JPS636729B2 - - Google Patents

Info

Publication number
JPS636729B2
JPS636729B2 JP56018557A JP1855781A JPS636729B2 JP S636729 B2 JPS636729 B2 JP S636729B2 JP 56018557 A JP56018557 A JP 56018557A JP 1855781 A JP1855781 A JP 1855781A JP S636729 B2 JPS636729 B2 JP S636729B2
Authority
JP
Japan
Prior art keywords
compressor
intake
intake passage
passage
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56018557A
Other languages
Japanese (ja)
Other versions
JPS57146019A (en
Inventor
Kazuo Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP56018557A priority Critical patent/JPS57146019A/en
Priority to GB8203255A priority patent/GB2095328B/en
Priority to FR8201811A priority patent/FR2499626B1/en
Priority to US06/346,379 priority patent/US4445336A/en
Priority to DE3203952A priority patent/DE3203952C2/en
Publication of JPS57146019A publication Critical patent/JPS57146019A/en
Publication of JPS636729B2 publication Critical patent/JPS636729B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • F02B61/02Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 本発明は吸入空気を加圧して充填効率を高め、
出力向上を図るようにした、過給器付内燃機関に
関するものである。
[Detailed description of the invention] The present invention increases filling efficiency by pressurizing intake air,
This invention relates to an internal combustion engine with a supercharger that is designed to increase output.

従来内燃機関において、吸気通路の途中にコン
プレツサを介装し、このコンプレツサの回転によ
つて吸気通路内を流れる吸入空気を加圧してその
充填効率を高め機関出力の向上を図るようにした
過給機付内燃機関が知られているが、かゝる機関
の吸気通路内の絞り弁を開き過給機を作動して加
圧空気を過給し、その機関を出力回転させている
状態において、前記絞り弁を急閉すると、過給さ
れた吸気通路内の加圧空気が瞬間的に前記コンプ
レツサを通つてその上流側に逆流し、その際に吸
気通路内、特にコンプレツサ内で流動加圧空気が
剥離現象等の流れの乱れを生起して再び機関を出
力運転した際に十分な過給効果が得られず所期の
出力向上が達成できなくなることがある。
In conventional internal combustion engines, a compressor is installed in the middle of the intake passage, and the rotation of this compressor pressurizes the intake air flowing through the intake passage, increasing its filling efficiency and increasing engine output. A motorized internal combustion engine is known, but when the throttle valve in the intake passage of such an engine is opened and the supercharger is activated to supercharge pressurized air and the engine is running at output speed, When the throttle valve is suddenly closed, the supercharged pressurized air in the intake passage instantaneously flows back upstream through the compressor, causing the flowing pressurized air to flow inside the intake passage, especially in the compressor. When the engine is operated at output again due to flow disturbance such as separation phenomenon, sufficient supercharging effect may not be obtained and the desired output increase may not be achieved.

そこで本発明は吸気通路内の絞り弁の急閉時に
も過給空気が逆流しないようにして機関の出力低
下を招くようなことがないようにし、併せて前記
コンプレツサ流入口の流入空気密度を正確に検出
して、これをマイクロコンピユータ等の電子制御
機器に補正信号として入力して加圧吸入空気量に
応じた燃料噴射量および点火時期の補正制御を的
確に行わしめるようにした、過給機付内燃機関を
提供することを主な目的とするものである。
Therefore, the present invention prevents the supercharged air from flowing backward even when the throttle valve in the intake passage is suddenly closed, thereby preventing a decrease in engine output, and also accurately adjusts the inflow air density at the compressor inlet. A supercharger that detects this and inputs it as a correction signal to an electronic control device such as a microcomputer to accurately correct the amount of fuel injection and ignition timing according to the amount of pressurized intake air. Its main purpose is to provide an internal combustion engine with an internal combustion engine.

以下、図面により本発明の一実施例について説
明すると、内燃機関本体Eは、従来普通のように
ピストン3を摺動自在に嵌合したシリンダブロツ
ク1と、その上に固着されるシリンダヘツド2と
を有し、シリンダヘツド2とピストンとで燃焼室
4が形成され、この燃焼室4に点火栓3が設けら
れる。燃焼室4には吸気ポート5と排気ポート6
とが開口されて、これらのポート5,6は吸気弁
7と、排気弁8とより交互に開閉される。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. An internal combustion engine main body E includes a cylinder block 1 in which a piston 3 is slidably fitted in a conventional manner, and a cylinder head 2 fixed thereon. A combustion chamber 4 is formed by the cylinder head 2 and the piston, and an ignition plug 3 is provided in the combustion chamber 4. The combustion chamber 4 has an intake port 5 and an exhaust port 6.
These ports 5 and 6 are opened and closed alternately by the intake valve 7 and the exhaust valve 8.

吸気ポート5および排気ポート6の各外端に
は、吸気通路9および排気通路10がそれぞれ接
続され、これら両通路9,10間に亘つてターボ
過給機Sが設けられる。
An intake passage 9 and an exhaust passage 10 are connected to the outer ends of the intake port 5 and the exhaust port 6, respectively, and a turbo supercharger S is provided between these passages 9 and 10.

次に前記ターボ過給機Sの構造を説明すると、
これは前記排気通路10の途中に介装されるター
ビンTと、前記吸気通路9の途中に介装されるコ
ンプレツサCとを有する。前記タービンTは、排
気通路10の途中に形成されるタービン室12内
にタービン翼車14を収容して構成され、また前
記コンプレツサCは、吸気通路9の途中に形成さ
れるコンプレツサ室11内にコンプレツサ翼車1
3を収容して構成されており、前記タービン室1
2とコンプレツサ室11とは軸受ホルダ16によ
つて一体に結合されている。タービン翼車14と
コンプレツサ翼車13とは、前記軸受ホルダ16
内に軸受17,18を介して支承される回転軸1
5により一体回転できるように連結されている。
Next, the structure of the turbocharger S will be explained.
This includes a turbine T interposed in the middle of the exhaust passage 10 and a compressor C disposed in the middle of the intake passage 9. The turbine T is constructed by housing a turbine wheel 14 in a turbine chamber 12 formed in the middle of an exhaust passage 10, and the compressor C is constructed in a compressor chamber 11 formed in the middle of an intake passage 9. Compressor wheel 1
3, and the turbine chamber 1
2 and the compressor chamber 11 are integrally connected by a bearing holder 16. The turbine wheel 14 and the compressor wheel 13 are connected to the bearing holder 16.
A rotating shaft 1 supported within the shaft via bearings 17 and 18
5 so that they can rotate together.

また吸気通路9には、燃料噴射ノズル19が吸
気ポート5に近接して取付けられ、またそのすぐ
上流側に絞り弁20が設置され、また絞り弁20
の上流側に吸気通路9の一部の断面積を拡大して
形成したプリチヤンバ21が設けられる。このプ
リチヤンバ21とコンプレツサCとの間の吸気通
路9から分岐通路22が延出され、この分岐通路
22は、レゾナンスチヤンバ23に連通されてい
る。
Further, in the intake passage 9, a fuel injection nozzle 19 is installed close to the intake port 5, and a throttle valve 20 is installed immediately upstream of the fuel injection nozzle 19.
A pre-chamber 21 formed by enlarging the cross-sectional area of a part of the intake passage 9 is provided on the upstream side of the intake passage 9 . A branch passage 22 extends from the intake passage 9 between the pre-chamber 21 and the compressor C, and this branch passage 22 communicates with a resonance chamber 23.

吸気通路9の、コンプレツサCよりも上流側に
は、その吸気通路9内を燃焼室4側へ流れる吸入
空気の逆流を阻止するための一方向弁、すなわち
リード弁24が設けられる。また吸気通路9のリ
ード弁24とコンプレツサC間には、その吸気通
路9よりもはるかに小径の消音通路25が分岐さ
れ、その消音通路25に消音器26が接続されて
いる。さらに前記消音通路25よりも下流側の吸
気通路9には金網等のフイルタ27が張設されて
いる。吸気通路9の入口には、エアクリーナAc
が接続される。エアクリーナAcは、クリーナケ
ース28内をクリーナエレメント29によつて末
清浄室a1と清浄室a2とに区画され、清浄室a2
に、前記吸気通路9の入口、および消音通路25
の入口が開口される。
A one-way valve, ie, a reed valve 24, is provided in the intake passage 9 on the upstream side of the compressor C to prevent backflow of intake air flowing through the intake passage 9 toward the combustion chamber 4 side. Further, between the reed valve 24 of the intake passage 9 and the compressor C, a muffling passage 25 having a much smaller diameter than the intake passage 9 is branched off, and a muffler 26 is connected to the muffling passage 25. Furthermore, a filter 27 such as a wire mesh is provided in the intake passage 9 on the downstream side of the muffling passage 25. An air cleaner Ac is installed at the entrance of the intake passage 9.
is connected. The air cleaner Ac divides the inside of the cleaner case 28 into a clean room a 1 and a clean room a 2 by a cleaner element 29, and has an inlet of the intake passage 9 and a sound deadening passage 25 in the clean room a 2 .
The entrance is opened.

前記吸気通路9には、燃料噴射ノズル19から
噴射される燃料の噴射量を制御するための各種セ
ンサが設けられる。すなわち吸気通路9の、コン
プレツサCと一方向弁24間には、コンプレツサ
Cの流入口の温度および圧力を検出するための温
度センサT1と第一圧力センサP1が接続され、こ
れらによりリード弁24を通過して、コンプレツ
サCの流入口に達した吸入空気の温度および圧力
が検出される。また吸気通路9の、絞り弁20よ
りも上流側で、コンプレツサCよりも下流側に
は、第二圧力センサP2が接続され、この第二圧
力センサP2は、コンプレツサCの下流側で絞り
弁20よりも上流側の、過給された吸気圧力を検
出する。
The intake passage 9 is provided with various sensors for controlling the amount of fuel injected from the fuel injection nozzle 19. That is, in the intake passage 9, between the compressor C and the one-way valve 24, a temperature sensor T1 and a first pressure sensor P1 for detecting the temperature and pressure at the inlet of the compressor C are connected, and these act as a reed valve. The temperature and pressure of the intake air that has passed through 24 and reached the inlet of compressor C is detected. Further, a second pressure sensor P 2 is connected to the intake passage 9 upstream of the throttle valve 20 and downstream of the compressor C. The supercharged intake pressure on the upstream side of the valve 20 is detected.

さらに吸気通路9の、絞り弁20よりも下流側
には、その内部のブースト圧力を検出するための
第三圧力センサP3が接続され、さらに絞り弁2
0にはそのスロツトル角を検出するための角度セ
ンサAが設けられる。尚、コンプレツサCよりも
下流側の過給気温度は、前記各センサの検出値よ
り演算によつて求められる。
Further, a third pressure sensor P 3 is connected to the intake passage 9 on the downstream side of the throttle valve 20 for detecting the internal boost pressure.
0 is provided with an angle sensor A for detecting the throttle angle. Note that the supercharging air temperature on the downstream side of the compressor C is determined by calculation from the detection values of each of the sensors.

従来公知の燃料噴射及点火時期制御装置では、
内燃機関の回転数と、そのブースト負圧(機関の
低負荷運転域)もしくはスロツトル開度(機関の
高負荷運転域)とを入力として基本燃料噴射量お
よび点火時期を定め、さらにコンプレツサC上流
側の圧力、および温度と、その下流側の過給圧力
とで検出される空気密度から吸入空気量の補正を
行い実際の燃料噴射量および点火時期をコントロ
ールする。
In conventionally known fuel injection and ignition timing control devices,
The basic fuel injection amount and ignition timing are determined by inputting the rotational speed of the internal combustion engine and its boost negative pressure (low engine load operating range) or throttle opening (engine high load operating range). The actual fuel injection amount and ignition timing are controlled by correcting the amount of intake air based on the air density detected from the pressure and temperature of the engine and the boost pressure on the downstream side.

排気通路10の出口には、マフラMが接続され
ている。
A muffler M is connected to the outlet of the exhaust passage 10.

次に本発明の実施例の作用について説明する。 Next, the operation of the embodiment of the present invention will be explained.

いま前記過給機付内燃機関が運転され、その排
気行程により、燃焼室4から排気通路10に排出
される排気は、タービンTを通過し、その際排気
エネルギをタービン翼車14に与える。これによ
りタービン翼車14は回転し、回転軸15を介し
てコンプレツサ翼車13を駆動するので、エアク
リーナAcからリード弁24を通つて吸気通路9
に吸入された空気は、コンプレツサCで加圧され
てプリチヤンバ21へ送られ、そして絞り弁20
により流量を調節された後、燃料噴射ノズル19
からの噴射燃料と混合し、機関の吸入行程時、燃
焼室4に供給される。機関の運転中、吸気弁7の
関歇的作動等に起因して吸気通路9内に圧力脈動
が惹起されると、それはプリチヤンバ21および
レゾナンスチヤンバ23の存在により減衰され、
これによりコンプレツサCのサージング現象を防
止し、充填効率を高めることができる。
The supercharged internal combustion engine is now operated, and during its exhaust stroke, the exhaust gas discharged from the combustion chamber 4 to the exhaust passage 10 passes through the turbine T, and at this time gives exhaust energy to the turbine wheel 14. This causes the turbine wheel 14 to rotate and drive the compressor wheel 13 via the rotating shaft 15.
The air taken in is pressurized by the compressor C and sent to the pre-chamber 21, and then the throttle valve 20
After the flow rate is adjusted by the fuel injection nozzle 19
The fuel is mixed with the injected fuel from the engine and supplied to the combustion chamber 4 during the intake stroke of the engine. During engine operation, when pressure pulsations are generated in the intake passage 9 due to intermittent operation of the intake valve 7, etc., the pressure pulsations are attenuated by the presence of the pre-chamber 21 and the resonance chamber 23.
This can prevent the surging phenomenon of the compressor C and improve the filling efficiency.

ところで前述のように絞り弁20が開弁されコ
ンプレツサCが作動して機関が過給運転されてい
る状態において、絞り弁20を急閉した際に、仮
りに吸気通路9に前記リード弁24が存在しない
とすると、過給されている吸気通路9内の加圧空
気は瞬間的に吸気通路9内を逆流し、その際にコ
ンプレツサC内等で流動空気の剥離現象等、流れ
に乱れを生起し、再び絞り弁20を開放した際に
過給効果が多少とも損われ、所期の出力が得られ
なくなることがあるが、前述のように吸気通路9
にリード弁24を設けることにより、そのリード
弁24が絞り弁20急閉時の吸入空気の逆流を阻
止するので、前述の流動空気の剥離現象等の発生
を未然に防止し、内燃機関の所期の高出力を得る
ことができる。
By the way, as mentioned above, when the throttle valve 20 is suddenly closed while the throttle valve 20 is opened and the compressor C is activated to supercharge the engine, it is assumed that the reed valve 24 is inserted into the intake passage 9. If it does not exist, the pressurized air in the intake passage 9 that is being supercharged will momentarily flow backwards in the intake passage 9, and at that time, turbulence will occur in the flow, such as separation of flowing air within the compressor C, etc. However, when the throttle valve 20 is opened again, the supercharging effect may be impaired to some extent and the desired output may not be obtained.
By providing the reed valve 24 in the internal combustion engine, the reed valve 24 prevents the intake air from flowing backward when the throttle valve 20 is suddenly closed. It is possible to obtain high output during the period.

また前述の絞り弁20の急閉時に吸気通路9を
流れる吸入空気の一部は、逆流して小径の消音通
路25を通つて消音器26に至り、絞り弁20急
閉時の異音の発生は、この消音器26で効果的に
消去される。この場合、消音器26は吸気通路9
より分岐される小径の消音通路25に接続される
ため、消音器26が、吸入通路9に流入する吸入
空気の流入を妨げて、機関の出力低下を招くよう
なことはなく、また消音通路25を吸気通路9に
比べて可及的に小径に形成することにより消音器
を小型のものにできる。また、この消音通路25
の存在でエンジンブレーキの利きが悪くなるよう
なこともない。
Furthermore, when the throttle valve 20 is suddenly closed, a portion of the intake air flowing through the intake passage 9 flows backwards and reaches the muffler 26 through the small-diameter muffling passage 25, causing abnormal noise when the throttle valve 20 is suddenly closed. is effectively suppressed by this muffler 26. In this case, the silencer 26 is
Since the muffler 26 is connected to the small-diameter muffler passage 25 which is branched into the muffler passage 25, the muffler 26 does not obstruct the intake air flowing into the suction passage 9 and cause a decrease in engine output. By making the diameter as small as possible compared to the intake passage 9, the muffler can be made compact. In addition, this sound deadening passage 25
The presence of the engine brake does not affect the effectiveness of the engine brake.

また機関の運転中前記第一〜第三圧力センサ
P1,P2,P3、温度センサT1および角度センサA
はそれぞれ動作してそれらの検出値を燃料噴射お
よび点火時期制御装置に入力するものであるがそ
のうち第一圧力センサP1および温度センサT1は、
リード弁24とコンプレツサC間の吸入通路9に
設けられるので、前記リード弁24通過後のコン
プレツサCの流入口の圧力と温度とを検出するこ
とができ、前記リード弁24の存在による前記圧
力および温度の変化を補正する必要がない。
Also, during engine operation, the first to third pressure sensors
P 1 , P 2 , P 3 , temperature sensor T 1 and angle sensor A
operate and input their detected values to the fuel injection and ignition timing control device, among which the first pressure sensor P 1 and temperature sensor T 1 are
Since it is provided in the suction passage 9 between the reed valve 24 and the compressor C, the pressure and temperature at the inlet of the compressor C after passing through the reed valve 24 can be detected, and the pressure and temperature due to the presence of the reed valve 24 can be detected. There is no need to compensate for temperature changes.

尚、上記実施例では、過給機としてターボ過給
機Sを、また一方向弁としてリード弁24を用い
た場合を説明したがそれらに代えて他の過給機お
よび一方向弁を採用してもよい。
Incidentally, in the above embodiment, a case was explained in which the turbo supercharger S was used as the supercharger and the reed valve 24 was used as the one-way valve, but other superchargers and one-way valves could be used instead. It's okay.

以上のように本発明によれば、吸気通路にコン
プレツサを介装してなる過給機付内燃機関におい
て、吸気通路にリード弁等の一方向弁を設けたの
で、絞り弁の急閉時に、吸気通路内、特にコンプ
レツサ内に吸入空気の剥離現象等、その流れに乱
れを生起させることがなく常に所期の過給効果を
達成させ、高出力を発揮させることができる。
As described above, according to the present invention, in a supercharged internal combustion engine in which a compressor is installed in the intake passage, a one-way valve such as a reed valve is provided in the intake passage, so that when the throttle valve is suddenly closed, The desired supercharging effect can always be achieved and high output can be achieved without causing any disturbance to the flow of intake air such as separation of the intake air within the intake passage, particularly within the compressor.

また前記一方向弁はコンプレツサよりも上流側
の吸気通路に設けたので、一方向弁の存在がコン
プレツサのサージング現象発生の要因になるよう
なこともない。
Furthermore, since the one-way valve is provided in the intake passage upstream of the compressor, the presence of the one-way valve will not cause a surging phenomenon in the compressor.

また一方向弁とコンプレツサ間の吸気通路に圧
力センサ、温度センサ等の吸入空気密度検出セン
サを設けたので、内燃機関の吸入空気の大気圧お
よび外気温度から空気密度を検出して、吸入空気
量の検出補正を行う場合に、コンプレツサの流入
口の圧力と温度とを基準にすることができ、一方
向弁前後の圧力および温度の変化によるそれらの
補正を行う必要はなく、前記一方向弁を設けたに
も拘らず簡単かつ正確に吸入空気量の検出補正を
行うことができる。
In addition, an intake air density detection sensor such as a pressure sensor or temperature sensor is installed in the intake passage between the one-way valve and the compressor, so the air density is detected from the atmospheric pressure and outside temperature of the intake air of the internal combustion engine, and the intake air amount is When performing detection correction, the pressure and temperature at the inlet of the compressor can be used as a reference, and there is no need to make corrections due to changes in pressure and temperature before and after the one-way valve. Despite the provision, the intake air amount can be easily and accurately detected and corrected.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の1実施例を示す概略縦断側面図
である。 C……コンプレツサ、P1,T1……圧力および
温度センサとしての第一圧力センサおよび第二圧
力センサ、5……吸気ポート、9……吸気通路、
24……リード弁。
The drawing is a schematic longitudinal sectional side view showing one embodiment of the present invention. C...Compressor, P1 , T1 ...First pressure sensor and second pressure sensor as pressure and temperature sensors, 5...Intake port, 9...Intake passage,
24...Reed valve.

Claims (1)

【特許請求の範囲】[Claims] 1 内燃機関の吸気ポートに連なる吸気通路に、
そこを流れる吸入空気を加圧するためのコンプレ
ツサを介装してなる、過給機付内燃機関におい
て、前記コンプレツサの上流側の吸気通路にリー
ド弁等の一方向弁を設け、この一方向弁とコンプ
レツサ間の、吸気通路に、前記コンプレツサの流
入口の吸入空気密度を検出するための圧力セン
サ、温度センサ等の吸入空気密度検出センサを設
けてなる、過給機付内燃機関。
1 In the intake passage connected to the intake port of the internal combustion engine,
In a supercharged internal combustion engine that is equipped with a compressor for pressurizing intake air flowing therethrough, a one-way valve such as a reed valve is provided in the intake passage upstream of the compressor, and the one-way valve and A supercharged internal combustion engine comprising an intake air density detection sensor such as a pressure sensor and a temperature sensor for detecting the intake air density at the inlet of the compressor, in an intake passage between the compressors.
JP56018557A 1981-02-06 1981-02-10 Internal combustion engine with supercharger Granted JPS57146019A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56018557A JPS57146019A (en) 1981-02-10 1981-02-10 Internal combustion engine with supercharger
GB8203255A GB2095328B (en) 1981-02-06 1982-02-04 Controlling supercharged ic engine intake systems
FR8201811A FR2499626B1 (en) 1981-02-06 1982-02-04 INTERNAL COMBUSTION ENGINE HAVING A BOOSTER DEVICE PROVIDED WITH A ONE WAY VALVE IN THE INTAKE DUCT
US06/346,379 US4445336A (en) 1981-02-06 1982-02-05 Internal combustion engine equipped with supercharger
DE3203952A DE3203952C2 (en) 1981-02-06 1982-02-05 Internal combustion engine with a supercharging compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56018557A JPS57146019A (en) 1981-02-10 1981-02-10 Internal combustion engine with supercharger

Publications (2)

Publication Number Publication Date
JPS57146019A JPS57146019A (en) 1982-09-09
JPS636729B2 true JPS636729B2 (en) 1988-02-12

Family

ID=11974920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56018557A Granted JPS57146019A (en) 1981-02-06 1981-02-10 Internal combustion engine with supercharger

Country Status (1)

Country Link
JP (1) JPS57146019A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2882574A1 (en) * 2005-02-28 2006-09-01 Inst Francais Du Petrole Air inlet control method for spark ignition supercharged internal combustion engine of motor vehicle, involves increasing quantity of air admitted in cylinder if determined air density is lower than threshold density

Also Published As

Publication number Publication date
JPS57146019A (en) 1982-09-09

Similar Documents

Publication Publication Date Title
US4445336A (en) Internal combustion engine equipped with supercharger
JP6397440B2 (en) Engine control device
US6883324B2 (en) Control apparatus and control method for internal combustion engine
JPS6350535B2 (en)
JPS6337250B2 (en)
JPH0694850B2 (en) Exhaust turbocharged engine exhaust gas recirculation system
JP2001280144A (en) Control device for air bypass valve
JPS636729B2 (en)
JPH06336958A (en) Muffling structure for intake system
JPS6090935A (en) Idling-speed controlling apparatus for internal- combustion engine with supercharger
JPS6344935B2 (en)
JPS62101830A (en) Engine having plural supercharger
KR20060069900A (en) Apparatus to control of turbocharger engine
JPS58110852A (en) Vaporized fuel controlling apparatus for internal-combustion engine with supercharger
JP2001263076A (en) Decompression device in engine with super charger
JP7251493B2 (en) Internal combustion engine control system
JP2007071150A (en) Air intake device of supercharged engine
JPH0669331U (en) Variable capacity supercharger controller
JPS6321746Y2 (en)
JPS5851221A (en) Supercharging system for engine
JPH055221Y2 (en)
JPH0422027Y2 (en)
JPS6027776Y2 (en) Secondary air supply system for supercharged engines
JPS6140914Y2 (en)
JPS5830418A (en) Intake device of engine with supercharger