JPS6362167B2 - - Google Patents

Info

Publication number
JPS6362167B2
JPS6362167B2 JP53153174A JP15317478A JPS6362167B2 JP S6362167 B2 JPS6362167 B2 JP S6362167B2 JP 53153174 A JP53153174 A JP 53153174A JP 15317478 A JP15317478 A JP 15317478A JP S6362167 B2 JPS6362167 B2 JP S6362167B2
Authority
JP
Japan
Prior art keywords
facility
air
pipes
temperature
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53153174A
Other languages
Japanese (ja)
Other versions
JPS5581522A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15317478A priority Critical patent/JPS5581522A/en
Publication of JPS5581522A publication Critical patent/JPS5581522A/en
Publication of JPS6362167B2 publication Critical patent/JPS6362167B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Landscapes

  • Air Conditioning Control Device (AREA)
  • Greenhouses (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 本発明は園芸施設(ガラス温室、ビニールハウ
ス等)内の冬季、また夏季、並びに各夜間及び昼
間の温、湿度即ち環境による変化に応じての冷暖
房における省エネルギー化方法とその施設に関す
るものである。
[Detailed Description of the Invention] [Object of the Invention] The present invention provides heating and cooling systems in horticultural facilities (glass greenhouses, plastic greenhouses, etc.) in response to changes in temperature and humidity, i.e., the environment, during winter, summer, nighttime and daytime. This paper concerns energy saving methods and facilities.

農作物は、天候の影響を受けやすく、その収量
の増減および品質の良否により価格の安定性にと
ぼしく、その改善のため、施設園芸による人工的
気象条件下の栽培方式で、これを安定化せしめる
努力がわが国では昭30年頃より開発され、全国的
に普及し、今日では、その実施面積において、世
界一と称せられている。
Agricultural crops are easily affected by the weather, and their prices are unstable due to fluctuations in yield and quality.In order to improve this, efforts are being made to stabilize this through cultivation methods under artificial weather conditions through greenhouse horticulture. It was developed in Japan around 1950 and has spread nationwide, and today it is said to be the best in the world in terms of the area in which it has been used.

ところが、近年石油シヨツクで、その暖房源並
びに、関連資材の高騰によつて、その前途が危ぶ
まれていることと、日本の夏季高温時における施
設の利用面の点からして、省エネルギー化と、夏
季冷房による施設の有効利用が切実に望まれてい
るのが現状である。
However, in recent years, the future of oil shocks has been in doubt due to the soaring prices of heating sources and related materials, and from the perspective of facility usage during Japan's high temperature summers, it is important to save energy. At present, there is an urgent need for effective use of facilities through summer cooling.

〔従来の技術〕[Conventional technology]

しかして、その解決のためには、従来種々の提
案が出され、実施もされているが、それらの多く
のものは、単純すぎて利用価値が無かつたり、複
雑にすぎて経済効果上、利用価値がない等の欠点
を有し、農家が容易にしかも有効に利用し得るも
のが未だに実現されていない。例えば、特開昭52
―107941号公報のものは、本発明者も同様の考想
の下に行つていた温室内の上部温暖空気を地下に
埋設したパイプ(本発明者はこれらをドラム管を
横方向に連結したものを用い通常ドラム管方式と
称している)へ導きこれを蓄熱せしめたものを、
夜間寒冷時に温室内に排出せしめたのみのもので
あり、これ丈けでは日中の温暖時や夏季の酷暑期
においては使用出来ないものであるし、また特公
昭49―3333号のものは、単に温室外の温水路の温
水を寒冷時に温室内に導入して温度上昇を計つた
ものであり、これ又外気温の上下に応じて施設内
環境を調整するには、満足し得るものではなかつ
た。
In order to solve this problem, various proposals have been made and implemented, but many of them are either too simple to be of any use value or too complex to be economically effective. It has drawbacks such as lack of utility value, and nothing that farmers can easily and effectively use has yet to be realized. For example, JP-A-52
- The one in Publication No. 107941 is based on the same concept as the one in which the upper warm air in the greenhouse is buried underground through pipes (the inventor connected these drum pipes laterally). (Usually called the drum tube method) which is used to store heat,
It is only discharged into the greenhouse during cold nights, and if it is this long, it cannot be used during warm days or during the intense heat of summer. This method simply measures the temperature rise by introducing hot water from a hot water channel outside the greenhouse into the greenhouse during cold times, and this method is not satisfactory for adjusting the environment inside the facility in response to fluctuations in outside temperature. Ta.

本発明者等は、これらの難点を解決するため
種々研究開発を進め本発明に到達したものであ
る。
The present inventors conducted various research and development to solve these difficulties and arrived at the present invention.

〔実施例〕〔Example〕

次に本発明の実施例を図面を参照して説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

温室又は、ビニールハウス等の施設、図面では
適宜の骨格材をもつて構成した施設外装フレーム
2には、ガラス又は、ビニールフイルム等1をも
つて被覆せしめてある。その内部適所(図面で
は、長手方向の中央に長手方向とは直角位置の両
側)に吸気口7,7の吸気口枠体7′,7′を設
け、ここに吸気フアン8を取付け、これより地下
約1m〜1.5mに空気導管3を垂下せしめ、これ
よりほぼ水平に幹管4を設置し、この幹管より長
手方向両側に幹管4より細い支管5,5,5…を
適宜間隔に多数配設し、その両側において地上に
向つて排気管5′を各々設置し、施設内適所(実
施例の図面の場合は、長手方向の両側端部)に排
気口6を開口する。
A facility such as a greenhouse or a vinyl house, as shown in the drawings, is covered with a glass, vinyl film, etc. 1 on a facility exterior frame 2 constructed with a suitable skeleton material. Inlet frames 7', 7' of the intake ports 7, 7 are provided at appropriate internal locations (in the drawing, at the center of the longitudinal direction and on both sides at right angles to the longitudinal direction), and the intake fan 8 is attached thereto. An air conduit 3 is suspended approximately 1 m to 1.5 m underground, a main pipe 4 is installed almost horizontally from this, and branch pipes 5, 5, 5, which are thinner than the main pipe 4, are installed at appropriate intervals on both sides of the main pipe in the longitudinal direction. A large number of exhaust pipes 5' are installed toward the ground on both sides, and exhaust ports 6 are opened at appropriate locations within the facility (in the case of the drawings of the embodiment, at both ends in the longitudinal direction).

まず、本発明の方法と施設の説明をするに当つ
て、施設内の上、下の温度及びその地下1m〜
1.5mの温度並びに外温との関係についてその概
要を述べると、本出願人の本発明の試験農場であ
る千葉県松戸市紙敷の(財)日本園芸生産研究所
における昭和52年3月〜4月の温度状況をみると
日中[AM5〜PM6] 外気温 −5℃〜18℃ 室温 上方 32℃〜38℃ 下方(地表上30〜50cmの処) 20℃〜25℃ 地温地下(1m〜1.5mの処) 10℃〜12℃であり、 これを冬期使用方式として上方空気を地下へ吸
入循環させたところ、(3〜4時間)、地温は18℃
〜19℃となつた。そしてこの暖かい空気を施設内
に循環させた時と、循環させぬ時とを比較する
と、 循環させぬ時は上方35℃、下方20℃と差が約15
℃あるのに対し、 循環させた時上方30℃、下方25℃となつてその
差約5℃という成績を得ている。
First, in explaining the method and facility of the present invention, we will discuss the temperature at the top and bottom of the facility and from 1m underground.
To give an overview of the relationship between the temperature at 1.5 m and the outside temperature, the results were obtained from March to April 1978 at the Japan Horticultural Production Research Institute in Kamishiki, Matsudo City, Chiba Prefecture, which is the applicant's test farm for the present invention. Looking at the temperature situation during the month, during the day [AM5~PM6] Outside temperature -5℃~18℃ Room temperature Above 32℃~38℃ Below (30~50cm above the ground surface) 20℃~25℃ Geological temperature Underground (1m~1.5℃) The ground temperature was 10°C to 12°C, and when the upper air was sucked and circulated underground (for 3 to 4 hours), the ground temperature was 18°C.
The temperature was ~19℃. Comparing when this warm air is circulated within the facility and when it is not circulated, when it is not circulated, the temperature is 35℃ in the upper part and 20℃ in the lower part, which is a difference of about 15 degrees.
℃, but when it is circulated, the temperature is 30℃ in the upper direction and 25℃ in the lower direction, with a difference of about 5℃.

また、これを夏期7〜8月(AM10〜PM3)に
おいてみると、 外気温 25℃〜42℃ 室温 上方 32℃〜40℃ 下方 25℃〜35℃ 地下1m〜1.5m 15℃〜25℃であり、 これを地温と室内下方との空気循環により室温
を20℃〜25℃の春の温度とすることができた。
Also, if we look at this in the summer from July to August (AM10 to PM3), the outside temperature is 25℃ to 42℃, the room temperature is 32℃ to 40℃ above, 25℃ to 35℃ below, and 1m to 1.5m underground is 15℃ to 25℃. , We were able to maintain the room temperature at a spring temperature of 20°C to 25°C through soil temperature and air circulation from the bottom of the room.

よつて、このような室内上下の温度差と地下1
m〜1.5mの地熱とを利用して、冬期における暖
房への有効利用や、夏期における温室の冷房に役
立たしめることはきわめて有意義なことであり、
またこれを自明の温度調整装置(例えばベローズ
利用や電気的諸装置の利用)の利用によつて温室
内上下の温度差並びに地中温との関連付けを行い
各所の吸気調節弁を有機的に結合せしめれば、本
発明の省エネルギー化は一層有効に働くものであ
る。
Therefore, this kind of temperature difference between the upper and lower parts of the room and the
It is extremely meaningful to utilize geothermal energy from 1.5 m to 1.5 m for effective use in heating in the winter and cooling greenhouses in the summer.
In addition, by using obvious temperature control devices (for example, using bellows or using various electrical devices), we can link this to the temperature difference between the upper and lower parts of the greenhouse and the underground temperature, and organically connect the intake control valves at various locations. If so, the energy saving of the present invention will work even more effectively.

次に特許請求の範囲1及び2,3の具体的実施
例について述べれば、吸気口枠体7′,7′には、
冬期又は、夜間等寒冷時には、温室内上部の温か
い空気を吸入せしめるため、第1図,第2図,第
5図に示す実施例においては、施設外装フレーム
2,2(ビニール又はガラス等を張設する鉄骨材
等のフレーム)の内側で、その全体もしくは適宜
個所(実施例第5図ではほぼ中央部の一部)に設
けた上部空気案内用兼防寒被覆体用即ちガラス板
もしくは、ビニールフイルム10に必要に応じて
不織布Fを設けるようにしたフレーム9,9,…
を構成せしめ、これに上部空気案内板又はフイル
ム10と夜間や寒冷時には、不織布等の適宜の防
寒体Fを被覆せしめるものであり、この上部空気
案内板又はフイルム10の下方に位置する吸気口
7,7には、吸気口枠体7′,7′を取付け、ここ
に吸気フアン8,8を装着する。またこの吸気口
7,7上方に位置する前記上部空気案内板又はフ
イルム10の下端には上方空気取入口0及び下方
空気取入口0′を切替開閉する吸気調節弁11を
軸9′にて枢着して取付ける。そして冬季又は夜
間等寒冷時には、吸気調節弁11を第1図実線の
様にして、上部空気取入口を開き、且つ、下方空
気導入口0′を閉鎖して、温暖空気を空気導管3
に導入するようにし、これとは逆に、夏季酷暑時
や昼間温暖時には、吸気調節弁11を第1図点線
のようにして上方空気取入口0を閉鎖し、且つ下
方空気取入口0′を開口せしめて、施設上方より
は比較的低温の下方の空気を空気導管3に導入す
るようにしたものである。
Next, referring to specific embodiments of claims 1, 2, and 3, the intake port frames 7', 7' include:
In the embodiments shown in Figs. 1, 2, and 5, facility exterior frames 2, 2 (covered with vinyl or glass, etc.) are used to draw in warm air from the upper part of the greenhouse during winter or when it is cold at night. A glass plate or vinyl film for upper air guide and cold protection provided inside the entire frame (such as a frame made of steel frames, etc.) or at an appropriate location (part of the approximate center in Figure 5 of the embodiment). Frames 9, 9,... 10 are provided with a nonwoven fabric F as necessary.
The upper air guide plate or film 10 is covered with an appropriate cold protection material F such as a non-woven fabric at night or in cold weather, and the air intake port 7 located below the upper air guide plate or film 10 is , 7, intake port frames 7', 7' are attached, and intake fans 8, 8 are attached thereto. Further, at the lower end of the upper air guide plate or film 10 located above the intake ports 7, 7, there is an intake control valve 11 pivoted by a shaft 9' for switching open/close of the upper air intake 0 and the lower air intake 0'. and install it. During cold weather such as winter or nighttime, the air intake control valve 11 is set as shown by the solid line in Figure 1 to open the upper air intake port and close the lower air intake port 0' to direct warm air to the air conduit 3.
On the other hand, during extremely hot summers or warm days, the intake control valve 11 is closed as shown by the dotted line in Figure 1 to close the upper air intake 0 and close the lower air intake 0'. The air conduit 3 is opened to allow air from below, which is relatively colder than the air above the facility, to be introduced into the air conduit 3.

又この部分の別設計として、本願の特許請求の
範囲第3項の実施例を述べれば第3図,第4図,
第6図においては、吸気口枠体7′,7′に施設内
上部の温暖空気部に開口する適宜長さの接続管1
2,12を第9図に於いては、空気導管3と接続
管12とを接合部に於て螺合せしめてあり、接続
管12,12の長さの異なるものを幾種類かを造
つておけば温度調節に便である。又接続管12の
上部に設けた上部空気吸入枠体13にも吸気フア
ン8を取付けてあるので吸気力を増大させること
が出来る。
In addition, as another design of this part, if we describe the embodiment of claim 3 of the present application, we will refer to Fig. 3, Fig. 4,
In Fig. 6, a connecting pipe 1 of an appropriate length opens into the warm air area in the upper part of the facility at the intake port frames 7', 7'.
2 and 12 in FIG. 9, the air conduit 3 and the connecting pipe 12 are screwed together at the joint, and several types of connecting pipes 12 and 12 with different lengths are made. This is convenient for temperature control. Furthermore, since the intake fan 8 is also attached to the upper air intake frame 13 provided above the connecting pipe 12, the intake force can be increased.

即ち冬季寒冷時や、夜間冷涼時には、本発明の
空気導管3に、接続管12を螺合もしくは嵌合適
宜の手段によつて強固に取り付け、上部高温空気
を施設内地下に埋設した幹管4を経て、これに取
付けた多数の支管5,5,5に誘導蓄熱せしめ、
この温風を第6図にみるように、施設長手方向の
施設両側の排気口6より施設内に排出するととも
に、上記上方吸気フアン8により、栽培室内の上
方の吸気口枠体7′より再度施設内上部の温暖空
気と共に吸入循環せしめ、施設内温度の保持に役
立たせ得るし、夏季酷暑時や昼間温暖時には、吸
気筒の吸気導管3の上部接続管12を取り外し、
下方の吸気口枠体7′より下方吸気口7に向つて、
上方よりは比較的冷涼な空気を施設内地中に導入
し、夏季地温の(施設内上方温度より低い)空気
に接触せしめて、その温度低下を促進せしめ、こ
の低下した空気を施設両側の排水口6,6より栽
培室内に排気循環せしめて、施設内温度の冷却に
役立たせるようにしたものである。
That is, during cold winters and cool nights, the connecting pipe 12 is firmly attached to the air conduit 3 of the present invention by screwing or fitting, and the upper high temperature air is transferred to the main pipe 4 buried underground in the facility. After that, the heat is stored by induction in the numerous branch pipes 5, 5, 5 attached to this,
As shown in Fig. 6, this warm air is discharged into the facility from the exhaust ports 6 on both sides of the facility in the longitudinal direction of the facility, and is then recirculated from the intake port frame 7' above the cultivation room by the above-mentioned upper intake fan 8. It can be sucked and circulated together with the warm air from the upper part of the facility, helping to maintain the temperature inside the facility.During extremely hot summers or warm days, the upper connecting pipe 12 of the intake pipe 3 of the intake cylinder can be removed.
From the lower intake port frame 7' toward the lower intake port 7,
Relatively cool air is introduced into the facility's ground from above, and is brought into contact with air at summer soil temperature (lower than the temperature above the facility) to accelerate the temperature drop, and this lowered air is sent to the drains on both sides of the facility. 6 and 6, the exhaust gas is circulated inside the cultivation room to help cool down the temperature inside the facility.

次に、各実施例には温室外になるべく近傍で次
棟の温室等の中間空地に、屋外プール14,14
等を適宜数(この数は、寒冷時に施設内を温暖に
するのに必要な蓄熱水を得る丈け入用である。)
設け、これにフレーム15,15を被覆し、ここ
にビニールフイルムや熱線透過度のよいフイルム
或は太陽熱利用の集熱温水器を設置して寒冷季に
於て極力太陽熱を蓄積せしめる。そして、この温
水は、施設内適所に供給し得る様に温冷水導管1
7,17′を通じて適宜のポンプPによつて施設
内適所(例えば、畦間に配設した温冷水パイプ2
4や地下温冷水パイプ25あるいはマルチM畦間
谷間23に)の配管に滞留せしめるか、又は流下
せしめるようにする。図面中Cは、温冷水管17
に付設したコツクである。
Next, in each example, an outdoor pool 14,
(This number is necessary to obtain the heat storage water necessary to warm the inside of the facility during cold weather.)
This is covered with frames 15, 15, and a vinyl film, a film with good heat ray transmittance, or a solar heat collecting water heater is installed here to accumulate solar heat as much as possible in the cold season. Then, this hot water is supplied to the hot and cold water conduit 1 so that it can be supplied to the appropriate places within the facility.
7 and 17', pump P to a suitable place in the facility (for example, hot and cold water pipes 2 installed between the furrows).
4, underground hot and cold water pipes 25, or multi-M ridges and valleys 23), or allowed to flow down. C in the drawing is hot and cold water pipe 17
It is a kottoku attached to the.

また、これと併存して、温室1の近傍に井戸1
9を掘さくして、これに井戸枠20中の井水導管
21を取付け、適宜のポンプPによつて地下水を
汲上げて夏季にはこの井戸の冷水を施設内適所の
配管等に供給して土温や施設内温度の低下に役立
たせるし、冬季曇天時に於てプール水が暖くなら
ない場合でしかも井戸水がこれより暖かい場合に
これを利用して暖房の一助にすることができるも
のである。なお図面(第7,第8図参照)中Hは
マルチMに設けた穴であり、Sはこれに植付けた
作物を示すものである。
Along with this, there is also a well located near greenhouse 1.
9 is dug, the well water conduit 21 in the well frame 20 is attached to this, groundwater is pumped up by an appropriate pump P, and cold water from this well is supplied to pipes at appropriate locations within the facility during the summer. It is useful for lowering the soil temperature and the temperature inside the facility, and it can be used to help with heating when the pool water does not get warm during cloudy winter weather and the well water is warmer than this. . Note that in the drawings (see Figures 7 and 8), H indicates a hole made in the mulch M, and S indicates a crop planted in the hole.

次に本発明の方法及び施設の施行について図面
にもとずきより詳細に説明すると、まず、第1
図,第2図,第5図に示した実施例では、冬季寒
冷時や、春秋季の夜間冷温時の昼間においては、
施設内上方の太陽熱等によつて、温かくなつてい
る空気を、施設内の空気案内板の下方で、施設ほ
ぼ中央両側に設けた吸気口7,7上方の吸気調節
弁11を実線の位置に垂下せしめて、吸気口枠体
7′,7′に装着した吸気フアン8,8を廻転せし
めると施設上方の温かい空気は吸気口7,7より
空気導管3,3を通つて、施設内地下1m〜1.5
mに埋設された幹管4を通り、施設長手方向に敷
設した多数の支管5,5,5…に分れて、施設間
両側の排気管5′,5′を通つて排気口6,6より
施設内適所に排出するが、この間地下1m〜1.5
m下方の地上部に比べて比較的温度変化の少ない
所に蓄熱せしめることができる。そして、冬期寒
冷時や春秋等の夜間冷温時の夜間にあつては、施
設内の空気を地下に埋設した管中を通過させて昇
温させ、施設内を暖房する。
Next, the implementation of the method and facility of the present invention will be explained in more detail based on the drawings.
In the embodiments shown in Figs.
Air that has become warm due to solar heat, etc. in the upper part of the facility is transferred to the air intake control valve 11 above the intake ports 7 and 7 provided below the air guide plate in the facility, on both sides of the facility, approximately in the center, to the position shown by the solid line. When the intake fans 8, 8 attached to the intake frame bodies 7', 7' are rotated, the warm air above the facility passes through the air conduits 3, 3 from the intake ports 7, 7, and reaches 1 m underground within the facility. ~1.5
Exhaust ports 6, 6 pass through the main pipe 4 buried in the main pipe 4, which is buried in It will be discharged to an appropriate location within the facility, but during this time it will be discharged to an appropriate location within the facility, but during this time it will be discharged to a suitable location within the facility.
Heat can be stored in a place where the temperature changes are relatively small compared to the above-ground part below the ground. Then, at night when it is cold in winter or in spring and fall, the air inside the facility is passed through pipes buried underground to raise the temperature and heat the inside of the facility.

また、これと同時に施設外に設けられた(通常
温室と温室の中間空所に、これと平行して設けら
れる)屋外プール14,14に適量の水を貯え、
このプール上方には保温枠15,15を設置し、
これにビニールフイルム、又はガラス16を被覆
するが出来れば、光線透過度がよく、且つ、蓄熱
効果のあるフイルムやガラスを使用すればより効
果があるが、又これに公知の太陽熱利用集熱器を
用いればより有効な方法と、装置が提供できるも
のである。
In addition, at the same time, an appropriate amount of water is stored in the outdoor pools 14, 14 provided outside the facility (usually provided in the space between the greenhouses, and in parallel thereto).
Heat insulation frames 15, 15 are installed above this pool,
If it is possible to cover this with a vinyl film or glass 16, it is more effective to use a film or glass that has good light transmittance and has a heat storage effect. If this method is used, a more effective method and apparatus can be provided.

このようにして得た温水を施設内畦間に配設し
たビニールチユーブ等の温冷水パイプ24,24
にポンプPを使つて給送循環せしめ、また場合に
よつては、施設内適宜深さの土中に配設した地下
温冷水パイプ25に前記室外プール14,14を
連結して温水を土中で循環せしめてもよいし又他
上温冷水パイプ24と併用することも可能であ
る。
Hot and cold water pipes 24, 24, such as vinyl tubes, are installed between the ridges of the facility to carry the hot water obtained in this way.
In some cases, the outdoor pools 14, 14 are connected to an underground hot and cold water pipe 25 installed in the soil at an appropriate depth within the facility to supply hot water into the soil. Alternatively, it may be used in combination with other hot and cold water pipes 24.

なお施設内土壌をビニールフイルム等のマルチ
フイルムMで被覆し、その畦間に上記屋外プール
14,14の温水を導入して滞留せしめるか、ま
たは循環せしめてもよく、又これと上記地下温冷
水パイプ25とを併用してもよい。
The soil within the facility may be covered with a multi-film M such as a vinyl film, and the warm water from the outdoor pools 14, 14 may be introduced between the ridges and retained or circulated. It may also be used together with the pipe 25.

また、施設外適所(これも近傍がのぞましい
が)に井戸19を掘りこれに井戸枠20を嵌め、
井水導管21を取付けポンプPにより井水を汲み
上げ、曇天続きであつて太陽エネルギーの利用が
出来難く、且つ、外温や施設内温度よりも、井戸
水の方が温かい場合には、この井戸水をポンプP
によつて、上記温冷水パイプ24や、地下温冷水
パイプ25、(これら各単独または、併用)ある
いはマルチM谷部間に滞留せしめるか又は、流下
せしめて、施設内温度上昇に役立たせることもで
きるのであり、(第7図,第8図参照)これ等を
皆有機的に結合し、且つ、作動せしめればより有
効であり省力化出来得るものである。又厳寒季等
において、太陽熱や地下水温だけでは、温度が不
足する場合は、従来の加熱暖房機を併用して適宜
温度上昇せしめるものである。
In addition, a well 19 is dug at a suitable location outside the facility (preferably nearby), and a well frame 20 is fitted into it.
The well water conduit 21 is installed and the well water is pumped up by the pump P. If the weather is cloudy and it is difficult to use solar energy, and the well water is warmer than the outside temperature or the inside temperature of the facility, this well water can be used. Pump P
Depending on the situation, the above-mentioned hot and cold water pipe 24, underground hot and cold water pipe 25 (each alone or in combination), or being allowed to stay between the multi-M valleys or flowing down may be used to increase the temperature within the facility. (See Figs. 7 and 8) If these are all organically combined and operated, it will be more effective and labor-saving. In addition, in severe cold seasons, if solar heat or underground water temperature alone is insufficient to raise the temperature, a conventional heater may be used in combination to raise the temperature appropriately.

次に本方法及び施設の夏季酷暑季や、春秋季の
昼間高温時の利用について述べると、施設内上部
空気案内板又はフイルム10の下方で吸気口7の
上方にある吸気調節弁11を第1図点線の位置に
上昇せしめ、上方空気取入口0を閉鎖すれば、下
方空気取入口0′より施設上方よりは比較的低温
の空気が吸気口7より空気導管3を介して土中に
埋設した幹管4に入り、これより土中に敷設した
多数の支管5,5,5…を通つて施設両端の排気
口6,6,6…より施設内に排出循環されるが、
この間施設内土中は、外気より低温であるので導
入された空気はその温度を下げられ、施設内の温
度の高温化を防止し得る。
Next, to describe this method and its use in the extremely hot summer season of the facility or during the daytime high temperature in the spring and autumn seasons, the intake control valve 11 located above the intake port 7 below the upper air guide plate or film 10 in the facility will be described. If the air is raised to the position indicated by the dotted line in the figure and the upper air intake port 0 is closed, air at a relatively lower temperature than above the facility will flow from the lower air intake port 0' through the air conduit 3 from the air intake port 7 and be buried in the soil. It enters the main pipe 4, passes through a large number of branch pipes 5, 5, 5... laid underground, and is discharged and circulated within the facility from exhaust ports 6, 6, 6... at both ends of the facility.
During this time, the soil inside the facility is lower in temperature than the outside air, so the temperature of the introduced air is lowered and the temperature inside the facility can be prevented from increasing.

又これと同時に前述した施設外に設けた井戸1
9よりポンプPによつて冷水を汲み上げ施設内の
畦間に配設した温冷水パイプ24や、地下温冷水
パイプ25(これらを各単独または併用)又は畦
間マルチMの谷間23に上記冷水を滞留又は流下
せしめ、施設内温度の低下に役立たしめ、施設の
夏季有効利用を行い得るものである。
At the same time, well 1 was constructed outside the facility mentioned above.
9, the cold water is pumped up by the pump P, and the cold water is poured into the hot and cold water pipes 24 arranged between the furrows in the facility, the underground hot and cold water pipes 25 (each alone or in combination), or the valleys 23 of the furrow mulch M. This will help reduce the temperature inside the facility by allowing it to stagnate or flow down, allowing the facility to be used effectively in the summer.

また施設内空気利用方法、施設の別設計として
は、種々考えられるが一例を示すと、前述した特
許請求の範囲第3項の実施例即ち第3図,第4
図,第6図,第9図に示すものは、土中への空気
導管3に適宜長さの接続管12を嵌合又は螺合
(図面では両者を接続部12′によつて螺合)せし
め、必要に応じその上部空気吸入枠体13に吸気
フアン8を取付けて吸気加熱させることも出来
る。この場合の使用法は、冬季寒冷時や、春秋季
の夜間冷温時に於て、接続管12を取付け吸入フ
アン8を廻転するとこれにより施設内上部の温か
い空気が空気導管3を通つて幹管4、多数の支管
5,5,5…を通つて施設両側の排気口6,6よ
り施設内に排出されるもので、その結果施設内土
中の温度利用と施設内暖房効果は、前実施例と全
く同様である。
In addition, various methods of utilizing the air within the facility and alternative designs of the facility are possible.
, 6 and 9, a connecting pipe 12 of an appropriate length is fitted or screwed into the air conduit 3 into the soil (in the drawing, both are screwed together by a connecting part 12'). Furthermore, if necessary, an intake fan 8 can be attached to the upper air intake frame 13 to heat the intake air. The usage in this case is that when the connecting pipe 12 is attached and the suction fan 8 is rotated, warm air from the upper part of the facility passes through the air conduit 3 and into the main pipe 4 during cold winter months and cold nights in spring and autumn. , are discharged into the facility from exhaust ports 6, 6 on both sides of the facility through a large number of branch pipes 5, 5, 5..., and as a result, the temperature utilization in the soil inside the facility and the heating effect in the facility are similar to those in the previous example. It is exactly the same.

また夏季酷暑時や春秋季の昼間温熱時には接続
管12を外して、空気導管3のみによつて吸気フ
アン8を廻転せしめれば、施設内下方の比較的冷
涼な空気を空気導管3、幹管4、多数の支管5,
5,5…を通つて、施設内両側の排気口6,6よ
り冷涼な空気を排出せしめ、施設の高温化防止に
役立ち得るものであり、これらと井戸水の利用に
よる冷房については、暖房を冷房とする以外は同
様である。
In addition, if the connecting pipe 12 is removed and the intake fan 8 is rotated only through the air conduit 3 during the heat of the summer or during the daytime in spring and autumn, relatively cool air from the lower part of the facility can be transferred to the air conduit 3 and the main pipe. 4. Many branch pipes 5.
Cool air is discharged through exhaust ports 6, 6 on both sides of the facility through 5, 5..., which can help prevent the facility from becoming too hot. It is the same except that

なお後者の実施例即ち空気導管3に接続管12
を接続する方法と施設においては接続管を成可く
高くする必要上施設両側からやや内側に吸気口
7,7を設けるためその外側に比較的広い未利用
空所が出来るので、これを利用して屋内プール2
6,26を設置し、これを屋内プール吸水管27
より吸上げて、屋外プール水と共に施設内プール
の温水を利用せしめたり栽培室内湿度維持に役立
たしめることが出来る効果がある。
Note that in the latter embodiment, the connecting pipe 12 is connected to the air conduit 3.
Regarding the method and facility for connecting the pipes, it is necessary to make the connecting pipe as high as possible, and the intake ports 7, 7 are provided slightly inside from both sides of the facility, so there is a relatively large unused space outside of the intake ports, so it is necessary to make use of this. indoor pool 2
6, 26 and connect it to the indoor pool water intake pipe 27.
This has the effect of making it possible to use hot water from an in-house pool together with outdoor pool water, or to help maintain humidity in a cultivation room.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上の様な方法とその施設により比
較的簡単な設備によつて、冬季や、夜間の寒冷時
に、昼間施設内上方の温められた空気を土中に吸
入せしめ、土中に蓄熱せしめるとともに、夜間に
はこの蓄積温暖空気を施設内に排出せしめて、暖
房を行うと共に施設外空地に設置した屋外プール
に太陽熱利用の温水を蓄え、これを室内に導入せ
しめて利用することにより従来多量に使用してい
た燃料を大巾に節約し、その経費と設備を節減出
来る外、同一設備を用いて施設外の地下水の利用
を可能とし、その暖冷房への利用によつて、暖房
への補助的効果を果すとともに、従来この種の地
下蒸熱空気利用の施設には、みられない、夏季高
温時における施設内温度の冷房化にもきわめて簡
単な機構の採用、即ち栽培室内の比較物冷涼な下
方の空気の導入と冬季の上方高温空気の導入口を
調節弁11の切換によつて、下方の冷涼空気の地
下埋設幹管及び支管への導入により、夏季栽培室
内よりも冷涼な地下埋設管中に通気循環せしめる
このことにより前述の実験データーの通り栽培室
内の温度低下に役立たしめて、施設の、夏季酷暑
時の冷房にも役立たしめ、従来利用され得なかつ
た施設の有効利用が可能と成つたもので、省エネ
ルギーと、省力面において画期的な効果を奏する
ものである。
The present invention utilizes the above-described method and relatively simple equipment to inhale warm air from above the facility during the day into the soil during winter or during cold nights, thereby storing heat in the soil. In addition, at night, this accumulated warm air is discharged into the facility to provide heating, and solar hot water is stored in an outdoor pool installed in an open space outside the facility, and this is brought indoors for use. In addition to saving a large amount of fuel, which used to be used in large amounts, and reducing costs and equipment, it is also possible to use groundwater outside the facility using the same equipment, and by using it for heating and cooling, it can be used for heating. In addition to achieving a supplementary effect, it also uses an extremely simple mechanism to cool the temperature inside the facility during high summer temperatures, which has not been seen in conventional facilities that use underground steam-heated air. By switching the control valve 11 between the introduction of cool air from below and the introduction of high-temperature air from above in winter, the cool air from below is introduced into underground main pipes and branch pipes. By circulating air through the buried pipes, it helps to lower the temperature inside the cultivation room, as shown in the experimental data mentioned above, and also helps to cool the facility during the intense summer heat, making it possible to effectively utilize facilities that could not be used in the past. This results in revolutionary effects in terms of energy and labor savings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法及び施設の全体横断説明
図、第2図は第1図に示す施設の平面図、第3図
は、吸気部分の異なる別実施例の全体横断説明
図、第4図は、第3図に示す施設の平面図、第5
図は第2図の―線における縦断側面図、第6
図は第4図の―線における縦断側面図、第7
図イは、本発明の施設内のマルチ畦間に温水又は
冷水の滞留もしくは流下せしめる場合の説明図、
同図ロは、同施設内の畦間に温水又は冷水パイプ
を配置した場合の説明図、第8図イは、第7図イ
の―線の横断説明図、同図ロは、施設内畦間
及び土中に温水又は冷水パイプを配置した場合の
説明図である。第9図は、第3図の吸気部分の説
明図。 1…ビニールフイルム又はガラス、2…施設外
装フレーム、3…空気導管、4…幹管、5…支
管、6…排気口、7…吸気口、7′…吸気口枠体、
8…吸気フアン、9…上部空気案内用兼防寒被覆
用フレーム、10…上部空気案内板又はフイル
ム、F…不織布等の防寒体、11…吸気調節弁、
12…接続管、14…屋外プール、16…ビニー
ルフイルム又は太陽熱利用集熱器、17…温冷水
管、19…井戸、22…畦、23…畦の谷、24
…温冷水パイプ、25…地下温冷水パイプ、P…
ポンプ、M…マルチフイルム、0′…下方空気取
入口、0…上方空気取入口。
FIG. 1 is a cross-sectional explanatory diagram of the method and facility of the present invention; FIG. 2 is a plan view of the facility shown in FIG. 1; FIG. 3 is a cross-sectional diagram of another embodiment with a different intake part; The figure shows the floor plan of the facility shown in Figure 3, and Figure 5.
The figure is a vertical sectional side view taken along the line - of figure 2.
The figure is a longitudinal cross-sectional side view taken along line - in figure 4, and figure 7.
Figure A is an explanatory diagram of the case where hot water or cold water is allowed to accumulate or flow between the multi-furrows in the facility of the present invention,
Figure 8B is an explanatory diagram of the case where hot water or cold water pipes are arranged between the ridges in the same facility, Figure 8A is a cross-sectional diagram of the - line in Figure 7A, and Figure 8B is an explanatory diagram of the arrangement of hot water or cold water pipes between the ridges in the same facility. It is an explanatory view when hot water or cold water pipe is arranged in the ground and in the ground. FIG. 9 is an explanatory diagram of the intake portion of FIG. 3. 1... Vinyl film or glass, 2... Facility exterior frame, 3... Air conduit, 4... Main pipe, 5... Branch pipe, 6... Exhaust port, 7... Intake port, 7'... Intake port frame,
8... Intake fan, 9... Frame for upper air guide and cold protection covering, 10... Upper air guide plate or film, F... Cold protection body such as non-woven fabric, 11... Intake control valve,
12... Connection pipe, 14... Outdoor pool, 16... Vinyl film or solar heat collector, 17... Hot and cold water pipe, 19... Well, 22... Ridge, 23... Valley of the ridge, 24
...Hot and cold water pipe, 25...Underground hot and cold water pipe, P...
Pump, M...Multi film, 0'...Lower air intake, 0...Upper air intake.

Claims (1)

【特許請求の範囲】 1 施設内に吸気調節弁により切換自在な上方空
気取入口及び下方空気取入口を設け、季節や昼夜
の温度変化に応じて、低温時には、上方の温かい
空気を取り入れるようにし、高温時には、下方の
比較的低温の空気を取り入れるようにして、これ
ら取り入れた空気を施設内地下に埋設した管中を
通じて、施設内に排出循環せしめるとともに施設
外に設けたプール及び井戸のうち少くとも一方よ
り、冬期や夜間寒冷時には温水を、夏期や昼間温
暖時には冷水を、施設内畦間または、土中に配管
手段をもつて滞留せしめるか、或いは、流下せし
めることを特徴とする施設内環境の冷暖房におけ
る省エネルギー化方法。 2 施設外装フレームにガラス等の被覆材を張設
し、その内側に適宜の間隔をおいて、上部空気案
内兼防寒被覆体構成用フレームを構成せしめ、こ
れに上部空気案内兼防寒被覆体を設けるととも
に、この内側被覆体の下方に栽培室内の空気と、
その外装フレームとの間の上方温暖空気の取り入
れ口とを切換自在とする吸気調節弁を設け、その
下方に施設地下埋設幹管を設け、該幹管の横方向
で、且つ、施設の長手方向に亘つて、多数の支管
を取り付け、施設内空気の排出循環を行わせるよ
うにし、一方施設外に設けたプールまたは井戸よ
り適宜の配管手段によつて、水を施設表面もしく
は施設内地中の一方かもしくは、双方に滞留また
は、流下せしめるようにした施設内環境の冷暖房
における省エネルギー化装置。 3 施設内適所に立設した空気導管の上方に接続
管を取り外し自在に取り付けるとともに、両導管
の適宜の位置に吸気フアンを取り付け、両導管の
下方は、施設内土中に埋設した幹管に連結せし
め、該幹管の横方向で、且つ、施設の長手方向に
亘つて、多数の支管を取り付け、施設の両側に上
記支管の排気口を設け、施設内空気の排出循環を
行わせるようにし、一方、施設外に設けたプール
または、井戸より適宜の配管手段によつて、水を
施設表面もしくは、施設地中の一方か、もしく
は、双方に滞留または、流下せしめるようにした
施設内環境の冷暖房における省エネルギー化装
置。
[Claims] 1. An upper air intake and a lower air intake that can be freely switched by an intake control valve are provided in the facility, and warm air from above is taken in when the temperature is low, depending on the season and temperature changes between day and night. When the temperature is high, relatively low-temperature air from below is taken in, and this air is discharged and circulated within the facility through pipes buried underground within the facility. On the other hand, an environment within a facility characterized by allowing hot water to flow in the winter or when the nights are cold, or cold water to flow during the summer or during the warm days by using piping means to stay in the facility's furrows or in the soil, or to allow it to flow down. How to save energy in heating and cooling. 2. A covering material such as glass is stretched over the exterior frame of the facility, and a frame for composing an upper air guide/cold protection covering is constructed at appropriate intervals on the inside thereof, and an upper air guide/cold protection covering is provided on this frame. At the same time, the air inside the cultivation room flows under this inner covering,
An intake control valve that can freely switch between the upper warm air intake and the exterior frame is provided, and a main pipe buried underground in the facility is provided below the intake control valve, and the main pipe is installed in the lateral direction of the main pipe and in the longitudinal direction of the facility. A large number of branch pipes are installed to circulate the air inside the facility, while water is pumped from a pool or well outside the facility to either the surface of the facility or underground within the facility using appropriate piping means. Alternatively, an energy saving device for heating and cooling the facility environment in which the energy is allowed to stagnate or flow in both directions. 3 Connecting pipes will be removably installed above the air pipes installed at appropriate locations within the facility, and intake fans will be installed at appropriate locations on both pipes, and the lower portions of both pipes will be attached to the main pipes buried in the ground within the facility. A large number of branch pipes are installed in the horizontal direction of the main pipe and in the longitudinal direction of the facility, and exhaust ports of the branch pipes are provided on both sides of the facility to exhaust and circulate the air within the facility. On the other hand, an environment within a facility where water is allowed to stagnate or flow either on the surface of the facility or underground, or both, using appropriate piping means from a pool or well installed outside the facility. Energy saving equipment for heating and cooling.
JP15317478A 1978-12-13 1978-12-13 Energy saving method and installation in cooling and warming of atomosphere within installation Granted JPS5581522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15317478A JPS5581522A (en) 1978-12-13 1978-12-13 Energy saving method and installation in cooling and warming of atomosphere within installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15317478A JPS5581522A (en) 1978-12-13 1978-12-13 Energy saving method and installation in cooling and warming of atomosphere within installation

Publications (2)

Publication Number Publication Date
JPS5581522A JPS5581522A (en) 1980-06-19
JPS6362167B2 true JPS6362167B2 (en) 1988-12-01

Family

ID=15556662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15317478A Granted JPS5581522A (en) 1978-12-13 1978-12-13 Energy saving method and installation in cooling and warming of atomosphere within installation

Country Status (1)

Country Link
JP (1) JPS5581522A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113348U (en) * 1982-01-27 1983-08-03 藤田 岑生 greenhouse heating equipment
JPS63167724A (en) * 1986-12-30 1988-07-11 株式会社みかど育種農場 Method and apparatus for culture of plant at low temperature
JPH01225425A (en) * 1988-03-04 1989-09-08 Tanaka Kenichi Apparatus for cultivating plant or the like
JP4818222B2 (en) * 2007-08-07 2011-11-16 株式会社フェアリープラントテクノロジー Plant growth equipment
JP5543239B2 (en) * 2010-02-24 2014-07-09 川崎地質株式会社 Heat supply system for cultivation facilities
JP5712233B2 (en) * 2012-07-31 2015-05-07 崇治 二枝 Agricultural and horticultural house

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493333A (en) * 1972-05-03 1974-01-12
JPS4941883U (en) * 1972-07-14 1974-04-12
JPS52107941A (en) * 1976-02-26 1977-09-10 Kiichirou Naotaka Green house for gardening

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493333A (en) * 1972-05-03 1974-01-12
JPS4941883U (en) * 1972-07-14 1974-04-12
JPS52107941A (en) * 1976-02-26 1977-09-10 Kiichirou Naotaka Green house for gardening

Also Published As

Publication number Publication date
JPS5581522A (en) 1980-06-19

Similar Documents

Publication Publication Date Title
US4373573A (en) Long term storage and use of solar energy
CN102986479A (en) System for comprehensively utilizing energy sources in greenhouse
CN202435897U (en) Energy integrated utilization system in greenhouse
CN206061687U (en) A kind of greenhouse of active control soil air humiture
CN210491885U (en) Water modular active heat storage sunlight greenhouse
CN104823756A (en) Novel south and north dual-shed sunlight greenhouse and operating method
JPS6362167B2 (en)
CN104396633A (en) Geothermal temperature and humidity regulating device and method for greenhouse plowing layer
JP5483051B2 (en) Residential ventilation system
CN209914592U (en) Energy-saving heat-preservation planting and breeding combined house
CN103947480A (en) Assembled double-roof energy-saving daylight greenhouse
CN207317071U (en) A kind of greenhouse collection regenerative apparatus
CN205030258U (en) Warmhouse booth arable layer geothermol power temperature humidity control device
CN109601207A (en) Ground assists enhanced greenhouse roof truss solar energy collection thermal desorption system and regulation method
CN211241030U (en) Indoor planting and breeding temperature control and water collection system
JPH01153026A (en) Heating system for greenhouse
CN210746324U (en) Integrated greenhouse
JP3370021B2 (en) Greenhouse
CN209676970U (en) A kind of enhanced greenhouse roof truss solar energy collection thermal desorption system of ground auxiliary
CN209710889U (en) A kind of brooder
JPH032121Y2 (en)
CN206101082U (en) Temperature adjusting system
CN207011346U (en) A kind of warmhouse booth with temperature self-adaptation regulation and control
CN201690853U (en) Geothermal-energy anti-freezing device for open type flower nursery
CN109729886A (en) A kind of brooder