JPS6365899B2 - - Google Patents

Info

Publication number
JPS6365899B2
JPS6365899B2 JP57068488A JP6848882A JPS6365899B2 JP S6365899 B2 JPS6365899 B2 JP S6365899B2 JP 57068488 A JP57068488 A JP 57068488A JP 6848882 A JP6848882 A JP 6848882A JP S6365899 B2 JPS6365899 B2 JP S6365899B2
Authority
JP
Japan
Prior art keywords
water
ultrasonic
temperature
measuring device
ultrasonic oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57068488A
Other languages
Japanese (ja)
Other versions
JPS58184525A (en
Inventor
Kyomi Minohara
Hiroshi Nakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP57068488A priority Critical patent/JPS58184525A/en
Publication of JPS58184525A publication Critical patent/JPS58184525A/en
Publication of JPS6365899B2 publication Critical patent/JPS6365899B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
    • G01K11/24Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of the velocity of propagation of sound

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 この発明は水中の水温測定装置に関し、詳しく
は超音波を利用して水中の水温を間接的に測定す
る装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water temperature measuring device in water, and more particularly to a device for indirectly measuring water temperature in water using ultrasonic waves.

従来、水中の温度測定を行う装置としてサーミ
スタのような感温素子が多く用いられている。こ
の種の測定装置は比較的精度良く温度測定を行う
ことができるが、局部的にしか測定ができず、広
範囲の温度分布を測定するには、多数の異なる点
の温度測定を行わねばならず、測定に長時間を要
する欠点があつた。
Conventionally, temperature sensing elements such as thermistors have often been used as devices for measuring temperature in water. This type of measuring device can measure temperature with relatively high accuracy, but it can only measure locally, and in order to measure a wide range of temperature distribution, temperature measurements must be taken at many different points. However, it had the disadvantage that measurement required a long time.

この発明は上記に鑑み、広範囲であつても、水
中の温度及びその分布が比較的正確にかつ容易に
測定し得る水中の水温測定装置を提供することを
目的としてなされたものであつて、水底方向への
超音波発信指向角度が可変とされた超音波発振器
と、該超音波発振器から水平方向に一定距離隔て
られて配置され、超音波の水底反射波の受信指向
角度が可変とされた超音波受波器と、前記超音波
発振器の発信指向角検出装置並びに前記超音波受
波器の受信感度測定装置と、水面付近の水温を検
出する検温装置と、前記超音波発振器の最大受信
感度となる送信指向角度と、前記検温装置、及び
概知の送受波器間の距離、並びに水深の各情報が
入力され、これらより水中の超音波屈折率を推定
し、この推定量から水中の水温を算出する演算回
路とから構成されたことを特徴とするものであ
る。
In view of the above, the present invention has been made for the purpose of providing an underwater water temperature measuring device that can relatively accurately and easily measure the temperature and its distribution in water even over a wide range. An ultrasonic oscillator whose directional angle for transmitting ultrasonic waves is variable; a sonic wave receiver, a transmission directivity angle detection device of the ultrasonic oscillator, a receiving sensitivity measuring device of the ultrasonic receiver, a temperature measurement device that detects water temperature near the water surface, and a maximum receiving sensitivity of the ultrasonic oscillator. Information such as the transmission directivity angle, the distance between the temperature measurement device and the known transducer, and the water depth is input, and the ultrasonic refractive index in the water is estimated from these, and the water temperature in the water is calculated from this estimated amount. It is characterized in that it is comprised of an arithmetic circuit that performs calculations.

以下、この発明を実施例により説明する。 This invention will be explained below with reference to Examples.

第1図はこの発明の構成概念図であり、超音波
発振器E及び超音波受波器Rが、例えば船体Vの
船首尾線方向の水平方向に一定間隔L隔てた位置
に配置され、それぞれの超音波発振指向角度θ1
び受波指向角度θ3が調整可能に取付けられてい
る。
FIG. 1 is a conceptual diagram of the configuration of the present invention, in which an ultrasonic oscillator E and an ultrasonic receiver R are arranged, for example, at positions spaced apart from each other by a certain distance L in the horizontal direction of the bow and stern direction of the hull V. It is attached so that the ultrasonic oscillation directivity angle θ 1 and the receiving wave directivity angle θ 3 can be adjusted.

上記超音波発振器Eには、発信指向角検出装置
1が、又、超音波受波器Rには受信感度測定装置
2がそれぞれ設けられ、最大受信感度のときの発
信指向角θ1が出力されるようにされている。
The ultrasonic oscillator E is provided with a transmitting directivity angle detection device 1, and the ultrasonic receiver R is provided with a receiving sensitivity measuring device 2, which outputs the transmitting directivity angle θ 1 at the maximum receiving sensitivity. It is designed to be

一方、水面付近の水温を検出する検温装置3が
設けられており、この検温装置3よりそのときの
水温(T1℃)が出力されるようにされている。
On the other hand, a temperature measuring device 3 for detecting the water temperature near the water surface is provided, and the temperature measuring device 3 outputs the water temperature (T 1 °C) at that time.

そして、上記出力はそれぞれ予め、L(送受波
器間隔)、水深Dが入力された演算回路4に入力
され、この演算回路4よりそのときの水中の水温
が例えばデジタル表示4′により出力されるよう
に構成されている。
Each of the above outputs is inputted in advance to an arithmetic circuit 4 into which L (transducer/receiver spacing) and water depth D are input, and the arithmetic circuit 4 outputs the water temperature at that time on a digital display 4', for example. It is configured as follows.

次に、この発明の装置の使用法について説明す
る。
Next, how to use the device of this invention will be explained.

まず前記超音波発振器Eより発信された超音波
SEの水底B反射波SE′が受波器Rに受信されるよ
うにし、このとき、受波器Rに受信される信号が
最大となるよう発振器Eの発信指向角θ1並びに受
波器の受波指向角θ3を探査し、得られたそれぞれ
の指向角度θ1,θ3と、発振器E、受波器R間の水
平距離L(m)、水面の水温T(℃)、概知の水深D
(m)より水中における超音波の屈折量を推定し、
この屈折量を基にして水中の温度を知るのであ
る。
First, the ultrasonic waves emitted from the ultrasonic oscillator E
The bottom B reflected wave S E ′ of S E is received by the receiver R, and at this time, the transmitting directivity angle θ 1 of the oscillator E and the receiving wave are adjusted so that the signal received by the receiver R is maximized. The received wave directivity angle θ 3 of the receiver was investigated, and the obtained directivity angles θ 1 and θ 3 , the horizontal distance L (m) between the oscillator E and the receiver R, the water surface temperature T (°C), Approximate water depth D
Estimating the amount of refraction of ultrasound in water from (m),
The temperature of the water is determined based on this amount of refraction.

上記作用をさらに第2図により詳細に説明す
る。
The above operation will be further explained in detail with reference to FIG.

一般に水中を伝播する音速は音速をC(m/
s)、水温をT(℃)、水深をD(m)とすると、 C=1450+4.21T−0.037T2+0.0168×D であらわされ、水中音速は温度の関数F(T)と
して示されることが知られている。
Generally speaking, the speed of sound propagating in water is C (m/m/
s), water temperature is T (℃), water depth is D (m), it is expressed as C = 1450 + 4.21T - 0.037T 2 + 0.0168 × D, and the underwater sound speed is shown as a function of temperature F (T) It is known.

通常、水中の水温の変化はきわめて複雑であ
り、上記関数も、きわめて複雑な形となるのであ
るが、説明の簡略化のため水中の水温が第2図に
示すように、深さD/2mの位置で層状に変化し
ているものと仮定すると、上層部における水温を
T1℃、音速をC1(m/s)とすると C1=1450+4.21T1−0.037T2 1…… 又、下層部における水温をT2℃、音速を
C2m/sとすると C2=1450+4.21T2−0.037T2 2+0.0168×D/2
…… 水温の変化する部分では、音速が変化するから
屈折が生じ、この屈折角の入射角をU1(DEG)、
屈折角をU2(DEG)とすると C1/cosU1=C2/cosU2(スネルの公式)…… θ1=U1 であらわされる。
Normally, changes in water temperature in water are extremely complicated, and the above function also takes a very complicated form, but for the sake of simplicity, the water temperature in water is changed to a depth of D/2m as shown in Figure 2. Assuming that the water temperature changes in a layered manner at the position of
If T 1 ℃ and the speed of sound are C 1 (m/s), C 1 = 1450 + 4.21T 1 −0.037T 2 1 ... Also, if the water temperature in the lower layer is T 2 ℃ and the speed of sound is
If C 2 m/s, C 2 = 1450 + 4.21T 2 −0.037T 2 2 +0.0168×D/2
... In areas where the water temperature changes, refraction occurs because the speed of sound changes, and the incident angle of this refraction angle is defined as U 1 (DEG),
When the refraction angle is U 2 (DEG), it is expressed as C 1 /cosU 1 =C 2 /cosU 2 (Snell's formula)... θ 1 =U 1 .

上記〜式において、θ1(=U1)、C1、T1
それぞれ概知の値であり、又、式と第1図に示
した図形的関係より tanθ1=tanU1=D/2/L1=D/2L1 tanU2=D/2/L2=D/2L2 L1+L2=1/2L より式は 但し、A=DtanU1/LtanU1−D と変形され、式と式より となり、式を0にするT2の値を求めれば所定
の水温が算出可能となる訳である。
In the above formulas, θ 1 (=U 1 ), C 1 , and T 1 are respectively known values, and from the formula and the graphical relationship shown in Figure 1, tanθ 1 = tanU 1 = D/2 /L 1 = D/2L 1 tanU 2 = D/2/L 2 = D/2L 2 L 1 +L 2 = 1/2L The formula is However, it is transformed as A=DtanU 1 /LtanU 1 −D, and from Eq. Therefore, the predetermined water temperature can be calculated by finding the value of T 2 that makes the equation 0.

なお、式において、D、C1、L、U1及びA
はすべて概知の値であるから、 とおくと、 (但し、A=DtanU1/LtanU1−D) 式は F(T2)=−0.037T2 2+4.21T2+k=0…… で表わされることとなる。
In addition, in the formula, D, C 1 , L, U 1 and A
are all known values, so (However, A=DtanU 1 /LtanU 1 −D) The formula is expressed as F(T 2 )=−0.037T 2 2 +4.21T 2 +k=0...

なお、第3図は上記計算により算出された指向
角度θ(=U1)と検出水温(T2℃)との関係を示
したものであり、L=100m、D=50m、T1=15
℃における場合のものを示す。
Furthermore, Figure 3 shows the relationship between the directivity angle θ (=U 1 ) calculated by the above calculation and the detected water temperature (T 2 °C), where L = 100 m, D = 50 m, T 1 = 15
The case at ℃ is shown.

又、上記説明において水深Dはできるだけ正確
な値を用いることが望ましいので、例えば海図な
どより所定水域の水深を知るほか、ハンドレツド
などにより直接的に測深した値を採用するのが望
ましい。もつとも、音響測深儀により水深を測定
することもできるが、水中音速は、水温及び水深
によつて変化するため、音響測深儀により得た水
深Dを基準にして水中温度を測定する場合、本発
明により得た水中温度を用いて数次の修正計算を
行う必要がある。なお、このための演算回路5を
第1図における演算回路4に並設した構成として
も良い。
Further, in the above description, it is desirable to use a value as accurate as possible for the water depth D, so in addition to knowing the water depth of a predetermined water area from a nautical chart, for example, it is desirable to use a value directly measured by a hundredth or the like. Of course, it is also possible to measure water depth with an acoustic sounder, but since the underwater sound speed changes depending on the water temperature and water depth, the present invention It is necessary to perform several-order correction calculations using the water temperature obtained by . Note that the arithmetic circuit 5 for this purpose may be arranged in parallel to the arithmetic circuit 4 in FIG. 1.

この発明は以上のように構成されているから、
超音波の送受波器の設定位置、並びに送受波の指
向角度、及び水面の温度を測定するのみで、その
水域の水中温度を測定することが可能であり、従
つて、連続的な水温測定が可能となり、広範囲の
水中水温の測定が短時間にかつ容易に測定するこ
とが可能となるのである。
Since this invention is configured as described above,
It is possible to measure the underwater temperature of a body of water by simply measuring the set position of the ultrasonic transducer, the directivity angle of the transmitted and received waves, and the temperature of the water surface. Therefore, continuous water temperature measurement is possible. This makes it possible to easily measure a wide range of underwater temperatures in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例の構成概念図、第2
図はこの発明の作用の説明図、第3図はこの発明
の測定結果の一例を示す図である。 E……超音波発振器、R……超音波受波器、D
……水深、θ1……発信指向角、θ3……受信指向
角、L……水平距離、1……発信指向角検出装
置、2……受信感度測定装置、3……検温装置、
4……演算回路。
Fig. 1 is a conceptual diagram of the configuration of an embodiment of this invention;
The figure is an explanatory diagram of the operation of the present invention, and FIG. 3 is a diagram showing an example of the measurement results of the present invention. E...Ultrasonic oscillator, R...Ultrasonic receiver, D
... Water depth, θ 1 ... Transmission directivity angle, θ 3 ... Reception directivity angle, L ... Horizontal distance, 1 ... Transmission directivity angle detection device, 2 ... Receiving sensitivity measuring device, 3 ... Temperature measurement device,
4... Arithmetic circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 水底方向への超音波発信指向角度が可変とさ
れた超音波発振器と、該超音波発振器から水平方
向に一定距離隔てられて配置され、超音波の水底
反射波の受信指向角度が可変とされた超音波受波
器と、前記超音波発振器の発信指向角検出装置並
びに前記超音波受波器の受信感度測定装置と、水
面付近の水温を検出する検温装置と、前記超音波
発振器の最大受信感度となる送信指向角度と、前
記検温装置、及び概知の送受波器間の距離、並び
に水深の各情報が入力され、これらより水中の超
音波屈折率を推定し、この推定量から水中の水温
を算出する演算回路とから構成されたことを特徴
とする水中の水温測定装置。
1. An ultrasonic oscillator whose directional angle for transmitting ultrasonic waves toward the water bottom is variable; and an ultrasonic oscillator that is placed horizontally at a certain distance from the ultrasonic oscillator, and whose directional angle for receiving ultrasonic waves reflected from the bottom of the water is variable. an ultrasonic receiver, a device for detecting the transmission directivity angle of the ultrasonic oscillator, a receiving sensitivity measuring device for the ultrasonic receiver, a temperature measuring device for detecting water temperature near the water surface, and a maximum reception angle of the ultrasonic oscillator. Information such as the transmitting directional angle, which is the sensitivity, the distance between the temperature measurement device and the known transducer, and the water depth are input, and from these, the underwater ultrasonic refractive index is estimated, and from this estimated amount, the underwater ultrasonic refractive index is An underwater water temperature measuring device characterized by comprising an arithmetic circuit for calculating water temperature.
JP57068488A 1982-04-22 1982-04-22 Device for measuring temperature in water Granted JPS58184525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57068488A JPS58184525A (en) 1982-04-22 1982-04-22 Device for measuring temperature in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57068488A JPS58184525A (en) 1982-04-22 1982-04-22 Device for measuring temperature in water

Publications (2)

Publication Number Publication Date
JPS58184525A JPS58184525A (en) 1983-10-28
JPS6365899B2 true JPS6365899B2 (en) 1988-12-19

Family

ID=13375119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57068488A Granted JPS58184525A (en) 1982-04-22 1982-04-22 Device for measuring temperature in water

Country Status (1)

Country Link
JP (1) JPS58184525A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131436A (en) * 1983-12-19 1985-07-13 Furuno Electric Co Ltd Measuring device of water temperature
US5624188A (en) * 1994-10-20 1997-04-29 West; David A. Acoustic thermometer
SE0100379D0 (en) * 2001-02-07 2001-02-07 Siemens Elema Ab Arrangement for and method of acoustic determination of fluid temperature
JP6075388B2 (en) * 2012-11-27 2017-02-08 日本電気株式会社 Environmental measurement system and environmental measurement method

Also Published As

Publication number Publication date
JPS58184525A (en) 1983-10-28

Similar Documents

Publication Publication Date Title
JPS6365899B2 (en)
JPS6098313A (en) Ultrasonic flowmeter
US4837750A (en) Apparatus for displaying depth sounding data with nautical range
KR100979286B1 (en) Apparatus and method for detecting distance and orientation between objects under water
JP4408551B2 (en) Underwater distance measuring device
JPH08219854A (en) Ultrasonic liquid level meter
JP2916362B2 (en) Apparatus and method for correcting sound velocity in position measurement
JPH08334321A (en) Ultrasonic distance-measuring apparatus
JP2003215112A (en) Ultrasonic wave density meter
JPH07318397A (en) Ultrasonic liquid gage
JP2020128894A (en) Water temperature measurement device and water temperature measurement method
JPS6344180B2 (en)
JP4033025B2 (en) Multistatic underwater sound velocity measurement method and method
JPH05240719A (en) Ultrasonic remote water temperature measuring device
JPH0374778B2 (en)
JPS62124480A (en) Ice thickness measuring method for sea ice
RU2692409C1 (en) Method of measuring liquid level
JP3506605B2 (en) Apparatus and method for detecting speed of navigation object
JPH0611452Y2 (en) Ultrasonic transducer
JPS59230165A (en) Measuring method of current speed and current direction by ultrasonic current and direction meter
JP2632200B2 (en) Method and apparatus for measuring temperature distribution by ultrasonic wave
JP2983768B2 (en) Ultrasonic remote water temperature measurement device
JPH02116745A (en) Ultrasonic solution density measuring apparatus
JPH0376852B2 (en)
JPS60131484A (en) Measuring device for submarine water depth and water temperature