JPS6364529B2 - - Google Patents

Info

Publication number
JPS6364529B2
JPS6364529B2 JP56133838A JP13383881A JPS6364529B2 JP S6364529 B2 JPS6364529 B2 JP S6364529B2 JP 56133838 A JP56133838 A JP 56133838A JP 13383881 A JP13383881 A JP 13383881A JP S6364529 B2 JPS6364529 B2 JP S6364529B2
Authority
JP
Japan
Prior art keywords
water
resin
absorbing
fiber
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56133838A
Other languages
Japanese (ja)
Other versions
JPS5836209A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13383881A priority Critical patent/JPS5836209A/en
Publication of JPS5836209A publication Critical patent/JPS5836209A/en
Publication of JPS6364529B2 publication Critical patent/JPS6364529B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(1) 発明の分野 本発明は吸湿性を備えた吸水性アクリル繊維に
関するものであり更に詳しくは特定のカルボキシ
ル基を含有せる吸湿吸水性樹脂が配合されてなり
染色性、紡績性、強伸度等の加工法、実用性能と
共に吸湿性、吸水性に優れた新規なアクリル繊維
に関するものである。 従来アクリル繊維はポリアミド、ポリエステル
等他の合成繊維と同様に吸水、吸湿性等に乏しい
ため、肌着、シーツ、スポーツウエア、夏物衣料
用素材等としては快適な着心地性を満足させるた
め多くの場合木綿、レーヨンなどとの混紡品が使
用されている。 このアクリル繊維の吸水、吸湿性を改良するた
めこれ迄多くの検討がなされているが、まだ満足
すべき性能を有するものは提案されていない。 例えば、単一成分からなるアクリル繊維を湿式
紡糸法によつて製造する際膨潤ゲル状糸条の多孔
質構造を固定化することにより吸水性を示すアク
リル繊維が得られるが、この方法により得られる
微細孔は不安定であり、後続の乾燥工程或はアイ
ロンがけなどにより容易に消失して吸水性が低下
すると共に吸湿性に乏しいなどの本質的欠点を内
在している。 また、無機物、有機物等の特定物質を添加した
紡糸原液を紡出した後、該添加物質を除去するこ
とにより空孔を形成する手段についても多くの提
案がなされているが、かかる手段においては該物
質による溶剤の汚染或は作業環境の悪化、該物質
の回収など製造工程の繁雑化等の本質的問題を派
生し、工業的有利な方法とは言い難く、また吸湿
性を改善する手段とはなり得ていない。 或はまた、アクリル繊維の表面を部分的に加水
分解することにより吸水、吸湿性を付与する技術
もいくつか提案されているが、かかる繊維表面に
多量のカルボキシル基が導入された繊維は物性お
よび染色堅牢性の低下が著しく、また吸水時にお
けるベトツキ感を避けることができず実用上満足
すべき手段とは言い難い。 このような状況下において、本発明者らは上記
欠点を解消し優れた実用性能を有する吸水性アク
リル繊維を工業的有利に提供すべく鋭意研究し、
特定の吸水性樹脂を配合することにより製造工程
におけるノズル詰り、糸切れ、巻き付き、融着等
の問題がなく実用性能を具備した吸水性アクリル
繊維を作製し得ることを見出し、先に特願昭55−
17360号発明を提案した。 しかし、かかる先願発明においても多孔質吸水
性繊維は、吸湿能力が木綿、羊毛など天然繊維に
対して不十分であり不感知汗領域での快適感が劣
ること、に加えて低湿下での静電気発生がこれら
天然繊維に対して大きい等の問題を内在してお
り、かゝる観点からの改善が更に望まれている。 一方春夏物素材としての木綿は優れた吸湿、吸
水性、並びに繊維断面形態に起因した特徴ある風
合の面からも優れているが吸水時において膨潤し
編地の通気性を悪くし、大巾な剛性等の低下とあ
いまつて快適な着心地性という点で不満足であ
る。湿潤時に膨潤することのない多孔質吸水性ア
クリル繊維に吸湿性能を付与せしめることが可能
であれば上述の木綿の欠点が改良され合成繊維特
有の加工の容易さを維持し且つ非膨潤性の吸水吸
湿繊維が提供でき、従来アクリル繊維が不得手と
していた春夏物素材への展開が可能になる。 かゝる状況をふまえ、本発明者らは製造工程上
の問題がなく、染色性、紡績加工性等にも優れた
新規な多孔質吸湿吸水性アクリル繊維を提供すべ
く鋭意検討した結果、特定量のカルボキシル基を
結合含有し、特定の水膨潤度を有する樹脂を繊維
中に導入することにより、木綿などの天然繊維に
匹適する吸湿能力、とりわか着用時に重要である
常温常湿下と高温多湿下とで著しく大きい吸湿率
の差を発現させることができ、また熱安定性良好
な長径0.2μ以上の空孔を有し吸水性にも優れた多
孔質吸湿吸水性アクリル繊維を製造工程上の問題
なく工業的有利に提供し得ることを見出し、本発
明に到達した。 即ち、本発明の目的は、熱処理等により容易に
低下することのない安定な吸湿、吸水性能を有す
ると共に強伸度等の物性、紡績性等の実用性能に
優れ特に染色諸特性に問題のない新規な多孔質吸
湿吸水性アクリル繊維を提供することにあり、他
の目的はノズル詰り、糸切れ、巻き付き、融着等
の製造上の問題がなく、また添加物質の回収、作
業環境の悪化などの問題がなく、さらに吸水時に
おけるベトツキ感あるいは膨潤性がなく着心地性
に優れた吸湿、吸水アクリル繊維の工業的有利な
手段を提供することにある。本発明の更に異なる
他の目的は以下の記載により明らかになろう。 このような本発明の上記目的を達成する吸湿吸
水性アクリル繊維は、アクリロニトリル(以下
ANと略す)系重合体70重量%以上97重量%未満
と−COOX(X:H、NH4又はアルカリ金属)で
示されるカルボキシル基を5.0mmol/g以上結合
含有し5〜20c.c./gの水膨潤度を有する絶乾状態
で0.5μ以下の粒子径の吸湿性樹脂及びカルボキシ
ル基を1.5mmol/g以上結合含有し30〜300c.c./
gの水膨潤度を有する絶乾状態で0.5μ以下の粒子
径の吸水性樹脂3重量%以上30重量%未満からな
り、繊維断面に長径が0.2μ以上の空孔を有し、20
℃、90%RH下における吸湿率が10%以上であ
り、かつ保水率が20%以上の繊維である。 以下、本発明を詳述するが、まず本発明のAN
系重合体としては従来公知のアクリル繊維の製造
に用いられるものであればよく、何ら限定される
ものではないが、好ましくは80重量%以上、更に
好ましくは85%以上のANと残部が他のビニルモ
ノマーとの共重合体を使用することが、繊維物
性、染色性等の点で望ましい。 次に、前記AN系重合体に配合される吸湿性樹
脂及び吸水性樹脂について述べる。 かかる吸湿性樹脂としては、−COOX(X:H、
NH4又はアルカリ金属)で示されるカルボキシ
ル基を5mmol/g以上結合含有し、5〜20c.c./
gの水膨潤度を有し、絶乾状態で0.5μ以下、好ま
しくは0.2μ以下の粒子径を有し、水およびAN系
重合体の溶剤に不溶性の樹脂である限り採用する
ことができる。 なお、上記吸湿性樹脂と共に0.2〜3重量%の
吸水性樹脂を併用することで、製造上の問題なく
最終的に得られる繊維の保水率を顕著に改善する
ことができる。 かかる吸水性樹脂としては、カルボキシル基を
1.5mmol/g以上、好ましくは3.0mmol/g以上
結合含有し、30〜300c.c./g、好ましくは30〜150
c.c./gの水膨潤度を有し、絶乾状態で0.5μ以下、
好ましくは0.2μ以下の粒子径を有し、水および
AN系重合体の溶剤に不溶性の樹脂である限り採
用することができる。 本発明の目的及び効果を達成する上でかかる吸
湿性樹脂及び吸水性樹脂の粒子径及び水膨潤度を
本発明の推奨範囲内に設定する必要があり、かか
る特性を満足する吸湿性樹脂及び吸水性樹脂を採
択して初めて優れた実用性能を備えた吸湿吸水性
アクリル繊維を、製造工程上の問題なく工業的有
利に作製することができる。 なお、これらの樹脂の架橋結合の割合(架橋密
度)を、該樹脂を構成する重合体反覆単位400個
あたり1〜15個、さらに好ましくは2〜10個に設
定することにより、粒子径特性と相俟つて該樹脂
配合AN系重合体紡糸原液の曳糸性を一段と向上
させることができ、以てノズル詰り、糸切れ等製
造上の問題なしに充分な強伸度、吸水性等の性能
を有する繊維を作製することができるので望まし
い。 また、かかる吸湿性樹脂の作製方法について
は、本発明に推奨する上記特性を満足するものが
得られるならば何ら限定されないが、かかる特性
を有する樹脂を工業的有利に作製し得る点で例え
ば次のような方法を挙げることができる。 即ち、粒子径が0.5μ以下、好ましくは0.2μ以下
であり、重合体を構成する単量体全量に対して好
ましくは50重量%以上、更に好ましくは70%以上
のAN、所定量の架橋性モノマーおよびANと共
重合し得る他のビニルモノマーとの架橋AN系重
合体または該重合体の水分散体に、常法に従つて
アルカリ物質を作用させて所定のカルボキシル基
を導入することにより5〜20c.c./gの水膨潤度を
有する樹脂または該樹脂の水分散体を工業的有利
に作製することができる。 又吸水性樹脂についても上述の方法と基本的に
変るところはなく同一の方法で作製することがで
きるが、例えば架橋性モノマーの共重合量、加水
分解時間等を制御することにより、所望のカルボ
キシル基量及び水膨潤度を有する樹脂又は該樹脂
の水分散体を工業的有利に作製することができ
る。 なお、上記架橋性モノマーとしては、例えばア
クリル酸もしくはメタクリル酸のジエステル類、
トリエステル類もしくはテトラエステル類や、不
飽和カルボン酸のアリルエステル類、多価カルボ
ン酸のジアリルエステル類、ジビニル系酸無水物
類、ジビニルスルホン、メチレンビスアクリルア
ミド、或はジビニルベンゼン及びそのアルキル又
はハロゲン置換体の如き分子内に共重合可能な二
重結合を2個以上有する架橋性単量体及び/又は
上記不飽和カルボン酸もしくは不飽和スルホン酸
のグリシジルエステルや、不飽和グリシジルエー
テルの如き分子内に少なくとも1個のエポキシ基
を有する架橋性単量体を前記共重合成分として使
用して重合時もしくは重合終了後に架橋せしめる
ことにより容易に達成することができ、なかでも
分子内に共重合可能な二重結合を2個以上有し、
アルカリ耐性の大きいジビニルスルホン、メチレ
ンビスアクリルアミド、ジビニルベンゼンなどの
架橋性単量体を共重合成分として使用することが
望ましい。なお、上記微細粒子径の架橋AN系共
重合体の作製法については例えば本出願人に係る
特願昭51−24334号発明を採用して有利に実施す
ることができる。 また、かかる吸湿性樹脂及び吸水性樹脂として
架橋AN系共重合体が共存する樹脂を使用するこ
とにより、繊維形成マトリツクスポリマー(AN
系重合体)との混和性、或は曳糸性等が一段と改
善されるので望ましい。かかる架橋AN系共重合
体が共存する吸湿又は吸水性樹脂の作製法として
は何ら限定されるものではないが、例えば架橋
AN系共重合体を構成するビニルモノマーの選択
或は加水分解条件の調節などにより架橋AN系共
重合体粒子の表層部のみを部分的に加水分解して
該共重合体の未反応芯部を残存させたり、或は該
芯部の残存する樹脂粒子を更にコロイドミル、ボ
ールミル等の手段によりすり潰して樹脂表面に架
橋AN系共重合体の少なくとも一部を露出させる
などの方法によつて有利に作製することができ
る。 かかる吸湿性樹脂及び吸水性樹脂の合計量を3
重量%以上30重量%未満、好ましくは5〜15%の
範囲内に設定する必要があり、かかる範囲の下限
をはずれる場合には最終的に得られる繊維に充分
な吸湿及び吸水性を付与することができず、また
かかる範囲の上限を超える場合には繊維の強度が
不足して紡績加工性を悪くするために好ましくな
い。 次に本発明に係る吸湿吸水性アクリル繊維の製
造法について述べる。かかる製造法としては本発
明の目的とする性能を備えた繊維が得られる限り
いかなる方法も採用することができるが、工業的
有利に得るためには次のような製造法を採用する
ことが望ましい。 即ち、AN系重合体を公知の溶剤に溶解して紡
糸原液を作製し、塩型カルボキシル基(−
COOX′;X′はNH4又はアルカリ金属)を結合含
有する吸湿性樹脂及び吸水性樹脂、好ましくはこ
れら樹脂の上記溶剤含有水分散体の所定量を添加
混合した後、常法に従つて湿式紡糸、水洗後所望
により酸処理を施す。次いでこのようにして得ら
れたゲル糸を熱延伸、乾燥緻密化した後湿熱処理
を行ない必要に応じて捲縮処理、油剤処理等を行
なつた後乾燥する。 ここで、吸湿性樹脂と吸水性樹脂を各々別の水
分散体として上記紡糸原液に配合することも可能
であるが、繊維中に配合せしめる配合比に従い吸
湿性樹脂と吸水性樹脂を同一水分散体として調合
することが好ましく、総樹脂濃度としては3〜30
重量%、更に好ましくは5〜15%の総樹脂濃度の
水分散体を使用することにより、更に該水分散体
中に紡糸原液作製用有機または無機溶剤の一部を
添加することにより該水分散体の粘度を1000cp
以下にすると共に紡糸原液添加時の溶剤濃度の低
下によるAN系共重合体マトリツクスポリマーの
ゲル化を防止し更にマトリツクスポリマーとの混
和性、紡糸原液の曳糸性、紡糸時のノズル詰り、
糸切れ等製造上の問題なしに繊維を作製すること
ができる。 また、前記水洗後ゲル系に酸処理を施す工程は
本発明品を得る上で有効であり、ゲル糸外層部に
存在する吸水性樹脂中の塩型カルボキシル基を酸
処理により酸型カルボキシル基(−COOH)に
変換させ、繊維外層部の吸湿性樹脂及び吸水性樹
脂の水膨潤能を実質的に消失させることにより、
後続の工程において繊維外層部に空孔が生起する
のを抑えることができる。なお、かかる酸処理条
件としては、繊維外層部に存在する塩型カルボキ
シル基を酸型に変換し得る限り何ら限定されるも
のではないが、好ましくはPH3以下、更に好まし
くはPH2.0〜2.8の酸性浴中で30秒以下、更に好ま
しくは8〜15秒間処理を行なうことが望ましい。 次に、酸処理、熱延伸後ゲル糸を乾燥緻密化す
る。かかる条件としては乾球温度/湿球温度=
115℃以上/55℃以上、好ましくは120℃以上/60
℃以上の温度で、好ましくは10分間以上処理する
ことが望ましく、該工程により熱延伸工程で発生
した微細空隙(ミクロボイド)を完全に消失さ
せ、繊維構造を緻密化させると共に、繊維外層部
に酸型カルボキシル基含有吸湿性樹脂及び吸水性
樹脂を繊維形成マトリツクスポリマー(AN系重
合体)と一体化させる。 また、上記湿熱緩和処理条件としては、熱水、
飽和水蒸気、過熱水蒸気等の雰囲気中において、
湿熱処理を施さない繊維に対して湿熱処理品の保
水率が1.5倍以上に増大する条件下において湿熱
処理を行なうことが望ましい。かかる湿熱処理を
行なうことによつて初めて繊維中に存在する孔の
拡大固定化に伴なう吸水性能の改善と共に強伸度
等の物性、染色堅牢性等が顕著に改善されたアク
リル繊維を提供することができる。なお、かかる
湿熱処理条件としては出発物質であるAN系重合
体、吸湿性樹脂及び吸水性樹脂の種類、或は紡糸
条件等によつて変化し、一義的に規定することは
困難であるが、特に飽和水蒸気範囲気中、110℃
以上、更に好ましくは120℃以上の温度条件を採
用することにより短時間で顕著な効果を発揮させ
ることができるので望ましい。 なお、吸湿性樹脂及び吸水性樹脂配合紡糸原液
と該樹脂不含紡糸原液との少なくとも2種の紡糸
原液を使用し、例えば該樹脂不含AN系重合体の
少なくとも一部が繊維表面に露出するように常法
に従つてシースーコア型、サイド・バイ・サイド
型、サンドイツチ型、ランダム複合型、海−島型
等の形態に複合紡糸することができることは言う
までもない。 このようにして作製される本発明に係る吸湿吸
水性アクリル繊維は、繊維内層部に長径0.2μ以上
の空孔を好ましくは5個以上有し、20%以上、好
ましくは25%以上の保水率を有している必要があ
り、更に20℃、90%RH下での吸湿性は10%以上
の性能を有している必要があり、かかる繊維にお
いて初めて木綿に匹敵する吸湿吸水性能を発現す
ることができる。又、本発明に係る吸湿吸水性ア
クリル繊維は吸湿、吸水時においても木綿のよう
に膨潤することはなく従つて発汗時の着心地性に
おいては木綿以上に快適であり、春夏物素材に適
するアクリル繊維であると言える。 また、本発明に係る繊維は120℃で1時間乾熱
処理したときの保水率の低下が10%以下、好まし
くは5%以下であり、高次加工工程或は実用に際
して吸湿及び吸水性能が殆ど低下することがな
い。 上述した本発明に係る吸湿吸水性アクリル繊維
は特定のカルボキシル基量および水膨潤度特性を
有する吸水性樹脂を配合することによつて初めて
強伸度等の物性、紡績性、染色堅牢性などの実用
性能を備えたまま優れた吸湿吸水性能が付与され
たものである。かかる樹脂配合により形成された
孔は非常に安定であり微多孔質アクリル繊維のよ
うに容易に消失しないため吸水性能の低下がほと
んどなく、さらに繊維中の空孔は維持したまま繊
維構造が緻密化されているため強伸度等の物性に
優れると共に、発色性、汗、洗濯および湿摩擦等
に対する染色堅牢性などの実用性能にも優れ、更
に少量の紡績油剤の付着によつて効果的に繊維の
表面抵抗を減少させることができるため優れた紡
績性を発現させることができる。また、本発明吸
湿吸水性アクリル繊維は、配合する吸湿及び吸水
性樹脂の量、種類、酸処理条件等を変化させるこ
とにより吸湿性能と吸水性能を容易に制御するこ
とができ、ノズル詰り、糸切れ、巻き付き、融着
等の製造上のトラブルがなく、さらに既存の微多
孔質吸水性アクリル繊維における染料、紡績油剤
等を多量に吸収する不利益のない幾多の工業的利
点を有するものである。さらに、本発明吸湿吸水
性アクリル繊維は常温常湿下と高温高湿下におけ
る吸湿率の差が著しく大きく、かかる特性によ
り、着用時において快適な着心地性を付与するこ
とができる。 上記製造工程上および実用性能上多くの利点を
有する本発明吸湿吸水性アクリル繊維は、単独で
或は市販のポリエステル系、ポリアミド系、ポリ
アクリロニトリル系もしくはモダクリル系等の各
種合成繊維、木綿、羊毛等と混用することによ
り、快適な着心地を有する肌着、シーツ、タオ
ル、スポーツウエア、夏物衣料用素材等としての
適用が可能となつた。 以下、実施例により本発明の効果をさらに具体
的に説明する。なお、実施例中、部および百分率
は特に断りのない限り重量基準で示す。 以下の実施例において吸湿性樹脂及び吸水性樹
脂の水膨潤度及び−COOX基量並びに繊維の保
水率及び吸湿率は下記の方法で測定乃至算出した
ものである。 (1) 水膨潤度(c.c./g) 吸水性樹脂約0.5gを純水中に浸漬し、25℃
で24時間経過後、水膨潤状態の吸水性樹脂を
紙の間にはさみ樹脂粒子間の水を除去する。こ
のようにして調整した試料の重量(W1)を測
定する。次に該試料を80℃の真空乾燥機中で恒
量になるまで乾燥して重量(W2)を測定する。 以上の測定結果より、次式に従つて算出す
る。 水膨潤度=W1−W2/W2 (2) 保水率(%) 試料約5gを純水中に浸漬し、25±3℃で2
時間経過後、遠心脱水機(コクサンエンジンキ
(株)製、半径12cm)を用いて2000rpmの回転で5
分間繊維間の水を除去する。このようにして調
整した試料の重量(W1)を測定する。次に該
試料を80℃の熱風乾燥機中で恒量になるまで乾
燥して重量(W2)を測定する。以上の測定結
果より、次式により算出する。 保水率=w1−w2/w2×100 (3) 吸湿率(%) 試料約5gを40℃×30分熱風乾燥機中で予備
乾燥し、所定の温湿度条件に調温調湿されたデ
シケータ中で恒量(W1)になる迄試料を調整
する。次に該試料を90℃の赤外線真空乾燥機中
で恒量(W2)になる迄乾燥する。以上の測定
結果より次式により算出する。 吸湿率=W1−W2/W2×100 (4) −COOX基量(mmol/g) 十分乾燥した試料約1gを精秤し(Xg)、
これに200mlの水を加えた後、50℃に加温しな
がら1N塩酸水溶液を添加してPH2にし、次い
で0.1N苛性ソーダ水溶液で常法に従つて滴定
曲線を求めた。該滴定曲線からカルボキシル基
に消費された苛性ソーダ水溶液消費量(Y)を
求めた。以上の測定結果から、次式によつて算
出した。 −COOX基量=0.1Y/X 尚、多価カチオンが含まれる場合は、常法に
よりこれらのカチオンの量を求め、上式を補正
する必要がある。 実施例 1 第1表に示す組成の単量体100部及び水233部を
2のオートクレーブ中に仕込み、更に重合開始
剤としてジーtert.−ブチルパーオキシドを単量体
総量に対して0.5%添加した後密閉し、次いで撹
拌下に150℃×20分間重合した。反応終了後、撹
拌を継続しながら約90℃まで冷却したのち生成物
をオートクレーブから取り出し、4種類の架橋
AN系共重合体エマルジヨン(A〜D)を作製し
た。これらのエマルジヨン中に分散する重合体の
粒子径は全て約0.1μであつた。 次に、得られたエマルジヨンを3%の苛性ソー
ダ水溶液中で95℃×60分間アルカリ処理を施し、
得られた吸湿性樹脂(A〜C)及び吸水性樹脂
(D)は全て約0.1μの粒子径を有しており、樹脂
A〜Dは架橋AN系共重合体芯部が残存してい
た。該樹脂の水膨潤度及び−COONa基量を測定
した結果を第1表に併記する。
(1) Field of the Invention The present invention relates to a water-absorbing acrylic fiber with hygroscopic properties, and more specifically, it is made of a hygroscopic acrylic fiber containing a specific carboxyl group-containing hygroscopic resin, which has excellent dyeability, spinnability, strength and elongation. The present invention relates to a novel acrylic fiber that has excellent processing methods, practical performance, moisture absorption, and water absorption. Traditionally, acrylic fibers, like other synthetic fibers such as polyamide and polyester, have poor water absorption and moisture absorption properties, so they are often used as materials for underwear, sheets, sportswear, summer clothing, etc. in order to satisfy the comfort level. Blends with cotton, rayon, etc. are used. Many studies have been made to improve the water absorption and hygroscopicity of this acrylic fiber, but no material with satisfactory performance has yet been proposed. For example, when producing a single-component acrylic fiber using a wet spinning method, an acrylic fiber exhibiting water absorption properties can be obtained by fixing the porous structure of the swollen gel-like yarn; The fine pores are unstable and easily disappear during the subsequent drying process or ironing, resulting in a reduction in water absorption and inherent drawbacks such as poor hygroscopicity. In addition, many proposals have been made regarding means for forming pores by removing the added substances after spinning a spinning stock solution to which specific substances such as inorganic substances and organic substances have been added. It is difficult to say that it is an industrially advantageous method, as it causes essential problems such as contamination of the solvent by the substance, deterioration of the working environment, and complication of the manufacturing process such as recovery of the substance, and there is no way to improve hygroscopicity. I haven't been able to become one. Alternatively, some techniques have been proposed for imparting water absorption and hygroscopicity by partially hydrolyzing the surface of acrylic fibers, but such fibers with large amounts of carboxyl groups introduced to their surfaces have poor physical properties and It is difficult to say that this is a practically satisfactory means because the dyeing fastness is markedly reduced and a sticky feeling cannot be avoided when water is absorbed. Under these circumstances, the present inventors have conducted extensive research in order to eliminate the above-mentioned drawbacks and provide industrially advantageous water-absorbing acrylic fibers with excellent practical performance.
It was discovered that by blending a specific water-absorbing resin, it was possible to produce water-absorbing acrylic fibers with practical performance without problems such as nozzle clogging, yarn breakage, wrapping, and fusion during the manufacturing process, and the patent application was submitted earlier. 55−
No. 17360 invention was proposed. However, even in the prior invention, porous water-absorbing fibers have insufficient moisture-absorbing ability compared to natural fibers such as cotton and wool, and are inferior in comfort in sweat-insensitive areas. These natural fibers have inherent problems such as generation of static electricity, which is large compared to natural fibers, and further improvements are desired from this point of view. On the other hand, cotton as a material for spring/summer clothing is excellent in terms of its excellent moisture absorption and water absorption properties, as well as its characteristic texture due to the cross-sectional shape of the fibers. Combined with the reduction in width stiffness, it is unsatisfactory in terms of comfort. If it were possible to impart hygroscopic properties to porous water-absorbing acrylic fibers that do not swell when wet, the above-mentioned drawbacks of cotton could be improved, the ease of processing characteristic of synthetic fibers would be maintained, and the non-swelling water-absorbing properties would be possible. It can provide moisture-absorbing fibers, making it possible to use it in spring/summer materials, something that acrylic fibers have not been good at. In view of this situation, the inventors of the present invention have conducted intensive studies to provide a new porous moisture-absorbing acrylic fiber that does not have any problems in the manufacturing process and has excellent dyeability, spinning processability, etc. By introducing a resin with a certain amount of carboxyl groups and a specific degree of water swelling into the fiber, it has a moisture absorption capacity comparable to that of natural fibers such as cotton, and is particularly effective at room temperature and humidity, which is important when worn. Due to the manufacturing process, we have created a porous hygroscopic acrylic fiber that has pores with a long diameter of 0.2μ or more and has excellent water absorption properties, which can exhibit a significantly large difference in moisture absorption rate under high humidity conditions, and has good thermal stability. The present invention has been achieved based on the discovery that it can be provided industrially advantageously without any problems. That is, the object of the present invention is to have stable moisture absorption and water absorption performance that does not easily deteriorate due to heat treatment, etc., as well as excellent physical properties such as strength and elongation, and practical performance such as spinnability, and in particular, without problems in dyeing properties. The purpose is to provide a new porous moisture-absorbent acrylic fiber, which is free from manufacturing problems such as nozzle clogging, thread breakage, wrapping, and fusion, and also to recover additive substances and worsen the working environment. It is an object of the present invention to provide an industrially advantageous means for producing moisture-absorbing and water-absorbing acrylic fibers which are free from problems and have excellent wearability without sticky feeling or swelling property when water is absorbed. Still other objects of the present invention will become clear from the description below. The moisture-absorbing acrylic fiber that achieves the above object of the present invention is made of acrylonitrile (hereinafter referred to as
Contains 70% by weight or more and less than 97% by weight of a polymer (abbreviated as AN) and 5.0 mmol/g or more of a carboxyl group represented by -COOX (X:H, NH 4 or an alkali metal) and 5-20 c.c./ Contains a hygroscopic resin with a particle size of 0.5 μ or less in an absolutely dry state and a carboxyl group of 1.5 mmol/g or more and has a degree of water swelling of 30 to 300 c.c./g.
It consists of 3% or more and less than 30% by weight of a water-absorbing resin with a particle size of 0.5μ or less in an absolutely dry state with a degree of water swelling of
The fiber has a moisture absorption rate of 10% or more at ℃ and 90%RH, and a water retention rate of 20% or more. The present invention will be described in detail below, but first, the AN of the present invention will be described in detail.
The system polymer is not limited in any way as long as it is used in the production of conventionally known acrylic fibers, but it is preferably 80% by weight or more, more preferably 85% or more by weight of AN and the balance is other. It is desirable to use a copolymer with a vinyl monomer in terms of fiber properties, dyeability, etc. Next, the hygroscopic resin and water-absorbing resin to be blended into the AN-based polymer will be described. Such hygroscopic resins include -COOX (X:H,
Contains 5 mmol/g or more of carboxyl groups represented by NH 4 or alkali metals, and contains 5 to 20 c.c./
The resin can be used as long as it has a degree of water swelling of 1.5 g, a particle size of 0.5 μm or less, preferably 0.2 μm or less in an absolutely dry state, and is insoluble in water and the solvent for the AN polymer. In addition, by using 0.2 to 3% by weight of a water-absorbing resin together with the above-mentioned hygroscopic resin, the water retention rate of the fiber finally obtained can be significantly improved without any problems in production. Such water-absorbing resins include carboxyl groups.
Contains 1.5 mmol/g or more, preferably 3.0 mmol/g or more, and 30 to 300 c.c./g, preferably 30 to 150
It has a water swelling degree of cc/g and is less than 0.5 μ in absolute dry condition.
Preferably has a particle size of 0.2 μ or less, and contains water and
As long as the resin is insoluble in the AN polymer solvent, it can be used. In order to achieve the objects and effects of the present invention, it is necessary to set the particle size and water swelling degree of the hygroscopic resin and water absorbent resin within the recommended range of the present invention, and the hygroscopic resin and water absorbent that satisfy such characteristics By adopting a synthetic resin, moisture-absorbing acrylic fibers with excellent practical performance can be produced industrially without problems in the manufacturing process. In addition, by setting the crosslinking ratio (crosslinking density) of these resins to 1 to 15 units, more preferably 2 to 10 units per 400 polymer repeating units constituting the resin, the particle size characteristics and Combined with this, the spinnability of the resin-blended AN polymer spinning dope can be further improved, thereby achieving sufficient performance such as strength and elongation and water absorption without manufacturing problems such as nozzle clogging or yarn breakage. This is desirable because it allows the production of fibers with The method for producing such a hygroscopic resin is not limited in any way as long as it satisfies the above-mentioned properties recommended for the present invention. The following methods can be mentioned. That is, the particle size is 0.5μ or less, preferably 0.2μ or less, preferably 50% by weight or more, more preferably 70% or more of AN, and a predetermined amount of crosslinking property based on the total amount of monomers constituting the polymer. By introducing a predetermined carboxyl group into a crosslinked AN-based polymer with a monomer and another vinyl monomer that can be copolymerized with AN or an aqueous dispersion of the polymer, an alkali substance is applied according to a conventional method. A resin having a water swelling degree of ~20 c.c./g or an aqueous dispersion of the resin can be produced with industrial advantage. Water-absorbing resins can also be produced using the same method as described above; however, by controlling the copolymerization amount of crosslinking monomers, hydrolysis time, etc., the desired carboxyl resin can be produced. A resin having a certain base weight and water swelling degree or an aqueous dispersion of the resin can be produced with industrial advantage. In addition, examples of the above-mentioned crosslinking monomers include diesters of acrylic acid or methacrylic acid,
Triesters or tetraesters, allyl esters of unsaturated carboxylic acids, diallyl esters of polyvalent carboxylic acids, divinyl acid anhydrides, divinyl sulfone, methylenebisacrylamide, or divinylbenzene and its alkyl or halogen Crosslinkable monomers having two or more copolymerizable double bonds in the molecule, such as substituents, and/or glycidyl esters and unsaturated glycidyl ethers of the above-mentioned unsaturated carboxylic acids or unsaturated sulfonic acids. This can be easily achieved by using a crosslinkable monomer having at least one epoxy group as the copolymerization component and crosslinking during or after the polymerization. Has two or more double bonds,
It is desirable to use crosslinkable monomers such as divinylsulfone, methylenebisacrylamide, and divinylbenzene, which have high alkali resistance, as copolymerization components. The method for producing the crosslinked AN copolymer having the fine particle size described above can be carried out advantageously by employing, for example, the invention of Japanese Patent Application No. 51-24334 filed by the present applicant. In addition, by using a resin in which a crosslinked AN copolymer coexists as the hygroscopic resin and water absorbent resin, a fiber-forming matrix polymer (AN
This is desirable because it further improves miscibility with the polymer (based on polymers) and spinnability. The method for producing a moisture-absorbing or water-absorbing resin in which such a crosslinked AN copolymer coexists is not limited in any way;
By selecting the vinyl monomer constituting the AN copolymer or adjusting the hydrolysis conditions, only the surface layer of the crosslinked AN copolymer particles can be partially hydrolyzed to remove the unreacted core part of the copolymer. Alternatively, the remaining resin particles in the core may be further ground by a means such as a colloid mill or a ball mill to expose at least a portion of the crosslinked AN copolymer on the resin surface. It can be made. The total amount of such hygroscopic resin and water absorbent resin is 3
It is necessary to set it within the range of 5% to 15% by weight or more and less than 30% by weight, and if it is outside the lower limit of this range, the final fiber should have sufficient moisture absorption and water absorbency. If the upper limit of this range is exceeded, the strength of the fibers will be insufficient and the spinning processability will deteriorate, which is not preferable. Next, a method for manufacturing the moisture-absorbing acrylic fiber according to the present invention will be described. As such a manufacturing method, any method can be adopted as long as fibers having the performance targeted by the present invention can be obtained, but in order to obtain an industrial advantage, it is desirable to adopt the following manufacturing method. . That is, an AN-based polymer is dissolved in a known solvent to prepare a spinning stock solution, and a salt-type carboxyl group (-
After adding and mixing a predetermined amount of a hygroscopic resin and a water-absorbing resin containing COOX ' ; After spinning and washing with water, acid treatment is performed if desired. Next, the gel yarn thus obtained is hot-stretched, dried and densified, then subjected to a moist heat treatment, and optionally subjected to a crimping treatment, an oil treatment, etc., and then dried. Here, it is possible to mix the hygroscopic resin and the water-absorbent resin in the above spinning dope as separate water dispersions, but it is possible to mix the hygroscopic resin and the water-absorbent resin in the same water dispersion depending on the blending ratio to be blended into the fiber. Preferably, the total resin concentration is 3 to 30%.
By using an aqueous dispersion with a total resin concentration of 5% to 15% by weight, and further by adding a part of the organic or inorganic solvent for making the spinning dope into the aqueous dispersion. Increase body viscosity to 1000cp
In addition to the following, it also prevents gelation of the AN-based copolymer matrix polymer due to a decrease in solvent concentration when adding the spinning stock solution, and also improves miscibility with the matrix polymer, threadability of the spinning stock solution, nozzle clogging during spinning, etc.
Fibers can be produced without production problems such as thread breakage. In addition, the step of subjecting the gel system to acid treatment after washing with water is effective in obtaining the product of the present invention. -COOH) and substantially eliminates the water swelling ability of the hygroscopic resin and water absorbent resin in the outer fiber layer.
It is possible to suppress the generation of pores in the outer layer of the fiber in subsequent steps. The acid treatment conditions are not limited in any way as long as the salt type carboxyl groups present in the outer fiber layer can be converted to acid type, but preferably PH3 or less, more preferably PH2.0 to 2.8. It is desirable to carry out the treatment in an acidic bath for 30 seconds or less, more preferably for 8 to 15 seconds. Next, after acid treatment and hot stretching, the gel yarn is dried and densified. Such conditions are dry bulb temperature/wet bulb temperature =
115℃ or higher/55℃ or higher, preferably 120℃ or higher/60
It is desirable to process at a temperature of 10°C or higher, preferably for 10 minutes or more, to completely eliminate microvoids generated during the hot drawing process, densify the fiber structure, and add acid to the outer layer of the fiber. A carboxyl group-containing hygroscopic resin and a water-absorbing resin are integrated with a fiber-forming matrix polymer (AN-based polymer). In addition, the above moist heat relaxation treatment conditions include hot water,
In an atmosphere of saturated steam, superheated steam, etc.
It is desirable to perform the moist heat treatment under conditions that increase the water retention rate of the moist heat treated product by 1.5 times or more compared to the fibers not subjected to the moist heat treatment. By performing such a moist heat treatment, we can provide acrylic fibers that have improved water absorption performance due to expansion and fixation of the pores present in the fibers, as well as significantly improved physical properties such as strength and elongation, color fastness, etc. can do. It should be noted that such moist heat treatment conditions vary depending on the starting material AN polymer, the type of hygroscopic resin and water absorbent resin, the spinning conditions, etc., and are difficult to define unambiguously. Especially in the saturated water vapor range, 110℃
As mentioned above, it is more preferable to adopt a temperature condition of 120° C. or higher because a remarkable effect can be exhibited in a short period of time. In addition, at least two types of spinning dope, ie, a spinning dope containing a hygroscopic resin and a water-absorbing resin and a spinning dope not containing the resin, are used, and for example, at least a part of the resin-free AN-based polymer is exposed on the fiber surface. It is needless to say that composite spinning can be carried out in the conventional manner into forms such as see-sew core type, side-by-side type, sandwich type, random composite type, sea-island type, etc. The moisture-absorbing acrylic fiber according to the present invention produced in this way preferably has 5 or more pores with a major diameter of 0.2μ or more in the inner layer of the fiber, and has a water retention rate of 20% or more, preferably 25% or more. Furthermore, it must have a moisture absorption performance of 10% or more at 20°C and 90%RH, making it the first such fiber to exhibit moisture absorption performance comparable to cotton. be able to. In addition, the moisture-absorbing acrylic fiber of the present invention does not swell like cotton when it absorbs moisture or water, so it is more comfortable to wear when sweating than cotton, and is suitable for spring/summer materials. It can be said that it is an acrylic fiber. In addition, the fiber according to the present invention shows a decrease in water retention rate of 10% or less, preferably 5% or less, when dry heat treated at 120°C for 1 hour, and moisture absorption and water absorption performance hardly decrease during high-order processing or practical use. There's nothing to do. The above-mentioned moisture-absorbing acrylic fiber according to the present invention can improve physical properties such as strength and elongation, spinnability, color fastness, etc. by blending a water-absorbing resin with a specific amount of carboxyl groups and water swelling properties. It has excellent moisture and water absorption performance while maintaining practical performance. The pores formed by this resin composition are very stable and do not disappear easily like microporous acrylic fibers, so there is almost no drop in water absorption performance, and the fiber structure becomes denser while maintaining the pores in the fiber. As a result, it has excellent physical properties such as strength and elongation, and also has excellent practical performance such as color development and color fastness against sweat, washing, and wet friction, etc. Furthermore, by adhering a small amount of spinning oil, it can be effectively applied to fibers. Since the surface resistance of the fiber can be reduced, excellent spinnability can be exhibited. In addition, the hygroscopic and water-absorbing acrylic fibers of the present invention can easily control the hygroscopic performance and water-absorbing performance by changing the amount and type of the hygroscopic and water-absorbing resin blended, the acid treatment conditions, etc. It has many industrial advantages, without any manufacturing troubles such as cutting, wrapping, or fusing, and without the disadvantages of existing microporous water-absorbing acrylic fibers, such as absorbing large amounts of dyes, spinning oils, etc. . Furthermore, the moisture-absorbing acrylic fiber of the present invention has a significantly large difference in moisture absorption rate between normal temperature and normal humidity and high temperature and high humidity, and due to this characteristic, it can provide a comfortable fit when worn. The moisture-absorbing acrylic fiber of the present invention, which has many advantages in terms of manufacturing process and practical performance, can be used alone or in combination with various synthetic fibers such as commercially available polyester, polyamide, polyacrylonitrile, or modacrylic fibers, cotton, wool, etc. By mixing it with other materials, it has become possible to use it as a material for comfortable underwear, sheets, towels, sportswear, summer clothing, etc. Hereinafter, the effects of the present invention will be explained in more detail with reference to Examples. In the examples, parts and percentages are expressed on a weight basis unless otherwise specified. In the following examples, the degree of water swelling and -COOX base content of the hygroscopic resin and water-absorbing resin, and the water retention rate and moisture absorption rate of the fibers were measured or calculated by the following methods. (1) Water swelling degree (cc/g) Approximately 0.5 g of water absorbent resin was immersed in pure water at 25°C.
After 24 hours, the water-swollen water absorbent resin is sandwiched between pieces of paper to remove the water between the resin particles. The weight (W 1 ) of the sample thus prepared is measured. Next, the sample is dried in a vacuum dryer at 80° C. until it reaches a constant weight, and the weight (W 2 ) is measured. From the above measurement results, it is calculated according to the following formula. Water swelling degree = W 1 − W 2 / W 2 (2) Water retention rate (%) Approximately 5 g of the sample was immersed in pure water and heated at 25±3℃ for 2 hours.
After the time has elapsed, remove the centrifugal dehydrator (Kokusan Engine Engine).
Co., Ltd., radius 12 cm) and rotated at 2000 rpm.
Remove water between fibers for a minute. The weight (W 1 ) of the sample thus prepared is measured. Next, the sample is dried in a hot air dryer at 80° C. until it reaches a constant weight, and the weight (W 2 ) is measured. Based on the above measurement results, it is calculated using the following formula. Water retention rate = w 1 - w 2 / w 2 × 100 (3) Moisture absorption rate (%) Approximately 5 g of the sample was pre-dried in a hot air dryer at 40°C for 30 minutes, and the temperature and humidity were controlled to the specified temperature and humidity conditions. Adjust the sample in a desiccator until it reaches a constant weight (W 1 ). The sample is then dried in an infrared vacuum dryer at 90° C. to constant weight (W 2 ). It is calculated from the above measurement results using the following formula. Moisture absorption rate = W 1 - W 2 / W 2 × 100 (4) -COOX base amount (mmol/g) Accurately weigh approximately 1 g of a sufficiently dried sample (Xg),
After adding 200 ml of water to this, a 1N aqueous hydrochloric acid solution was added while heating to 50°C to adjust the pH to 2, and then a titration curve was determined using a 0.1N aqueous sodium hydroxide solution according to a conventional method. The consumption amount (Y) of the caustic soda aqueous solution consumed by carboxyl groups was determined from the titration curve. From the above measurement results, it was calculated using the following formula. -COOX group amount = 0.1Y/X In addition, when polyvalent cations are included, it is necessary to determine the amount of these cations by a conventional method and correct the above formula. Example 1 100 parts of monomers having the composition shown in Table 1 and 233 parts of water were placed in the autoclave No. 2, and 0.5% of di-tert.-butyl peroxide was added as a polymerization initiator based on the total amount of monomers. After that, the container was sealed, and then polymerization was carried out at 150° C. for 20 minutes while stirring. After the reaction was completed, the product was cooled to approximately 90°C while stirring, and then taken out from the autoclave and subjected to four types of crosslinking.
AN-based copolymer emulsions (A to D) were produced. The particle diameters of the polymers dispersed in these emulsions were all approximately 0.1 μ. Next, the obtained emulsion was subjected to an alkali treatment in a 3% caustic soda aqueous solution at 95°C for 60 minutes.
The obtained hygroscopic resins (A to C) and water absorbent resins (D) all had a particle size of about 0.1μ, and the crosslinked AN copolymer core remained in resins A to D. . The results of measuring the degree of water swelling and amount of -COONa groups of the resin are also shown in Table 1.

【表】【table】

【表】 この吸水性樹脂及び吸湿性樹脂の混合水分散体
(粘度700cp;ロダンソーダ20%含有。総樹脂濃
度6.0%)を、90%のAN、9.7%のMA及び0.3%
のメタアクリルスルホン酸ソーダ(SMAS)を
含有するAN系重合体(30℃のジメチルホルムア
ミド溶液中の固有粘度〔η〕=1.3)10部及び50%
ロダンソーダ水溶液90部からなる紡糸原液に、添
加量を第2表記載の如く変化させて加えた。 吸湿性並びに吸水性樹脂は紡糸原液中において
凝集することなく均一に分散し、又、マトリツク
スポリマーもゲル化することなく良好な曳糸性を
示した。 該紡糸原液を0.060mmφの孔径を有する紡糸口
金を用いて0℃の15%ロダンソーダ水溶液中に押
出し、凝固、2.0倍冷延伸、水洗を行なつた。水
洗が完了したゲル糸をPH2.7の硝酸酸性液中で10
秒間処理した後、沸騰水中で5.0倍熱延伸を施し、
乾球温度/湿球温度=120℃/65℃の常圧雰囲気
下で15分間乾燥緻密化し、次に130℃の飽和水蒸
気中で10分間緩和処理を施し、更にマーポール
100(松本油脂製アニオン系活性剤)を1.0%付着
させ110℃×10分間乾燥して5種類の1.5デニール
×51mm繊維(1〜5)を作製した。 これらの繊維及び通常のアクリル繊維(6)の吸
湿、吸水性及び強伸度を測定した結果を第2表に
併記する。
[Table] A mixed aqueous dispersion of this water-absorbing resin and hygroscopic resin (viscosity 700 cp; containing 20% Rodan soda. Total resin concentration 6.0%) was mixed with 90% AN, 9.7% MA and 0.3%
AN-based polymer containing sodium methacrylic sulfonate (SMAS) (intrinsic viscosity [η] = 1.3 in dimethylformamide solution at 30 °C) 10 parts and 50%
The amounts added were varied as shown in Table 2 and added to a spinning dope consisting of 90 parts of an aqueous Rodan soda solution. The hygroscopic and water-absorbing resin was uniformly dispersed in the spinning dope without agglomeration, and the matrix polymer also exhibited good spinnability without gelation. The spinning stock solution was extruded into a 15% Rodan soda aqueous solution at 0° C. using a spinneret with a hole diameter of 0.060 mm, solidified, cold stretched 2.0 times, and washed with water. After washing the gel thread, put it in a nitric acid solution with a pH of 2.7 for 10 minutes.
After processing for seconds, it was hot stretched 5.0 times in boiling water,
Dry and densify in a normal pressure atmosphere at dry bulb temperature/wet bulb temperature = 120℃/65℃ for 15 minutes, then relax in saturated steam at 130℃ for 10 minutes, and then Marpol.
100 (anionic activator manufactured by Matsumoto Yushi) was deposited at 1.0% and dried at 110°C for 10 minutes to produce five types of 1.5 denier x 51 mm fibers (1 to 5). The results of measuring the moisture absorption, water absorption, and strength and elongation of these fibers and ordinary acrylic fiber (6) are also listed in Table 2.

【表】 第2表の結果より明らかなように本発明に係る
繊維(2.3.4)においては優れた吸湿、吸水性能
(保水率)と共に、通常のアクリル繊維に比べて
実用上支障のない強伸度特性を有している事実が
理解される。 レベルを示す試料No.1の低膨潤度吸湿性樹脂の
みを配合せしめた繊維は保水率が若干不足してい
るが、吸水性樹脂を少量併用(No.2)することに
より保水率が著しく改善される事実が理解され
る。 また、吸湿性樹脂を配合しない繊維(No.5)に
おいては、保水率は十分であるが、吸湿性改善効
果が殆ど見られなかつた。 実施例 2 実施例1記載の吸湿吸水性繊維(No.2)及び比
較試料()として実施例1記載の通常アクリル
繊維(No.6)を常法に従い短繊維紡機で糸を作製
し、チーズ染色した後、24ゲージ、13寸、1260ニ
ードル、目付170g/m2の両面スムース編機で編
地を作成し、半袖U首シヤツを試作した。また、
比較試料()として市販木綿ニツトシヤツを加
えて、3種類のシヤツによる着用テストを実施し
た。結果を第3表に示す。
[Table] As is clear from the results in Table 2, the fibers according to the present invention (2.3.4) have excellent moisture absorption and water absorption performance (water retention rate), and are strong enough to have no practical problems compared to ordinary acrylic fibers. The fact that it has elongation properties is understood. Sample No. 1, which shows the level of fibers containing only low swelling hygroscopic resin, has a slightly insufficient water retention rate, but by using a small amount of water absorbent resin (No. 2), the water retention rate is significantly improved. The facts are understood. In addition, in the fiber (No. 5) in which no hygroscopic resin was blended, although the water retention rate was sufficient, almost no effect of improving hygroscopicity was observed. Example 2 Yarns were produced from the moisture-absorbing fiber (No. 2) described in Example 1 and the ordinary acrylic fiber (No. 6) described in Example 1 as a comparative sample () using a short fiber spinning machine according to a conventional method, and After dyeing, a knitted fabric was made using a double-sided smooth knitting machine with a 24 gauge, 13 dimensions, 1260 needles, and a basis weight of 170 g/ m2 , and a short sleeve U-neck shirt was prototyped. Also,
A commercially available cotton knitted shirt was added as a comparative sample (), and a wearing test was conducted using three types of shirts. The results are shown in Table 3.

【表】 第3表の結果より明らかなように、本発明品は
吸湿効果により蒸し暑さ感が少なく、しかもベト
ツキ感は木綿製品より少ない特長を示した。これ
は木綿が湿潤によつて膨潤と剛性率低下が生じる
のに対して、本発明品は非膨潤性を備えているこ
とによるものと思われる。
[Table] As is clear from the results in Table 3, the products of the present invention had the advantage of having less muggy feeling due to the moisture absorption effect and less sticky feeling than cotton products. This is thought to be due to the fact that cotton swells and decreases in rigidity when wet, whereas the product of the present invention has non-swelling properties.

Claims (1)

【特許請求の範囲】[Claims] 1 アクリロニトリル系重合体70重量%以上97重
量%未満並びに−COOX(X:H、NH4又はアル
カリ金属)で示されるカルボキシル基を
5.0mmol/g以上結合含有し5〜20c.c./gの水膨
潤度を有する絶乾状態で0.5μ以下の粒子径の吸湿
樹脂及びカルボキシル基を1.5mmol/g以上を結
合含有し30〜300c.c./gの水膨潤度を有する絶乾
状態で0.5μ以下の粒子径の吸水性樹脂3重量%以
上30重量%未満からなり、繊維断面に長径が0.2μ
以上の空孔を有し、20℃、90%RH下における吸
湿率が10%以上であり、かつ保水率が20%以上で
ある吸湿吸水性アクリル繊維。
1 70% by weight or more and less than 97% by weight of an acrylonitrile polymer and a carboxyl group represented by -COOX (X: H, NH 4 or an alkali metal)
5.0 mmol/g or more of bonded hygroscopic resin with a water swelling degree of 5 to 20 c.c./g and 1.5 mmol/g or more of a carboxyl group and a moisture-absorbing resin with a particle size of 0.5 μ or less in an absolutely dry state and 30 to 30 mmol/g or more of carboxyl groups. Consisting of 3% or more and less than 30% by weight of a water-absorbing resin with a water swelling degree of 300c.c./g and a particle size of 0.5μ or less in an absolutely dry state, the fiber cross section has a major diameter of 0.2μ.
A moisture-absorbing acrylic fiber having the above pores, a moisture absorption rate of 10% or more at 20°C and 90%RH, and a water retention rate of 20% or more.
JP13383881A 1981-08-25 1981-08-25 Moisture and water absorbing acrylic fiber Granted JPS5836209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13383881A JPS5836209A (en) 1981-08-25 1981-08-25 Moisture and water absorbing acrylic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13383881A JPS5836209A (en) 1981-08-25 1981-08-25 Moisture and water absorbing acrylic fiber

Publications (2)

Publication Number Publication Date
JPS5836209A JPS5836209A (en) 1983-03-03
JPS6364529B2 true JPS6364529B2 (en) 1988-12-12

Family

ID=15114219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13383881A Granted JPS5836209A (en) 1981-08-25 1981-08-25 Moisture and water absorbing acrylic fiber

Country Status (1)

Country Link
JP (1) JPS5836209A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5190193B2 (en) * 2006-10-03 2013-04-24 三菱レイヨン株式会社 Breathable reversible anti-pill fiber
WO2018047344A1 (en) * 2016-09-12 2018-03-15 日本エクスラン工業株式会社 Modified acrylonitrile-based fiber, method for producing said fiber, and fibrous structure containing said fiber
JP7187911B2 (en) * 2017-09-22 2022-12-13 日本エクスラン工業株式会社 Hygroscopic acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
CN111133137B (en) * 2017-09-22 2022-05-10 日本爱克兰工业株式会社 Hygroscopic acrylic fiber, method for producing the fiber, and fiber structure containing the fiber
JP7219418B2 (en) * 2018-03-09 2023-02-08 日本エクスラン工業株式会社 Crimped moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP7177988B2 (en) * 2018-03-09 2022-11-25 日本エクスラン工業株式会社 Water-repellent and moisture-absorbing acrylonitrile-based fiber, method for producing said fiber, and fiber structure containing said fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037202A (en) * 1983-08-11 1985-02-26 Kawasaki Steel Corp Method and installation for preventing breakage of steel strip in cold rolling

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037202A (en) * 1983-08-11 1985-02-26 Kawasaki Steel Corp Method and installation for preventing breakage of steel strip in cold rolling

Also Published As

Publication number Publication date
JPS5836209A (en) 1983-03-03

Similar Documents

Publication Publication Date Title
US4443515A (en) Antistatic fabrics incorporating specialty textile fibers having high moisture regain and articles produced therefrom
KR860000203B1 (en) Hygroscopic acrilic fibers
JPS6364529B2 (en)
US4316937A (en) Water absorbent acrylic fiber
US4442173A (en) Novel water-absorbing acrylic fibers
US5436275A (en) Porous acrylonitrile polymer fiber
JPH0571073A (en) Silk fibroin-high water absorbing resin processed fabric and its production
JPS6330427B2 (en)
JPS6123295B2 (en)
JPS6262174B2 (en)
JP5190193B2 (en) Breathable reversible anti-pill fiber
JPS6367577B2 (en)
JPS6343482B2 (en)
JPS6360129B2 (en)
JPS648084B2 (en)
JPH07150471A (en) Porous acrylonitrile fiber
JP7219418B2 (en) Crimped moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JPS6235792B2 (en)
JP2601775B2 (en) Flame retardant acrylic composite fiber
JP3085486B2 (en) Porous acrylonitrile fiber
JP4888830B2 (en) Acrylic fiber containing amino acid derivative, method for producing the same, and fiber structure containing the fiber
JPH07150470A (en) Porous acrylonitrile fiber
JP3154286B2 (en) Hygroscopic nonwoven fabric
JP2519185B2 (en) Flame-retardant acrylic composite fiber
JPH0299609A (en) Production method for novel acrylic synthetic fiber