JPS6366563B2 - - Google Patents

Info

Publication number
JPS6366563B2
JPS6366563B2 JP21714184A JP21714184A JPS6366563B2 JP S6366563 B2 JPS6366563 B2 JP S6366563B2 JP 21714184 A JP21714184 A JP 21714184A JP 21714184 A JP21714184 A JP 21714184A JP S6366563 B2 JPS6366563 B2 JP S6366563B2
Authority
JP
Japan
Prior art keywords
membrane
chitosan
water
liquid
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21714184A
Other languages
Japanese (ja)
Other versions
JPS6193802A (en
Inventor
Masaru Mya
Susumu Yoshikawa
Reikichi Iwamoto
Koji Oota
Seiichi Mima
Shuzo Yamashita
Akira Mochizuki
Yoshiki Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP21714184A priority Critical patent/JPS6193802A/en
Publication of JPS6193802A publication Critical patent/JPS6193802A/en
Publication of JPS6366563B2 publication Critical patent/JPS6366563B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は少くとも有機液体をその構成々分の一
つとする液体混合物をパーベーパレーシヨンによ
つて分離する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for separating a liquid mixture containing at least an organic liquid as one of its components by pervaporation.

この分離方法は通常の蒸留法では分別できない
ような薬液(おもに有機溶媒、炭化水素など)の
分離精製、たとえば共沸混合物、沸点の接近した
溶溶媒、異性体(オルトとパラ、シスとトラン
ス)などの分別分離に、また熱分解性成分を含む
混合液体や果汁の濃縮精製、痕跡不純物の除去、
さらにはエステル化反応中生成する水分除去など
に利用される。
This separation method is used to separate and purify chemical liquids (mainly organic solvents, hydrocarbons, etc.) that cannot be separated using normal distillation methods, such as azeotropic mixtures, solvents with similar boiling points, and isomers (ortho and para, cis and trans). For fractional separation, such as concentration and purification of mixed liquids and fruit juices containing thermally decomposable components, removal of trace impurities,
Furthermore, it is used to remove water generated during the esterification reaction.

(従来の技術) 分離膜を境にして一方側に混合液体を置き、他
方側を真空に引いて減圧にするか、不活性ガスを
流して低蒸気圧に保ち液を透過させ、低圧側で蒸
発させることによつて混合液を分離するいわゆる
パーベーパレーシヨン法は1950年の半ば頃より研
究がなされている。
(Prior technology) A mixed liquid is placed on one side of the separation membrane, and the other side is evacuated to reduce the pressure, or an inert gas is flowed to keep the vapor pressure low and the liquid permeates. The so-called pervaporation method, which separates a liquid mixture by evaporation, has been studied since the mid-1950s.

このようなパーベーパレーシヨン法により有機
混合液体、特に水〜アルコール混合液体を分離し
た実施例は数多く報告されている。例えば米国特
許第2953502号にはセルロースアセテート膜を用
いて水〜メタノール混合液体を分離した実験例
(分離係数5.1、透過速度3.1Kg/m2・hr)、機能材
料12月号(1981)の33ページにはセルロースアセ
テート膜を用いて水〜エタノール混合液体を分離
した実験例(分離係数8.5、透過速度1.95Kg/
m2・hr)及びセロフアン膜を用いて水〜イソプロ
パノール混合液体を分離した実験例(分離係数
15.6、透過速度0.7Kg/m2・hr)、Journal of
Applied Polymer Science vol 26(1981)の
3223ページにはグラフト化ポリビニルアルコール
膜を用いて水〜メタノール混合液体を分離した実
験例(分離係数22.6、透過速度0.2Kg/m2・hr)
などが報告されている。
Many examples have been reported in which organic mixed liquids, especially water-alcohol mixed liquids, are separated by such pervaporation methods. For example, U.S. Patent No. 2953502 describes an experimental example of separating water-methanol mixed liquid using a cellulose acetate membrane (separation coefficient 5.1, permeation rate 3.1 Kg/m 2 hr), No. 33 of Functional Materials December issue (1981). The page shows an experimental example of separating water and ethanol mixed liquid using a cellulose acetate membrane (separation coefficient 8.5, permeation rate 1.95Kg/
m2・hr) and an experimental example in which a mixed liquid of water and isopropanol was separated using a cellophane membrane (separation coefficient
15.6, permeation rate 0.7Kg/ m2・hr), Journal of
Applied Polymer Science vol 26 (1981)
On page 3223, there is an experimental example in which a mixed liquid of water and methanol was separated using a grafted polyvinyl alcohol membrane (separation coefficient 22.6, permeation rate 0.2 Kg/m 2 hr)
etc. have been reported.

(発明が解決しようとする問題点) これらの膜を用いた水〜アルコール混合液体の
分離方法は実験室規模の実施ではまだしも、工業
的規模の実施においては次のような問題があり、
実用化に程遠いものであつた。すなわち、 (1) 水〜アルコール混合液体が高分子膜を一回通
過することによる分離の割合〔一般に膜透過後
の水成分のアルコール成分に対する重量比を膜
透過前の水成分のアルコール成分に対する重量
比で除した値を分離係数αで表示する。すなわ
ち、 α=透過液中の(W/A)/被透過液中の(W/A) (式中W及びAは、それぞれ水成分及びアル
コール成分の重量を示す。)〕が小さいため、目
的とする濃度まで分離または濃縮するためには
非常に多数の膜を透過させなければならない。
(Problems to be Solved by the Invention) The methods for separating water-alcohol mixed liquid using these membranes cannot be implemented on a laboratory scale, but there are the following problems when implemented on an industrial scale.
It was far from being practical. In other words, (1) the separation rate when a water-alcohol mixed liquid passes through a polymer membrane once [generally, the weight ratio of the water component to the alcohol component after passing through the membrane is calculated as the weight ratio of the water component to the alcohol component before passing through the membrane] The value divided by the ratio is displayed as the separation coefficient α. In other words, α = (W/A in the permeate liquid/(W/A) in the permeate liquid (in the formula, W and A indicate the weight of the water component and the alcohol component, respectively)] is small, so the objective In order to separate or concentrate to the desired concentration, it must be passed through a very large number of membranes.

(2) 高分子膜を透過する透過量〔一般に、単位膜
表面積及び単位時間当りの透過量、すなわちQ
(Kg/m2・hr)で表示する〕が小さいため、膜
表面積を大きくする必要がある、 などの問題がある。
(2) Amount of permeation through a polymer membrane [Generally, the amount of permeation per unit membrane surface area and unit time, that is, Q
(expressed in Kg/m 2 hr)] is small, so there are problems such as the need to increase the membrane surface area.

(問題点を解決するための手段) 本発明者らはこのような従来のパーベーパレー
シヨン法の問題点を解消し、有機混合液体を高い
分離係数及び大きな透過速度でパーベーパレーシ
ヨン分離する方法を提供するため、種々の膜素材
を用いて実験を行つていたところ、意外にも従
来、パーベーパレーシヨン用の分離膜として全く
用いられていなかつたキトサンの遊離アミノ基の
少くとも10モル%に親水基をもつ置換基が導入さ
れたN―変性キトサン膜が実際には、従来報告さ
れていた実験値よりも高い分離係数及び高い透過
速度を達成することを見い出し、本発明に到達し
たものである。すなわち、本発明はキトサンの遊
離アミノ基の少くとも10モル%に親水基をもつ置
換基が導入されたN―変性キトサン膜(以下N―
変性キトサン膜と称す)を用いて少くとも有機液
体をその構成々分の一つとする液体混合物パーベ
ーパレーシヨンによつて分離することを特徴とす
る液体混合物の分離法である。
(Means for Solving the Problems) The present inventors solved the problems of the conventional pervaporation method and separated an organic mixed liquid by pervaporation with a high separation coefficient and high permeation rate. In order to provide this method, we conducted experiments using various membrane materials and found that at least 10 of the free amino groups in chitosan, which had not previously been used as a separation membrane for pervaporation, We have discovered that an N-modified chitosan membrane in which substituents with hydrophilic groups have been introduced in mol% actually achieves a higher separation coefficient and higher permeation rate than previously reported experimental values, and have thus arrived at the present invention. This is what I did. That is, the present invention provides an N-modified chitosan membrane (hereinafter referred to as N-
This is a method for separating a liquid mixture, which is characterized by separating a liquid mixture by pervaporation using a modified chitosan membrane (referred to as a modified chitosan membrane) in which at least an organic liquid is one of its components.

本発明においてN―変性キトサンとはキトサン
の遊離NH2基がNHCOR(X)oまたはNHOR(X)
o基〔Rは炭素数2〜50の炭化水素基、XはOH、
COOH、SO3Hなど、水と強い親和性を示す極性
基を表わし、nは1〜2の整数である〕に変性さ
れたものである。かかるN―変性キトサン膜は後
述する脱アセチル化度が70モル%以上のキトサン
膜に無水コハク酸、無水フタル酸、スルホ無水フ
タル酸、トリメリツト酸、β―プロピオラクト
ン、テルペン系化合物、多官能性脂肪酸などを不
均一系の反応条件下反応させることにより得るこ
とができる。本発明において用いられるN―変性
キトサンはその変性化度がキトサンのフリーのア
ミノ基の10mol%以上(好ましくは30モル%以
上)のものである。本発明の方法においてはかか
る変性により親水基が導入されたN―変性キトサ
ン膜を用いることが必須であり、変性しないキト
サン膜よりも、また酢酸、プロピオン酸、安息香
酸などの親水性基を持たないものでアシル化した
キトサン膜よりもパーベーパレーシヨンにおける
分離性能が優れている。
In the present invention, N-modified chitosan refers to free NH 2 groups of chitosan as NHCOR(X) o or NHOR(X).
o group [R is a hydrocarbon group having 2 to 50 carbon atoms, X is OH,
represents a polar group such as COOH or SO 3 H, which has a strong affinity for water, and n is an integer of 1 to 2]. Such an N-modified chitosan film is a chitosan film with a degree of deacetylation of 70 mol% or more, which will be described later, containing succinic anhydride, phthalic anhydride, sulfophthalic anhydride, trimellitic acid, β-propiolactone, a terpene compound, and a polyfunctional It can be obtained by reacting fatty acids etc. under heterogeneous reaction conditions. The degree of modification of the N-modified chitosan used in the present invention is 10 mol% or more (preferably 30 mol% or more) of the free amino groups of chitosan. In the method of the present invention, it is essential to use an N-modified chitosan membrane into which hydrophilic groups have been introduced through such modification, and it is more preferable to use an N-modified chitosan membrane that has hydrophilic groups such as acetic acid, propionic acid, and benzoic acid than unmodified chitosan membranes. The separation performance in pervaporation is superior to that of acylated chitosan membranes.

本発明のN―変性キトサン膜を得るのに用いら
れるキトサンは、えび、かになどの甲殻類の外皮
の構成成分であるキチンをアルカリ濃度が30〜50
重量%のアルカリ溶液(例えば水酸化ナトリウム
水溶液)とともに60℃以上の温度に加熱し、脱ア
セチル化して得られる物質で、その化学構造はD
―グルコサミンを基本単位とするβ―(1→4)
結合の多糖類であり、酢酸、塩酸、リン酸などの
希薄な水溶液には塩を形成して容易に溶解する
が、これをアルカリ水溶液と接触するときは再び
凝固析出する性質を有している。したがつて、キ
トサンを上記溶媒に溶解させ、得られた溶液を流
えんし、アルカリ水溶液と接触させることにより
キトサン膜を得ることができ、この膜に上記の如
きN―変性化が行われる。なお、キトサンとは、
キチンを濃アルカリ処理して得られる脱アセチル
化物の総称であるが、本発明においてN―変性化
のために用いられるキトサンは脱アセチル化度70
%以上のものが好ましい。
The chitosan used to obtain the N-modified chitosan film of the present invention is chitin, which is a component of the outer skin of crustaceans such as shrimp and crabs, and has an alkaline concentration of 30 to 50.
A substance obtained by deacetylation by heating with a wt% alkaline solution (e.g. sodium hydroxide aqueous solution) to a temperature of 60℃ or higher, and its chemical structure is D.
- β whose basic unit is glucosamine - (1 → 4)
It is a bonded polysaccharide that easily dissolves in dilute aqueous solutions such as acetic acid, hydrochloric acid, and phosphoric acid, forming a salt, but when it comes into contact with an alkaline aqueous solution, it solidifies and precipitates again. . Therefore, a chitosan film can be obtained by dissolving chitosan in the above-mentioned solvent, filtrating the resulting solution, and bringing it into contact with an aqueous alkaline solution, and this film is subjected to N-modification as described above. Furthermore, what is chitosan?
It is a general term for deacetylated products obtained by treating chitin with concentrated alkali, and the chitosan used for N-modification in the present invention has a degree of deacetylation of 70.
% or more is preferable.

N―変性キトサン膜はキトサンとポリビニルア
ルコール(PVA)とのブレンド膜から得られた
ブレンド膜であつてもよい。ブレンドに用いる
PVAはケン化度が80%以上、好ましくは98%以
上のものが用いられる。N―変性キトサン膜とは
上記N―変性キトサンを少くとも一構成成分とす
る膜であり、ブレンド膜、充填剤添加膜、グラフ
ト膜、架橋膜なども含む。これらキトサン膜の構
造は、均質膜、複合膜、非対称膜などの種々の構
造がある。
The N-modified chitosan film may be a blend film obtained from a blend film of chitosan and polyvinyl alcohol (PVA). used for blending
PVA has a degree of saponification of 80% or more, preferably 98% or more. The N-modified chitosan membrane is a membrane containing the above-mentioned N-modified chitosan as at least one component, and also includes blend membranes, filler-added membranes, graft membranes, crosslinked membranes, and the like. These chitosan membranes have various structures such as homogeneous membranes, composite membranes, and asymmetric membranes.

本発明の方法で使用する分離膜の厚さは、1μ
〜300μ、好ましくは5〜200μである。膜厚がこ
れより薄くなると膜の強度が不足するか、耐久性
が不充分となる。また、膜厚がこれより厚い場合
には膜を透過する液体混合物の透過量が小さくな
つて実用的でない。さらに、N―変性キトサン膜
を多孔膜(微細多孔膜など)の上に付着させて使
用すると、N―変性キトサン膜の膜厚を薄くして
も充分使用に耐えるものとなる。この場合のN―
変性キトサン膜の厚さは0.1μ程度まで薄くするこ
とができる。前記分離膜の形状は、通常平板な膜
(平膜)として用いるが、その他例えば円筒状又
は中空糸の形状として膜表面積を大きくして用い
ることもできる。
The thickness of the separation membrane used in the method of the present invention is 1μ
-300μ, preferably 5-200μ. If the film thickness is thinner than this, the strength of the film will be insufficient or the durability will be insufficient. Furthermore, if the membrane thickness is thicker than this, the amount of liquid mixture permeating through the membrane will be small, making it impractical. Furthermore, when the N-modified chitosan membrane is used by being attached to a porous membrane (such as a microporous membrane), the N-modified chitosan membrane can be used sufficiently even if the thickness of the N-modified chitosan membrane is reduced. In this case N-
The thickness of the modified chitosan membrane can be reduced to about 0.1μ. The shape of the separation membrane is usually a flat membrane (flat membrane), but other shapes such as a cylindrical shape or a hollow fiber shape can also be used to increase the membrane surface area.

本発明において、被分離液体である「混合液」
とは、共沸混合液、近接沸点混合液などであり、
とくに本発明の方法は有機混合液の分離に著効が
ある。有機混合液のうち共沸混合液としては、
水/エタノール、水/イソプロパノールなどの
水/アルコール、酢酸メチル/メチルアルコー
ル、酢酸エチル/エチルアルコール、ベンゼン/
シクロヘキサン、メタノール/アセトン、ベンゼ
ン/メタノール、ベンゼン/エタノール、アセト
ン/クロロホルム、メタノール/アセトンなどが
あげられる。また近接沸点混合液としては、エチ
ルベンゼン/スチレン、パラクロルエチルベンゼ
ン/パラクロルスチレン、トルエン/メチルシク
ロヘキサン、ブタジエン/ブテン類、ブタジエ
ン/ブタン類などがあげられる。水/アセトン、
水/エチレングリコール、水/グリセリン、水/
メタノールなどの普通の蒸留でも分離することの
できる混合液なども、上記混合液のなかに含まれ
る。
In the present invention, the "mixed liquid" which is the liquid to be separated
is an azeotropic mixture, a close boiling point mixture, etc.
The method of the present invention is particularly effective in separating organic mixed liquids. Among organic liquid mixtures, azeotropic liquid mixtures include:
Water/alcohol such as water/ethanol, water/isopropanol, methyl acetate/methyl alcohol, ethyl acetate/ethyl alcohol, benzene/
Examples include cyclohexane, methanol/acetone, benzene/methanol, benzene/ethanol, acetone/chloroform, and methanol/acetone. Further, examples of liquid mixtures with close boiling points include ethylbenzene/styrene, parachloroethylbenzene/parachlorostyrene, toluene/methylcyclohexane, butadiene/butenes, butadiene/butanes, and the like. water/acetone,
Water/ethylene glycol, water/glycerin, water/
The above mixture also includes liquid mixtures such as methanol that can be separated by ordinary distillation.

本発明に用いられるパーベーパレーシヨン装置
は特に限定されることなく従来公知の装置が用い
られ、かかる装置を常法の条件で運転して有機混
合液体を分離することができる。パーベーパレー
シヨンを行うにあたり、供給液側と透過荷側の圧
力差については大きければ大きいほど効果的であ
るが、工業的に実施するには0.5〜1気圧の圧力
差を設けることが好適である。また供給液側の圧
力は大気圧あるいはその近傍の圧力が好ましく、
透過液側の圧力は透過成分の蒸気圧以下の減圧に
保つことが好ましい。透過液側を減圧に保つ方法
としては真空に引いて減圧にするか、構成々分と
反応しないガスを流して低蒸気圧に保つなどの方
法がある。分離温度は40℃以上で、かつ分離すべ
き有機混合液体の共沸温度以下の温度が普通であ
るが特に限定されない。液体混合物の分離にあた
りキトサン系膜を1回通過させるだけでは目的の
濃度が得られない場合には同様な装置を連続に設
置して多数回通過させたり、蒸留と組み合せたり
して目的の濃度にまで濃縮分離することができ
る。
The pervaporation device used in the present invention is not particularly limited, and any conventionally known device can be used, and such a device can be operated under conventional conditions to separate the organic mixed liquid. When performing pervaporation, the larger the pressure difference between the feed liquid side and the permeate side, the more effective it is, but for industrial implementation, it is preferable to provide a pressure difference of 0.5 to 1 atmosphere. be. In addition, the pressure on the supply liquid side is preferably atmospheric pressure or a pressure close to it.
The pressure on the permeate side is preferably maintained at a reduced pressure below the vapor pressure of the permeate component. Methods for maintaining the permeate side at reduced pressure include drawing a vacuum to reduce the pressure, or flowing a gas that does not react with the components to maintain a low vapor pressure. The separation temperature is usually 40°C or higher and lower than the azeotropic temperature of the organic liquid mixture to be separated, but is not particularly limited. When separating a liquid mixture, if the desired concentration cannot be obtained by passing it through a chitosan membrane once, the desired concentration can be achieved by installing a similar device in succession and passing it through multiple times, or by combining it with distillation. can be concentrated and separated.

(発明の効果) 本発明方法によれば、従来の膜分離方法にくら
べて高い分離係数及び大きい透過速度が達成され
る。このため本発明の方法によれば分離システム
のコンパクト化、処理能力の増大、低コスト化が
図られ、本発明は化学工業などの分離精製プロセ
スの短縮化や省エネルギー化への膜分離方法の実
用化に有効であり、産業上の有用性が極めて大き
いものである。
(Effects of the Invention) According to the method of the present invention, a higher separation coefficient and higher permeation rate can be achieved than in conventional membrane separation methods. Therefore, according to the method of the present invention, the separation system can be made more compact, the processing capacity can be increased, and the cost can be reduced. It is effective in the production of chemical substances, and has extremely great industrial utility.

(実施例) 次に実施例により本発明方法を更に具体的に説
明する。
(Example) Next, the method of the present invention will be explained in more detail with reference to Examples.

実施例 1 水で膨潤した脱アセチル化度99%のキトサン膜
(8.5×8.5cm2)3枚をシヤーレに入れ、50mlのメ
タノールを加えた。これに更にメタノール50mlに
無水コハク酸3gを溶かした溶液を加えて、室温
で18時間静置した。
Example 1 Three water-swollen chitosan membranes (8.5 x 8.5 cm 2 ) with a degree of deacetylation of 99% were placed in a shear dish, and 50 ml of methanol was added. A solution of 3 g of succinic anhydride dissolved in 50 ml of methanol was added to the mixture, and the mixture was allowed to stand at room temperature for 18 hours.

反応終了後メタノールで洗浄後、メタノール中
に浸漬してからガラス板上で乾燥した。このよう
にして得たN―β―カルボキシプロピオニルキト
サンの元素分析値から求められるN―アシル化度
は68%、膜厚21μであつた。
After the reaction was completed, it was washed with methanol, immersed in methanol, and then dried on a glass plate. The degree of N-acylation determined from elemental analysis of the N-β-carboxypropionyl chitosan thus obtained was 68%, and the film thickness was 21 μm.

有効面積23.5cm2のパーベーパレーシヨン装置に
膜をセツトし、混合液室にエタノール〜水(50/5
0wt/wt)混合液を供給し、60℃で排気室を真空
ポンプにて7mmHgに減圧にし分離を行つた。こ
の時水(H2O)のエタノール(EtOH)に対する
分離係数αH2O EtOHは58.1、透過量は1.48Kg/m2・hで
あつた。
Set the membrane in a pervaporation device with an effective area of 23.5cm2 , and mix ethanol to water (50/5
0wt/wt) mixture was supplied, and the exhaust chamber was depressurized to 7mmHg using a vacuum pump at 60°C to perform separation. At this time, the separation coefficient α H2O EtOH of water (H 2 O) with respect to ethanol (EtOH) was 58.1, and the permeation amount was 1.48 Kg/m 2 ·h.

実施例 2 脱アセチル化度99%のキトサン膜(8.6×8.6
cm2)4枚をシヤーレに入れ、アセトニトリル〜水
混合液(4:1)50mlを加えて約10分間放置し
た。これに、アセトニトリル〜β―プロピオラク
トン(30ml/20ml)混合液を加え、更にアセトニ
トリル〜水(10ml/10ml)を加えて室温で2時間
反応した。反応終了後、80%エタノール水溶液で
洗浄し、0.5%のNaOHを含む80%エタノール水
溶液70ml中に膜を4時間浸漬後、50%エタノール
水溶液で洗浄して、さらに50%エタノール水溶液
で2回洗浄した。得られた膜を70%エタノール水
溶液で洗浄した後ガラス板上で乾燥した。このよ
うにして得たβ―プロピオラクトン反応キトサン
膜の元素分析値から求められるN―反応率は64
%、膜厚は20μであつた。
Example 2 Chitosan membrane with a degree of deacetylation of 99% (8.6×8.6
cm 2 ) were placed in a shear dish, 50 ml of an acetonitrile-water mixture (4:1) was added, and the mixture was left for about 10 minutes. A mixture of acetonitrile and β-propiolactone (30 ml/20 ml) was added to this, followed by acetonitrile and water (10 ml/10 ml), and the mixture was reacted at room temperature for 2 hours. After the reaction, wash with 80% ethanol aqueous solution, immerse the membrane in 70 ml of 80% ethanol aqueous solution containing 0.5% NaOH for 4 hours, wash with 50% ethanol aqueous solution, and then wash twice with 50% ethanol aqueous solution. did. The obtained membrane was washed with a 70% ethanol aqueous solution and then dried on a glass plate. The N-reaction rate determined from the elemental analysis values of the β-propiolactone-reacted chitosan film obtained in this way is 64
%, and the film thickness was 20μ.

実施例1と同じ条件で膜性能を測定したところ
αH2O EtOH=21.0、Q=4.42Kg/m2・hであつた。
Membrane performance was measured under the same conditions as in Example 1 and found that α H2O EtOH = 21.0 and Q = 4.42 Kg/m 2 ·h.

実施例 3 水で膨潤した脱アセチル化度99%のキトサン膜
(8.5×8.5cm2)3枚をシヤーレに入れ、20mlのメ
タノールを加えた。次に、メタノール80mlに無水
フタル酸3gを溶解したものを加えて18時間室温
で放置した。反応終了後、実施例2と同様に処理
して乾燥膜を得た。このようにして得られたN―
O―カルボキシベンゾイルキトサンの元素分析値
より得られるアシル化度は37%、膜厚は22μであ
つた。
Example 3 Three water-swollen chitosan membranes (8.5 x 8.5 cm 2 ) with a degree of deacetylation of 99% were placed in a shear dish, and 20 ml of methanol was added. Next, a solution of 3 g of phthalic anhydride in 80 ml of methanol was added and left at room temperature for 18 hours. After the reaction was completed, it was treated in the same manner as in Example 2 to obtain a dry film. N- obtained in this way
The degree of acylation obtained from elemental analysis of O-carboxybenzoyl chitosan was 37%, and the film thickness was 22μ.

実施例1と同じ条件で膜性能を測定したところ
αH2O EtOH=37.2、Q=1.88Kg/m2・hであつた。
Membrane performance was measured under the same conditions as in Example 1 and found that α H2O EtOH = 37.2 and Q = 1.88 Kg/m 2 ·h.

比較例 1 脱アセチル化度99%膜厚21μのキトサン膜を実
施例1と同じ条件で膜性能を測定したところ
αH2O EtOH=9.1 Q=2.10Kg/m2・hであつた。
Comparative Example 1 The membrane performance of a chitosan membrane with a degree of deacetylation of 99% and a thickness of 21 μm was measured under the same conditions as in Example 1, and it was found that α H2O EtOH = 9.1 Q = 2.10 Kg/m 2 ·h.

比較例 2 水で膨潤した脱アセチル化度99%のキトサン膜
(8.5×8.5cm2)4枚をシヤーレに入れ50mlのメタ
ノールを加えた。これに更にメタノール50mlに無
水酢酸3mlを溶かした溶液を加えて、室温で17時
間静置した。反応終了後メタノールおよび水で洗
浄してガラス板上で乾燥した。
Comparative Example 2 Four water-swollen chitosan membranes (8.5 x 8.5 cm 2 ) with a degree of deacetylation of 99% were placed in a shear dish, and 50 ml of methanol was added. A solution of 3 ml of acetic anhydride dissolved in 50 ml of methanol was added to this, and the mixture was allowed to stand at room temperature for 17 hours. After the reaction was completed, it was washed with methanol and water and dried on a glass plate.

このようにして得たN―アセチル化キトサンの
元素分析値から求められるN―アセチル化度は70
%、膜厚は21μであつた。
The degree of N-acetylation determined from the elemental analysis value of the N-acetylated chitosan obtained in this way is 70.
%, and the film thickness was 21μ.

実施例1と同じ条件で膜性能を測定したところ
αH2O EtOH=4.7、Q=9.98Kg/m2・hであつた。
Membrane performance was measured under the same conditions as in Example 1 and found that α H2O EtOH = 4.7 and Q = 9.98 Kg/m 2 ·h.

比較例 3 反応試剤に無水プロピオン酸を用いて、比較例
と同じ方法でアシル化度が70%膜厚が20μのN―
プロピオニルキトサンを得た。
Comparative Example 3 Using propionic anhydride as a reaction reagent, a N- film with an acylation degree of 70% and a film thickness of 20μ was prepared in the same manner as in Comparative Example.
Propionyl chitosan was obtained.

実施例1と同じ条件で膜性能を測定したところ
αH2O EtOH=3.6 Q=8.64Kg/m2・hであつた。
Membrane performance was measured under the same conditions as in Example 1 and found that α H2O EtOH = 3.6 Q = 8.64 Kg/m 2 ·h.

なお、実施例1,2,3及び比較例1,2,3
に用いたキトサンは次のようにして調整した。ズ
ワイガニから得た角片状のキチンを約50%水酸化
ナトリウム水溶液中窒素ガスを吹込みながら、
110℃で1時間加熱して脱アセチル化し、反応物
を取り出し、十分水洗する。この反応物について
同じ操作を3回繰り返し行つて得たキトサンを2
%酢酸水溶液に溶解し、約2%のキトサン溶液を
調製する。この溶液を多量の1N水酸化ナトリウ
ム水溶液中に流し込んで紐状に凝固さす。この紐
状のキトサンを前回と同じ条件で再度処理する
と、脱アセチル化度99%のキトサンを得る。
In addition, Examples 1, 2, 3 and Comparative Examples 1, 2, 3
The chitosan used was prepared as follows. Chitin flakes obtained from snow crab are placed in a 50% sodium hydroxide aqueous solution while blowing nitrogen gas.
Deacetylation is achieved by heating at 110°C for 1 hour, and the reactant is taken out and thoroughly washed with water. The same operation was repeated three times for this reaction product to obtain chitosan.
% acetic acid aqueous solution to prepare an approximately 2% chitosan solution. Pour this solution into a large amount of 1N aqueous sodium hydroxide solution and solidify it into a string. When this string-like chitosan is treated again under the same conditions as before, chitosan with a degree of deacetylation of 99% is obtained.

つぎに、キトサンの製膜は以下の様に行つた。
キトサン0.5gを蒸留水35〜70mlに約30分浸漬し
た後、氷酢酸0.75mlを加え、撹拌しながら溶解し
た。次に、この溶液を吸引過した後、クリーン
ベンチ内で水平に保つたガラス板(鏡面仕上げ、
20×20cm)上に流延し室温で自然乾燥した。得ら
れた膜を1Nの水酸化ナトリウム水溶液に浸漬し、
不溶化した後、蒸留水で十分洗つて脱アセチル化
度99%のキトサン膜を得た。
Next, chitosan film formation was performed as follows.
After immersing 0.5 g of chitosan in 35 to 70 ml of distilled water for about 30 minutes, 0.75 ml of glacial acetic acid was added and dissolved with stirring. Next, after suctioning this solution, a glass plate (mirror finish,
20 x 20 cm) and air-dried at room temperature. The obtained membrane was immersed in a 1N aqueous sodium hydroxide solution,
After insolubilization, it was thoroughly washed with distilled water to obtain a chitosan membrane with a degree of deacetylation of 99%.

Claims (1)

【特許請求の範囲】[Claims] 1 キトサンの遊離アミノ基の少くとも10モル%
に親水基をもつ置換基が導入されたN―変性キト
サン膜を用いて、少くとも有機液体をその構成々
分の一つとする液体混合物をパーベーパレーシヨ
ンによつて分離することを特徴とする液体混合物
の分離法。
1 At least 10 mol% of free amino groups of chitosan
A liquid mixture containing at least an organic liquid as one of its components is separated by pervaporation using an N-modified chitosan membrane into which a substituent having a hydrophilic group is introduced. Separation method for liquid mixtures.
JP21714184A 1984-10-15 1984-10-15 Separation of liquid mixture Granted JPS6193802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21714184A JPS6193802A (en) 1984-10-15 1984-10-15 Separation of liquid mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21714184A JPS6193802A (en) 1984-10-15 1984-10-15 Separation of liquid mixture

Publications (2)

Publication Number Publication Date
JPS6193802A JPS6193802A (en) 1986-05-12
JPS6366563B2 true JPS6366563B2 (en) 1988-12-21

Family

ID=16699494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21714184A Granted JPS6193802A (en) 1984-10-15 1984-10-15 Separation of liquid mixture

Country Status (1)

Country Link
JP (1) JPS6193802A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242397A (en) * 1988-08-02 1990-02-13 Toshiba Corp Cleaning method for sludge in fuel reprocessing
JPH02135134A (en) * 1988-11-16 1990-05-24 Katokichi:Kk Membrane for separating water-alcohol mixed liquid
US10618014B2 (en) 2015-05-29 2020-04-14 Asahi Kasei Kabushiki Kaisha Gas separation memebrane

Also Published As

Publication number Publication date
JPS6193802A (en) 1986-05-12

Similar Documents

Publication Publication Date Title
US4808313A (en) Liquid separation membrane for pervaporation
US4735193A (en) Separation of a monosaccharide with mixed matrix membranes
JPH0334969B2 (en)
JPH02135134A (en) Membrane for separating water-alcohol mixed liquid
JPH031056B2 (en)
JPH0371169B2 (en)
JPH0553528B2 (en)
RU2414953C1 (en) Method of producing composite membranes with fullerene-containing polymer selective layer
US4111810A (en) Desalination reverse osmotic membranes and their preparation
US4880545A (en) Ultra-filtration membranes and a method for the separation of sugars using the same
EP0190212A1 (en) Separation of water from organic fluids.
JPS6366563B2 (en)
US3544455A (en) Itaconic acid purification process using reverse osmosis
CN1059356C (en) Modified polysulphone super-filter membrane and its preparation and application
JPS6339281B2 (en)
JPH03131328A (en) Separation of liquid mixture
JP3101357B2 (en) Separation membrane for pervaporation
JPH04215827A (en) Production of separation membrane for pervaporation
JPH04284828A (en) Membrane separation method
JPH05154365A (en) Water permselective type osmotic gasification film
JP3336150B2 (en) How to recover the performance of a permselective pervaporation membrane
JPS63126504A (en) Sulfonated and polysaccharide crosslinked composite membrane
KR920010859B1 (en) Membrane producing method
JPS63151333A (en) Gas separation membrane and its preparation
JPH047254B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term