 2, and was immersed in a one-component epoxy resin solution with a viscosity of 100 CPS, and both were vacuum degassed. After maintaining the vacuum level at 10 -2 Torr for about 3 hours, the pressure was returned to atmospheric pressure and the molded body was removed from the liquid.
Wash with ethanol and transfer to a constant temperature bath at a temperature of 150℃
Hold for 1.5 hours and cool to room temperature after sufficient baking. When this sample was measured with a self-recording magnetometer, the following characteristics were obtained. Invention method 4πIs-9300(G) Br-9200(G) bHc-7200(Oe) iHc-11500(Oe) (BH)max-18.5MGOe ρ(g/cc)-7.23 Comparative example 4πIs-8400(G) Br-8.350(G) bHc-6400(Oe) iHc-9250(Oe) (BH)max-15.3MGOe ρ(g/cc)-7.21 Figure 5 shows the B-H and 4πI-H curves However, in the figure, 11 and 12 are the method of the present invention, 1
3 and 14 are comparative examples. By shifting the composition to high iron in this way, 4πIs can be increased and iHc can be increased.
I was able to increase it to over 10KOe. Also, the conventional method Sm 2 Co 17
type sintered magnet, high iron (v=
(0.24 or higher) and high Z (z = 7.5 or higher) compositions have never achieved such excellent magnetic performance. In the method of the present invention, since the alloy is heat-treated and the necessary magnetic hardening is performed, oxidation and compositional fluctuations are extremely small, which is considered to be the main reason for the improved performance. Example 3 Sm obtained in Example 1 (Co 0.58 Cu 0.08 Fe 0.32
Zr 0.02 ) 8.35 Magnetic alloy powder was mixed with a metal binder and pressure molded using the magnetic field forming apparatus shown in Figure 1 to produce the same block as shown in Figure 2. The manufacturing conditions and characteristics are shown below.

【表】 比較例はSm(Co0.68Cu0.08Fe0.22Zr0.028.35合金で
実施例1で用いた磁性粉末と同じものである。 本実施例は、バインダーに融点が400℃以下の
金属又は合金を用いたが、有機物樹脂バインダー
の性能と同等の結果が得られた。 実施例 4 実施例1、2、3で得られた磁石材料を用いて
機械的性質を調べた。第2表に結果を示す。
[Table] The comparative example is an Sm (Co 0.68 Cu 0.08 Fe 0.22 Zr 0.02 ) 8.35 alloy, which is the same magnetic powder as used in Example 1. In this example, a metal or alloy having a melting point of 400° C. or lower was used as the binder, but results equivalent to the performance of the organic resin binder were obtained. Example 4 The mechanical properties of the magnetic materials obtained in Examples 1, 2, and 3 were investigated. Table 2 shows the results.

【表】 本実施例の磁性合金の組成は、Sm(Co0.60
Cu0.08Fe0.3Zr0.028.35で、製造条件は実施例1〜3
と同一である。なお比較例のSmCo5合金は、こ
の組成になるよう秤量し50gをArアーク溶解炉中
で溶解しインゴツトを得た。これをジエツトミル
法で粒度2〜5μmの粉末をつくり、第1図に示す
磁場成形装置で加圧成形した。この成形体をAr
ガス雰囲気中で焼結しSmCo5磁石を得た。本発
明方法によれば、抗張力、耐衝撃性が改善され、
従来の焼結磁石の硬質で脆弱な機械的性質は、全
く解消出来た。従つて、時計用の小型ローター磁
石、腕時計用ステツプモーター用磁石、時計用電
磁ブザー、マイクロスピーカー、コアーレスモー
ターなど、精密機器への応用が拡大出来る。これ
らは、大量生産、低コスト及び高性能化が要求さ
れるが、十分応えられる素質の永久磁石材料であ
る。 実施例 5 実施例1で得られたSm(Co0.6Cu0.08Fe0.3Zr0.02
8.35組成合金を用い熱処理及び磁性粉末の製造ま
で同じものを用いた。比較例は、実施例4で得ら
れたSmCo5合金を用いた。 第6図は、希土類永久磁石の加工工程を示す。
15は比較例のSmCo5焼結磁石の加工例である。
比較例は、焼結磁石ブロツクを切断、次に角柱状
に切断し、これをφ1.8m/mの柱状に円筒研削装
置で加工し、続いて厚さ(t)=0.6m/mのデイ
スク状に切断後円板の中心部にφ0.45m/mの穴を
明ける。穴明け加工は、放電加工法で行なつた。
さらに該中心穴の内面研摩加工を行なつた。こう
して最後にパルス着磁機で径方向に2極着磁を行
なつて、水晶腕時計用ステツプモーター用ロータ
ー磁石をつくつた。第6図16は本発明法でつく
られた水晶腕時計用ステツプモーター用ローター
磁石の加工工程を示す。図からもわかるように、
極めて小型精密のローター磁石が1回の成形工程
で形状をつくり込める利点を有する。又ローター
磁石の中心に穴を明けることは、加工方法に限定
され、ほとんど電気化学加工(放電加工、電子ビ
ーム加工、超音波加工、レーザービーム加工)の
ような方法がとられる。従つて加工速度が遅く、
精度も悪く且つ穴内面は、溶解変質層を生じる欠
点があつた。本発明法によればこのような欠点が
全く解消出来た。第7図は本発明法におけるロー
ター磁石の成形方法で、1は上パンチ、2は下パ
ンチ3は外型(ダイ)で非磁性超硬で作られてい
る。バインダーを混和した磁性粉末を下パンチ1
8の空間部分20に充填し、次に上パンチ17を
下に移動させ19の外型(ダイ)にわずか接触さ
せた状態で外周方向から磁場約15KGを加えて、
磁場配向を行つた後、パンチ17を下に移動させ
加圧する。この時の加圧力は、50Kg/mm2で一軸加
圧を行つた。 次に加圧状態で反転磁場を加え、ローター磁石
成形体を脱磁する。続いて上パンチ17を上に移
動させ、次に下パンチ18と成形体を共に移動さ
せ、外型18より抜き出したローター磁石21を
別設のオーブン中で150℃×0.5時間加熱焼成し
た。 加熱焼成による寸法、形状の変化量は極めて小
さく、公差の範囲内という精度であつた。ちなみ
にローター磁石の寸法は、φ1.8±0.03×φ0.450.015×
0.6±0.02m/mである。 第2表は本実施例で得た前記ローター磁石のコ
スト及び原料の高価な希土類金属間化合物磁石の
原料歩留りを示す。ここでコストは従来法の
SmCo5焼結磁石を100とした時の本発明法のロー
ター磁石コストを比較した。第2表からもわかる
ように、本発明法は、加工工程の単純化による工
数低減による低コスト化及び原料のムダが極めて
少ないため歩留りが大巾に向上出来る利点があ
る。
[Table] The composition of the magnetic alloy in this example is Sm(Co 0.60
Cu 0.08 Fe 0.3 Zr 0.02 ) 8.35 , and the manufacturing conditions were those of Examples 1 to 3.
is the same as Note that the SmCo 5 alloy of the comparative example was weighed to have this composition, and 50 g was melted in an Ar arc melting furnace to obtain an ingot. A powder having a particle size of 2 to 5 μm was prepared using a jet mill method, and the powder was pressure-molded using a magnetic field forming apparatus shown in FIG. Ar
SmCo 5 magnets were obtained by sintering in a gas atmosphere. According to the method of the present invention, tensile strength and impact resistance are improved,
The hard and brittle mechanical properties of conventional sintered magnets can be completely eliminated. Therefore, it can be applied to precision equipment such as small rotor magnets for watches, step motor magnets for watches, electromagnetic buzzers for watches, micro speakers, and coreless motors. These permanent magnetic materials are capable of meeting the demands for mass production, low cost, and high performance. Example 5 Sm obtained in Example 1 (Co 0.6 Cu 0.08 Fe 0.3 Zr 0.02 )
8.35 composition alloy was used, and the same one was used until heat treatment and production of magnetic powder. In the comparative example, the SmCo 5 alloy obtained in Example 4 was used. FIG. 6 shows the processing steps for rare earth permanent magnets.
15 is a processing example of a comparative SmCo 5 sintered magnet.
In the comparative example, a sintered magnet block was cut, then cut into a prismatic shape, which was processed into a φ1.8 m/m column shape using a cylindrical grinder, and then a disk with a thickness (t) of 0.6 m/m was cut. After cutting into shapes, drill a hole of φ0.45m/m in the center of the disc. The drilling process was performed using the electrical discharge machining method.
Furthermore, the inner surface of the center hole was polished. Finally, a pulse magnetizer was used to perform bipolar magnetization in the radial direction to produce a rotor magnet for a step motor for a quartz wristwatch. FIG. 6 shows the processing steps for a rotor magnet for a step motor for a quartz wristwatch manufactured by the method of the present invention. As you can see from the figure,
The extremely small and precise rotor magnet has the advantage of being able to be shaped into a single molding process. Further, drilling a hole in the center of the rotor magnet is limited to a processing method, and most methods such as electrochemical processing (electric discharge processing, electron beam processing, ultrasonic processing, laser beam processing) are used. Therefore, the processing speed is slow,
The accuracy was poor, and the inner surface of the hole had the disadvantage of forming a dissolved and altered layer. According to the method of the present invention, these drawbacks can be completely eliminated. FIG. 7 shows a rotor magnet molding method according to the present invention, in which 1 is an upper punch, 2 is a lower punch 3, which is an outer mold (die) made of non-magnetic carbide. Lower punch 1 of magnetic powder mixed with binder
Fill the space 20 of No. 8, then move the upper punch 17 downward and apply a magnetic field of about 15 KG from the outer circumferential direction while slightly contacting the outer mold (die) of No. 19.
After performing magnetic field orientation, the punch 17 is moved downward and pressure is applied. At this time, uniaxial pressure was applied at a pressure of 50 kg/mm 2 . Next, a reversal magnetic field is applied under pressure to demagnetize the rotor magnet molded body. Subsequently, the upper punch 17 was moved upward, and then the lower punch 18 and the molded body were moved together, and the rotor magnet 21 extracted from the outer mold 18 was fired at 150° C. for 0.5 hour in a separate oven. The amount of change in size and shape due to heating and firing was extremely small, and the accuracy was within the tolerance range. By the way, the dimensions of the rotor magnet are φ1.8 ±0.03 × φ0.45 0.015 ×
0.6 ±0.02 m/m. Table 2 shows the cost of the rotor magnet obtained in this example and the raw material yield of the expensive rare earth intermetallic compound magnet. Here, the cost is
The rotor magnet cost of the method of the present invention was compared when the SmCo 5 sintered magnet was set as 100. As can be seen from Table 2, the method of the present invention has the advantage of reducing cost by reducing the number of man-hours due to the simplification of the processing steps, and greatly improving the yield because there is very little waste of raw materials.

【表】 以上詳述したように、本発明方法によれば、低
コスト、高性能で且つ大量生産の可能な永久磁石
材料を提供出来る、工業上極めて有益なものであ
る。
[Table] As detailed above, the method of the present invention is extremely useful industrially because it can provide a permanent magnet material that is low cost, high performance, and can be mass-produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法における磁場成形装置の概
略図。 1…コイル、2…ボールピース(純鉄)、3…
成形型上パンチ(ステライト)、4…成形型下パ
ンチ(ステライト)、5…成形型外型(ステライ
ト)、6…磁性合金粉末、7,8…プレス加圧台 第2図は本発明法における第1図磁場成形装置
で得られた永久磁石成形体。矢印は異方性の方向
を示す。第3図、第4図は本発明方法におけるV
(Fe)の変化量と4πIs及びiHcの相関図。第5図
は、本発明法、実施例2で得られた永久磁石材料
のB―H及び4πI―Hカーブを示す。 11…本発明法永久磁石材料のB―Hカーブ、
12…本発明法永久磁石材料の4πI―Hカーブ、
13…比較例(従来法)永久磁石材料のB―Hカ
ーブ、14…比較例(従来法)永久磁石材料の
4πI―Hカーブ、 第6図の15は比較例のSmCo57焼結型磁石を
用いて水晶腕時計用ステツプモーター用ローター
磁石の加工工程を示す。第6図16は、本発明方
法を用いた水晶腕時計用ステツプモーター用ロー
ター磁石の加工工程を示す。第7図は本発明方法
実施例5における、水晶腕時計用ステツプモータ
ー用ローター磁石の型成形工程を示す。
FIG. 1 is a schematic diagram of a magnetic field forming apparatus in the method of the present invention. 1...Coil, 2...Ball piece (pure iron), 3...
Upper punch of the mold (Stellite), 4. Lower punch of the mold (Stellite), 5. Outer mold of the mold (Stellite), 6. Magnetic alloy powder, 7, 8. Press pressure table. Figure 2 shows the method of the present invention. Figure 1: Permanent magnet molded body obtained using a magnetic field molding device. Arrows indicate the direction of anisotropy. Figures 3 and 4 show V in the method of the present invention.
Correlation diagram between the amount of change in (Fe) and 4πIs and iHc. FIG. 5 shows the BH and 4πIH curves of the permanent magnet material obtained by the method of the present invention, Example 2. 11...BH curve of permanent magnet material according to the present invention,
12...4πI-H curve of permanent magnet material of the present invention,
13... Comparative example (conventional method) B-H curve of permanent magnet material, 14... Comparative example (conventional method) permanent magnet material
4πI-H curve, 15 in Figure 6 shows the process of manufacturing a rotor magnet for a step motor for a quartz wristwatch using a comparative example of SmCo 57 sintered magnet. FIG. 6 shows the process of manufacturing a rotor magnet for a step motor for a quartz wristwatch using the method of the present invention. FIG. 7 shows the process of molding a rotor magnet for a step motor for a quartz wristwatch in Example 5 of the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 いずれも重要比で希土類金属のSm(サマリウ
ム)が22%を越え26%以下、Fe(鉄)が16%を越
え30%以下、Cu(銅)が5〜10%、Zr(ジルコニ
ウム)が1.5〜3.5%、残部が実質的にCo(コバル
ト)からなるSm2Co17型永久磁石合金を溶解、鋳
造して得られるインゴツトを塊状のまま熱処理し
て磁気的に硬化させた後、該インゴツトを粉砕
し、バインダーを混合して成形することを特徴と
する永久磁石材料の製造方法。
1 All have important ratios of rare earth metals Sm (samarium) exceeding 22% and below 26%, Fe (iron) exceeding 16% and below 30%, Cu (copper) between 5 and 10%, and Zr (zirconium). An ingot obtained by melting and casting an Sm 2 Co 17 type permanent magnet alloy consisting of 1.5 to 3.5% Co (cobalt) and the remainder being substantially Co (cobalt) is heat-treated in the form of a block to magnetically harden it. A method for producing a permanent magnet material, which comprises pulverizing the material, mixing it with a binder, and molding it.
JP9138680A 1980-07-04 1980-07-04 Manufacture of material for permanent magnet Granted JPS5717109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9138680A JPS5717109A (en) 1980-07-04 1980-07-04 Manufacture of material for permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9138680A JPS5717109A (en) 1980-07-04 1980-07-04 Manufacture of material for permanent magnet

Publications (2)

Publication Number Publication Date
JPS5717109A JPS5717109A (en) 1982-01-28
JPS6367323B2 true JPS6367323B2 (en) 1988-12-26

Family

ID=14024929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9138680A Granted JPS5717109A (en) 1980-07-04 1980-07-04 Manufacture of material for permanent magnet

Country Status (1)

Country Link
JP (1) JPS5717109A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5409398A (en) * 1993-06-16 1995-04-25 Molex Incorporated Lighted electrical connector adapter
US6623541B2 (en) 2000-07-31 2003-09-23 Shin-Etsu Chemical Co., Ltd. Sintered rare earth magnet and making method
JP5726960B2 (en) * 2013-07-26 2015-06-03 株式会社東芝 Permanent magnet and variable magnetic flux motor and generator using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131222A (en) * 1977-03-25 1978-11-15 Tdk Corp Permanent magnet material
JPS556481A (en) * 1978-06-29 1980-01-17 Seiko Epson Corp Production of permanent magnet material
JPS55128502A (en) * 1979-03-23 1980-10-04 Tdk Corp Permanent magnet material and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131222A (en) * 1977-03-25 1978-11-15 Tdk Corp Permanent magnet material
JPS556481A (en) * 1978-06-29 1980-01-17 Seiko Epson Corp Production of permanent magnet material
JPS55128502A (en) * 1979-03-23 1980-10-04 Tdk Corp Permanent magnet material and its manufacture

Also Published As

Publication number Publication date
JPS5717109A (en) 1982-01-28

Similar Documents

Publication Publication Date Title
US4536233A (en) Columnar crystal permanent magnet and method of preparation
JP2003226944A (en) Sintered magnet using rare earth-iron-boron alloy powder for magnet
JPS62276803A (en) Rare earth-iron permanent magnet
US7166171B2 (en) Longitudinal magnetic field compacting method and device for manufacturing rare earth magnets
JP2558095B2 (en) Rare earth ferrous iron permanent magnet manufacturing method
JPS6367323B2 (en)
JPH07272914A (en) Sintered magnet, and its manufacture
JPH0140482B2 (en)
JP2579787B2 (en) Manufacturing method of permanent magnet
JPH03114206A (en) Manufacture of permanent magnet
JPH07201545A (en) Sintered magnet and its manufacture thereof
JP2530185B2 (en) Manufacturing method of permanent magnet
JPH01155603A (en) Manufacture of oxidation-resistant rare-earth permanent magnet
JPH03114205A (en) Sintered type permanent magnet
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPH07123083B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JPH07201623A (en) Sintered magnet and its production
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JPH048923B2 (en)
JPH02301A (en) Permanent magnet
JP2611221B2 (en) Manufacturing method of permanent magnet
JPH01175207A (en) Manufacture of permanent magnet
JPH08250312A (en) Rare earth-fe permanent magnet and manufacture thereof
JPS63213317A (en) Rare earth iron permanent magnet
JPH0513208A (en) Manufacture of rare-earth bonded magnet