JPS6364267A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS6364267A
JPS6364267A JP61210322A JP21032286A JPS6364267A JP S6364267 A JPS6364267 A JP S6364267A JP 61210322 A JP61210322 A JP 61210322A JP 21032286 A JP21032286 A JP 21032286A JP S6364267 A JPS6364267 A JP S6364267A
Authority
JP
Japan
Prior art keywords
base material
electrode base
electrode
fuel cell
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61210322A
Other languages
Japanese (ja)
Inventor
Kenro Mitsuta
憲朗 光田
Ikuyuki Hirata
平田 郁之
Toshiaki Murahashi
村橋 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61210322A priority Critical patent/JPS6364267A/en
Publication of JPS6364267A publication Critical patent/JPS6364267A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make it possible to preserve a sufficient amount of electrolyte, by forming a porous first electrode base material with either the front side or the back side attached to a catalyst layer, and a second electrode base material with the mean pore diameter smaller than that of the first electrode base material, at an oxidizer electrode base material. CONSTITUTION:One side of a flat and porous first electrode base material 15 is attached to a catalyst layer 3. A porous second electrode base material 16 has grooves 13 through which a reaction gas is fed, and its ribs 11 are contacted to the first electrode base material 15 while its webs 12 are attached to a separator 14. Moreover, the mean pore diameter of the electrode base material 15 is larger than that of the electrode base material 16. In a fuel cell thus composed, the oxidizer gas passes through the grooves 13 which are the passages of the reaction gas, and through the porous electrode base material 15, and reaches to the catalyst layer 3. Therefore, in the electrode base material 16 with the ribs 11 and the webs 12, a sufficient amount of electrolyte can be preserved without disturbing the gas diffusion.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、燃料電池の構造に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to the structure of a fuel cell.

〔従来の技術〕[Conventional technology]

周知の通り、燃料だ池は対向して配置された燃料電極と
酸化剤電極の間に電解質を保持した電解質マトリックス
を介在させ、燃料電極および酸化剤電極にそれぞれ燃料
および酸化剤を供給して運転される一皿の発電装置であ
る。
As is well known, a fuel reservoir is operated by interposing an electrolyte matrix holding an electrolyte between a fuel electrode and an oxidizer electrode arranged opposite each other, and supplying fuel and oxidizer to the fuel electrode and the oxidizer electrode, respectively. It is a one-plate power generation device.

燃料電池には、0)カルノーサイクルの制約がなく高い
効率が期待できる、(?)電池作動温度に近い比較的高
温の有効利用が容易な廃熱が得られる、(53)出力を
変丸でも効率はあまり変わらない、■負1佇変ηhIr
柵すスー竹什tγ寸?・罰ア7.)六fr 、L’ /
ハモ1占があり、都市内もしくは都市近郊に配電用変電
所の規模で分散配置する、あるいは火力発電所の代替発
電装置とするなどの利用形態が考えられている。
Fuel cells are: 0) High efficiency can be expected as there is no Carnot cycle restriction; (?) Waste heat can be obtained at a relatively high temperature close to the cell operating temperature and can be easily used effectively; (53) Output can be changed even if the output is changed Efficiency doesn't change much, ■negative 1 change ηhIr
Is the fence so bamboo thick?・Punishment A7. )6 fr, L'/
There is a majority of conifers, and usage patterns are being considered, such as dispersing them within or near cities on the scale of distribution substations, or using them as alternative power generation equipment for thermal power plants.

燃料電池は用いられる電解質の種類によってアルカリ型
、リン酸型、溶融炭酸塩型などに分類されるが、このう
ちリン酸型は第一世代と呼ばれ最も開発が進んでおり、
すでに実用規模での試運転が行なわれている。
Fuel cells are classified into alkaline type, phosphoric acid type, molten carbonate type, etc. depending on the type of electrolyte used. Of these, the phosphoric acid type is called the first generation and is the most developed.
Trial runs on a practical scale have already been carried out.

ここで例えばリン酸型燃料電池について説明する。リン
酸型燃料電池で最も一般的に用いられている構造として
リブ付電極型がある。これは、例えば特開昭58−68
881号公報に記載されている構造であり、第2図に代
表的なリブ付電極構造の断面図を示した。第2図におい
て、(1)は燃料電極触媒1、(2)は電解質保持マト
リックス、(3)は酸化剤電極触媒、1であり、これら
によって反応層(4)が形成されている。(5)は燃料
電極側のリブ付電極基材、(6)は酸化剤電極側のリブ
付電極基材、(7)は周縁ガスミール部、(8)、 Q
l)は突起部すなわちリブ部、(9)、03は平担部す
なわちウェブ部、aC>は燃料ガス流路、(1ニヤは酸
化剤ガス流路、1圓はフラットなガス分離板(セパレー
タ)である。なお燃料ガス流路Qlと酸化剤ガス流路q
3は通常直交するように配置されているが、第2図では
図をわかりやすくするために平行になるように配置して
いる。
Here, for example, a phosphoric acid fuel cell will be explained. The most commonly used structure for phosphoric acid fuel cells is the ribbed electrode type. This is, for example, JP-A-58-68
This is the structure described in Japanese Patent No. 881, and FIG. 2 shows a cross-sectional view of a typical ribbed electrode structure. In FIG. 2, (1) is a fuel electrode catalyst 1, (2) is an electrolyte holding matrix, and (3) is an oxidizer electrode catalyst 1, and a reaction layer (4) is formed by these. (5) is the ribbed electrode base material on the fuel electrode side, (6) is the ribbed electrode base material on the oxidizer electrode side, (7) is the peripheral gas meal part, (8), Q
1) is a protrusion or rib portion, (9), 03 is a flat portion or web portion, aC> is a fuel gas flow path, (1 ni is an oxidant gas flow path, 1 circle is a flat gas separation plate (separator) ).In addition, the fuel gas flow path Ql and the oxidant gas flow path q
3 are normally arranged so as to be perpendicular to each other, but in FIG. 2 they are arranged parallel to each other to make the diagram easier to understand.

リブ付電極基材f5) 、 (61の役割として、反応
ガス流路α*、Q:iから触媒層(1)、(31への反
応ガスの通路としての石割と、基材(5)、(6)内に
電解液を貯蔵し反応−(4)中の電解液量に過不足があ
った場合にこれを吸収するあるいは補充するリザーバと
しての役割があるが、特に酸化剤側のリブ付電極基材(
6)のウェブ部口に電解液を貯蔵した場合に酸化剤ガス
の拡散性が著しく阻害され、特性が低下するという問題
点があった。
Ribbed electrode base material f5), (61's role is to split the stone as a passage for the reactive gas from the reactive gas flow path α*, Q:i to the catalyst layer (1), (31), and the base material (5), (6) Stores and reacts electrolyte in (4) It plays a role as a reservoir that absorbs or replenishes the amount of electrolyte in case there is an excess or deficiency in the amount of electrolyte in (4). Electrode base material (
When the electrolytic solution was stored at the web opening in 6), the diffusivity of the oxidant gas was significantly inhibited, resulting in a decrease in properties.

この問題点の解決手段として、例えば特開昭58−10
747号公報に記述されているように、燃料側のリブ付
定、極基材(5)の平均気孔径よりも酸化剤側のリブ付
電極基材(6)の平均気孔径の方を大きくすることによ
って、毛管力の差により酸化剤側のリブ付電極基材(6
)へなるべく電解液が貯蔵されないような工夫が試みら
れているが、平均気孔径を大きくすることによって酸化
剤側のリブ付電極基材(6)の強度が弱くなり特にウェ
ブ部@で割れやすくなる。酸化剤側のリブ付電極基材(
6)には実質的に電解液を貯蔵しないので、貯蔵量が少
ないなどの問題点があり実用的ではなかった。
As a solution to this problem, for example,
As described in Publication No. 747, the average pore diameter of the ribbed electrode base material (6) on the oxidizer side is larger than the average pore diameter of the ribbed electrode base material (5) on the fuel side. By doing so, the ribbed electrode base material (6
), attempts have been made to prevent the electrolyte from being stored as much as possible, but by increasing the average pore diameter, the strength of the ribbed electrode base material (6) on the oxidizer side becomes weaker, making it more likely to break, especially at the web part. Become. Ribbed electrode base material on the oxidizer side (
Since the method 6) does not substantially store the electrolyte, there are problems such as a small amount of storage, making it impractical.

またその他の解決手段として、特開昭58−68881
号公報に記載されているように、ウェブ部@の平均気孔
径をリブ部α刀の平均気孔径よりも大きくすることによ
って、やはり毛管力の差によりウェブ部@になるべく電
解液が貯蔵されないような工夫が試みられているが、平
均気孔径を大きくすることによってウェブ部α2が著し
く割れやすくなったり、また、一体化されたリブ付電極
基材のウェブ部αtとリブ部<11)の平均気孔径を変
えなければならないことから手間がかかり製造コストが
高くつくなどの問題点がありやはり実用的ではなかった
In addition, as another solution, JP-A-58-68881
As described in the publication, by making the average pore diameter of the web part larger than the average pore diameter of the rib part, it is possible to prevent the electrolyte from being stored in the web part as much as possible due to the difference in capillary force. However, by increasing the average pore diameter, the web part α2 becomes extremely easy to break, and the average of the web part αt and the rib part <11) of the integrated ribbed electrode base material However, it was not practical due to problems such as the need to change the pore diameter, which required time and effort and increased manufacturing costs.

r発B日カ(g!炸1.上らJ−−J”六n目頭占)従
来の燃料電池は以上のよう流構成されているので、特に
酸化剤側のリブ付電極基材(6)のウェブ部亜でのガス
拡散性が、貯蔵した電解液によって著しく阻害され特性
が低下するという問題があり、この為、酸化剤側には実
質的に電解液を貯蔵することが難しいという問題点があ
った。
Since the conventional fuel cell is configured as described above, the ribbed electrode base material (6n) on the oxidizer side is ) has a problem in that the gas diffusivity in the web part is significantly inhibited by the stored electrolyte and the properties deteriorate, and for this reason, it is practically difficult to store the electrolyte on the oxidizing agent side. There was a point.

この発明は上記のような問題点を解決する為になされた
もので、酸化剤側電極基材)こおいてもガスの拡散性を
阻害することなく充分な量の電解液を貯蔵できる燃料電
池を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it is a fuel cell that can store a sufficient amount of electrolyte without impeding gas diffusivity even in the oxidizer side electrode base material. The purpose is to obtain.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る燃料電池は、少なくとも酸化剤電極基材
は、表裏何れか一方の面が触媒層に当接するフラットな
多孔性の第1電極基材と、反応ガス供給用の溝を有しリ
ブ部を第1電極基材の他方の面に当接すると共にウェブ
部をセパレータに当接し、平均気孔径が第1電極基材よ
り小さい多孔性の第2電極基材とを備えたものである。
In the fuel cell according to the present invention, at least the oxidizer electrode base material includes a flat porous first electrode base material whose front or back surface is in contact with the catalyst layer, and a ribbed material having a groove for supplying a reactive gas. and a porous second electrode base material in which the web part is in contact with the other surface of the first electrode base material, the web part is in contact with the separator, and the average pore diameter is smaller than that of the first electrode base material.

〔作用〕[Effect]

この発明における第11基材は反応ガスに対して充分な
ガス拡散性を確保し、第2電極基材は充分な量の電解液
を貯、蔵することができる。
The eleventh base material in this invention ensures sufficient gas diffusivity for the reaction gas, and the second electrode base material can store and store a sufficient amount of electrolyte.

〔実施例〕〔Example〕

以下、この発明の一実施例を図をもとに説明する。第1
図はこの発明の一実施例による燃料電池を示す断面図で
ある。第1図では第2図の従来例と同様にわかりやすく
するために燃料ガス旅路OQと酸化剤ガス流路αJとを
平行に配置して示している。図において、α9はフラッ
トな多孔性の第1電極基材であり、−面が触媒1(3)
に当接している。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a sectional view showing a fuel cell according to an embodiment of the present invention. In FIG. 1, the fuel gas path OQ and the oxidizing gas flow path αJ are shown arranged in parallel for the sake of clarity, similar to the conventional example shown in FIG. In the figure, α9 is the flat porous first electrode base material, and the - side is the catalyst 1 (3).
is in contact with.

aQは反応ガス供給用の溝側を有し、リブ部0υを第1
電極基材05に当接すると共にウェブ部@をセパレータ
圓に当接する多孔性の第2電極基材である。
aQ has a groove side for supplying reaction gas, and the rib part 0υ is the first
This is a porous second electrode base material that is in contact with the electrode base material 05 and has its web portion @ in contact with the separator circle.

リン酸型燃料電池の場合、第1電極基材α9としてはカ
ーボンペーパが好適に用いられ、第2電極基材q8もカ
ーボン繊維を主として含む材質で構成するのが好ましい
。また、第1電極基材Q5の平均気孔径は第2電極基材
αQの平均気孔径よりも大きい。
In the case of a phosphoric acid fuel cell, carbon paper is preferably used as the first electrode base material α9, and the second electrode base material q8 is also preferably made of a material mainly containing carbon fibers. Moreover, the average pore diameter of the first electrode base material Q5 is larger than the average pore diameter of the second electrode base material αQ.

このように構成された燃料電池においては、酸化剤ガス
は反応ガス流路である溝餞から多孔性の第1電極基材」
Qを通って触媒層(3)に達する。しtコがって、リブ
部Uυとウェブ部□とを有する第2電極基材叫では、ガ
スの拡散性を気にせずに電解液の貯蔵を行なうことがで
きる。持にウェブ部四に充分な電解液の貯蔵を行なって
もさしつかえないので、従来例に比べて貯蔵量は大嘔に
増加する。
In the fuel cell configured in this way, the oxidizing gas is transferred from the reactant gas flow path to the porous first electrode base material.
It passes through Q and reaches the catalyst layer (3). Therefore, in the second electrode base material having the rib portion Uυ and the web portion □, the electrolyte can be stored without worrying about gas diffusivity. Since there is no problem even if a sufficient amount of electrolyte is stored in the web portion 4 for a while, the storage amount increases greatly compared to the conventional example.

また、第2電極基材ut9から反応−(4)への電解液
の供給は第1電極基材α9を介して行なわれてよいが、
第1電極基材05の基材繊維に例えば4フツ化エチレン
樹脂や4フッ化エチレン−6フツ化プロピレン共重合樹
脂などの疎水性樹脂を溶融凝固させて撲水性を与え、第
1電極基材05に電解液が進入しないようにして充分゛
なガス拡散路を確保し、第1電極基材q3の一部に撲水
性の蕪い所を設けて第2電極基材tlF9から反応i1
 (4)への電解液の供給が行なわれるようにしてもよ
い。第1電極基材Qうの平均気孔径は第2電極基材QG
の平均気孔径よりも大きく、シているのでfW MW液
によってガス拡散路が閉塞されることはまずないが、第
1[極基材q9に撲水性を与えることで電解液の進入に
よるガス拡散路の閉塞をより確実に防止できる効果があ
る。
Furthermore, the supply of the electrolytic solution from the second electrode base material ut9 to reaction-(4) may be performed via the first electrode base material α9,
A hydrophobic resin such as a tetrafluoroethylene resin or a tetrafluoroethylene-hexafluoropropylene copolymer resin is melted and solidified to the base fibers of the first electrode base material 05 to impart water-repellent properties, and the first electrode base material A sufficient gas diffusion path is ensured by preventing the electrolyte from entering 05, and a water-repellent groove is provided in a part of the first electrode base material q3 to conduct the reaction i1 from the second electrode base material tIF9.
The electrolytic solution may be supplied to (4). The average pore diameter of the first electrode base material Q is the second electrode base material QG.
Since the average pore diameter is larger than the average pore diameter of This has the effect of more reliably preventing blockage of the tract.

なお、燃料側に従来と同様のリブ付電極構造を適用した
場合、反応、@ (4)での電解液の体積の急激な変化
に対しては燃料極側のリブ付電極基材(5)のリザーバ
機能で対応できるので、第2[極基材σQでは電解液の
貯蔵という役割のみを考え反応1(4)や燃料極側のリ
ブ付電極基材(5)への電解液の供給には電極周縁部の
ガスシール部(7)を利用することができ、ガスミール
部(7)がウェットシールである場合にはそのまま利用
することができる。この場合反応層(4)や燃料極側の
リブ付電極基材(5)に電解液の不足があった場合に第
2電極基材αQから徐々に電解液が供給される。
In addition, when the same ribbed electrode structure as the conventional one is applied to the fuel side, the ribbed electrode base material (5) on the fuel electrode side is used to prevent sudden changes in the volume of the electrolyte during reaction @ (4). Since it can be handled by the reservoir function of the second electrode base material σQ, the role of the second electrode base material σQ is only to store the electrolyte, and it can be used for reaction 1 (4) and for supplying electrolyte to the ribbed electrode base material (5) on the fuel electrode side. The gas seal portion (7) at the electrode peripheral portion can be used, and if the gas seal portion (7) is a wet seal, it can be used as is. In this case, if there is a shortage of electrolyte in the reaction layer (4) or the ribbed electrode base material (5) on the fuel electrode side, the electrolyte is gradually supplied from the second electrode base material αQ.

なお、第2電極基材QQには撲水処理が施されていない
すなわち実質的に疎水性樹脂を含まないことが望ましく
、その厚さについても厚すぎるとセル全体の厚さが厚く
なるので0.4朋以下が望ましい。
In addition, it is desirable that the second electrode base material QQ is not treated with hydrophobic resin, that is, it does not substantially contain a hydrophobic resin, and if it is too thick, the thickness of the entire cell becomes thick. .4 or less is desirable.

また、第1図では酸化剤側にのみ本発明の構造用しても
よい。
Further, in FIG. 1, the structure of the present invention may be applied only to the oxidizing agent side.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、少なくとも酸化剤電
極基材は、表裏何れか一方の面が触媒、@に当接するフ
ラットな多孔性の第1電極基材と、反応ガス供給用の溝
を有しリブ部を第1電極基材の他方の面に当接すると共
にウェブ部をセパレータに当接し、平均気孔径が第1電
極基材より小さい多孔性の第2電極基材とを備えたもの
であるので、ガスの拡散性を阻害することなく充分な量
の電解液を貯蔵することができる効果がある。
As described above, according to the present invention, at least the oxidizer electrode base material includes a flat porous first electrode base material whose front and back surfaces are in contact with the catalyst, and a groove for supplying the reaction gas. a porous second electrode base material having a rib portion in contact with the other surface of the first electrode base material, a web portion in contact with the separator, and an average pore diameter smaller than that of the first electrode base material. As a result, a sufficient amount of electrolyte can be stored without impeding gas diffusivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による燃料電池を示す断面
図、第2図は従来の燃料電池を示す断面図である。  
・ 図において、(1)は燃料電極触媒1、(2)は電解質
保持マトリックス、(3)は酸化剤電極触媒層、(4)
は反応層、(5)は燃料電極側のリブ付電極基材、(6
)は酸化剤電極側のリブ付電極基材、(7)は同縁ガス
ミーJし怒−t81− (Illけリプ蝋−191fl
謁し士ウェブ怒−00は燃料ガス流路、03は酸化剤ガ
ス旅路、U−1)はセパレータ、αQは第1電極基材、
贈は第2電極基材である。 なお、各図中同一符号は同一または相当部分を示すもの
とする。
FIG. 1 is a sectional view showing a fuel cell according to an embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional fuel cell.
- In the figure, (1) is the fuel electrode catalyst 1, (2) is the electrolyte retention matrix, (3) is the oxidizer electrode catalyst layer, and (4) is the oxidizer electrode catalyst layer.
(5) is the ribbed electrode base material on the fuel electrode side, (6) is the reaction layer, (5) is the ribbed electrode base material on the fuel electrode side, and (6)
) is the electrode base material with ribs on the oxidizing agent electrode side, (7) is the same-edge gas me J Shizu-t81- (Illke Lip Wax-191fl
Audience Web U-00 is a fuel gas flow path, 03 is an oxidizing gas path, U-1) is a separator, αQ is a first electrode base material,
The gift is the second electrode base material. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (5)

【特許請求の範囲】[Claims] (1)反応ガス流路を有する電極基材とこれに設けた触
媒層とを備える酸化剤電極および燃料電極、これら両電
極の触媒層間に介在する電解質保持マトリックス、並び
に上記各電極に供給する反応ガスを分離するセパレータ
を具備する燃料電池において、少なくとも酸化剤電極基
材は、表裏何れか一方の面が上記触媒層に当接するフラ
ットな多孔性の第1電極基材と、反応ガス供給用の溝を
有しリブ部を第1電極基材の他方の面に当接すると共に
ウェブ部を上記セパレータに当接し、平均気孔径が第1
電極基材より小さい多孔性の第2電極基材とを備えたも
のであることを特徴とする燃料電池。
(1) An oxidizer electrode and a fuel electrode comprising an electrode base material having a reaction gas flow path and a catalyst layer provided thereon, an electrolyte retention matrix interposed between the catalyst layers of these two electrodes, and a reaction supplied to each of the above electrodes. In a fuel cell equipped with a separator for separating gases, at least the oxidant electrode base material includes a flat porous first electrode base material whose front or back surface is in contact with the catalyst layer, and a first electrode base material for supplying a reactant gas. The rib portion having a groove is in contact with the other surface of the first electrode base material, and the web portion is in contact with the separator, and the average pore diameter is in contact with the other surface of the first electrode base material.
1. A fuel cell comprising: a second electrode base material having a porosity smaller than that of the electrode base material.
(2)第1電極基材はカーボンペーパで形成されている
特許請求の範囲第1項記載の燃料電池。
(2) The fuel cell according to claim 1, wherein the first electrode base material is formed of carbon paper.
(3)第1電極基材の厚さは0.4mm以下である特許
請求の範囲第1項または第2項記載の燃料電池。
(3) The fuel cell according to claim 1 or 2, wherein the first electrode base material has a thickness of 0.4 mm or less.
(4)第1電極基材は撥水性を有する特許請求の範囲第
1項ないし第3項の何れかに記載の燃料電池。
(4) The fuel cell according to any one of claims 1 to 3, wherein the first electrode base material has water repellency.
(5)第2電極基材は親水性を有する特許請求の範囲第
1項ないし第4項の何れかに記載の燃料電池。
(5) The fuel cell according to any one of claims 1 to 4, wherein the second electrode base material has hydrophilicity.
JP61210322A 1986-09-04 1986-09-04 Fuel cell Pending JPS6364267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61210322A JPS6364267A (en) 1986-09-04 1986-09-04 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61210322A JPS6364267A (en) 1986-09-04 1986-09-04 Fuel cell

Publications (1)

Publication Number Publication Date
JPS6364267A true JPS6364267A (en) 1988-03-22

Family

ID=16587505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61210322A Pending JPS6364267A (en) 1986-09-04 1986-09-04 Fuel cell

Country Status (1)

Country Link
JP (1) JPS6364267A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059506A (en) * 2001-08-16 2003-02-28 Mitsubishi Electric Corp Electrochemical element and electrochemical element device
JP2007053007A (en) * 2005-08-18 2007-03-01 Toyota Motor Corp Fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059506A (en) * 2001-08-16 2003-02-28 Mitsubishi Electric Corp Electrochemical element and electrochemical element device
JP2007053007A (en) * 2005-08-18 2007-03-01 Toyota Motor Corp Fuel cell

Similar Documents

Publication Publication Date Title
KR100984934B1 (en) Fuel cell
US5541015A (en) Fuel cell using a separate gas cooling method
JP2000113899A5 (en)
JPS5931568A (en) Film cooling type fuel battery
KR20050010969A (en) Fuel battery
JP2004039525A (en) Fuel cell
JPH10284096A (en) Solid high polymer electrolyte fuel cell
JP2004185944A (en) Solid high polymer type fuel cell
CA2693522C (en) Fuel cell with non-uniform catalyst
KR102639709B1 (en) Gas diffusion layer for fuel cell applications and unit cell of fuel cell having the same
JP2000123848A (en) Fuel cell
US20040157111A1 (en) Fuel cell
JPH0541230A (en) Solid high molecular electrolyte type fuel cell, and method of supplying water to be absorbed into film and gas
JPS6364267A (en) Fuel cell
JP2005197150A (en) Fuel cell
JPS5848366A (en) Fuel cell
JP3603871B2 (en) Polymer electrolyte fuel cell
JPS58166636A (en) Fuel cell
JP2000315507A (en) Solid highpolymer fuel cell
JP2005071763A (en) Fuel cell separator
JPS5927466A (en) Fuel cell
JP7480662B2 (en) Fuel cell separators
JP2009048905A (en) Fuel cell
JP2005222898A (en) Solid polymer fuel cell
JP2007172966A (en) Polymer electrolyte fuel cell