JPS6361483B2 - - Google Patents

Info

Publication number
JPS6361483B2
JPS6361483B2 JP6566983A JP6566983A JPS6361483B2 JP S6361483 B2 JPS6361483 B2 JP S6361483B2 JP 6566983 A JP6566983 A JP 6566983A JP 6566983 A JP6566983 A JP 6566983A JP S6361483 B2 JPS6361483 B2 JP S6361483B2
Authority
JP
Japan
Prior art keywords
pressure turbine
turbine
shaft
stretch
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6566983A
Other languages
Japanese (ja)
Other versions
JPS59192806A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6566983A priority Critical patent/JPS59192806A/en
Publication of JPS59192806A publication Critical patent/JPS59192806A/en
Publication of JPS6361483B2 publication Critical patent/JPS6361483B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/38Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating the engines being of turbine type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半速機を有する2軸蒸気タービンの
ストレツチアウトラン運転方法、およびその装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a stretch outrun operation method for a two-shaft steam turbine having a half-speed machine, and an apparatus therefor.

〔発明の背景〕[Background of the invention]

従来、一般に、半速機を備えていない蒸気ター
ビン(例えば高圧タービン、中圧タービン、低圧
タービン、及び2極発電機が一軸に結合されたタ
ンデム型3000RPM機、3600RPM機や、高圧ター
ビン、低圧タービン、及び2極発電機が一次軸
に、中圧タービン、低圧タービン、及び2極発電
機が2次軸に結合されたクロスコンパウンド型
3000RPM/3000RPM機)においては、据付後あ
るいは定期検査後(特に定期検査時にタービン本
体を分解点検した時)の第1回目起動時にストレ
ツチアウトランを行つている。
Conventionally, steam turbines that are not equipped with half-speed machines (for example, high-pressure turbines, intermediate-pressure turbines, low-pressure turbines, and tandem-type 3000RPM machines and 3600RPM machines in which a two-pole generator is connected to a single shaft), high-pressure turbines, and low-pressure turbines , and a cross-compound type in which a two-pole generator is connected to the primary shaft, and an intermediate pressure turbine, a low-pressure turbine, and a two-pole generator are connected to the secondary shaft.
3000RPM/3000RPM machines), a stretch outrun is performed at the first startup after installation or periodic inspection (especially when the turbine body is overhauled during periodic inspections).

即ち、タービンの起動後、定格回運転速度まで
昇速するに先立つて、タービン回転数を約800〜
1000RPMに保ち、排気真空を変化させ低圧ター
ビンの車室を伸縮させ馴ませる。ストレツチアウ
ト終了後は、機器全体を均等に暖めるため、引き
続き昇速を行うことなく翌日迄ターニング運転を
行うのが通常である。
In other words, after starting the turbine, and before increasing the speed to the rated operating speed, the turbine rotational speed is increased to approximately 800~800.
Maintain the speed at 1000 RPM and change the exhaust vacuum to expand and contract the low pressure turbine casing. After the stretch-out is completed, turning operation is normally continued until the next day without increasing speed in order to evenly warm up the entire equipment.

しかし本発明の対象とする半速機を有する2軸
蒸気タービンにおいては、次の理由により、従来
技術においてはストレツチアウトラン運転を行う
ことが困難であつた。
However, in the two-shaft steam turbine having a half-speed machine, which is the subject of the present invention, it has been difficult to perform stretch outrun operation in the prior art for the following reasons.

即ち、半速機を有する2軸蒸気タービンにおい
ては、2次軸の回転数が1次軸の半分となるた
め、1次タービンを約800〜1000RPMの回転数に
保持した場合は、2次タービン回転数を約400〜
500RPMに保持することになる。2次軸に結合さ
れている低圧タービン及び発電機の危険速度は約
1000〜1400RPMであり、2次タービンは危険速
度より極端に低い回転数で保持されることにな
る。この状態でロータと静止体とのこすれ(ラビ
ング)が生じた場合、接触部が加熱され、ロータ
に曲がりアンバランスを生じ振動が発生する。こ
の局部加熱によるロータの曲がり変形は、危険速
度よりも相当低い回転数領域において発生するた
め、ラビングの方向に更に曲がりが加わつて振動
は上昇し続ける。ところが、ロータの軸振動を検
出する振動計は第1図に示すごとく約800RPM
(約13Hz)以下では感度を落としてある。これは
地震時に地震波を振動計が感知してタービンが不
必要にトリツプすることを回避するためである。
(地震波の周波数は約0.1〜約10Hzである。)従つ
て上記のラビングによる振動が発生しても運転員
はこれを知ることが出来ず、最悪の場合、ロータ
の永久曲りを生ずる危険性があるため、ストレツ
チアウトランが行われていないのである。
In other words, in a two-shaft steam turbine with a half-speed machine, the rotation speed of the secondary shaft is half that of the primary shaft, so if the primary turbine is maintained at a rotation speed of approximately 800 to 1000 RPM, the secondary turbine Increase the rotation speed to about 400~
It will hold at 500RPM. The critical speed of the low pressure turbine and generator connected to the secondary shaft is approximately
1000 to 1400 RPM, and the secondary turbine will be kept at an extremely low rotation speed below the critical speed. If rubbing occurs between the rotor and the stationary body in this state, the contact portion is heated, causing the rotor to bend and become unbalanced, causing vibration. Since the bending deformation of the rotor due to this local heating occurs in a rotational speed range considerably lower than the critical speed, the bending is further added in the direction of rubbing, and the vibration continues to rise. However, the vibration meter that detects the shaft vibration of the rotor has a vibration rate of approximately 800 RPM as shown in Figure 1.
(approximately 13Hz) and below, the sensitivity is reduced. This is to prevent the turbine from tripping unnecessarily due to the vibration meter sensing seismic waves during an earthquake.
(The frequency of seismic waves is about 0.1 to about 10 Hz.) Therefore, even if the vibration caused by the above-mentioned rubbing occurs, the operator will not be aware of it, and in the worst case, there is a risk of permanent bending of the rotor. This is why stretch out runs are not performed.

〔発明の目的〕[Purpose of the invention]

本発明は上述の事情に鑑みて為され、半速機を
有する2軸蒸気タービンプラントにおいて、半速
の低圧タービン及び発電機を直結した2次軸にラ
ビリングを発生せしめる虞れなくストレツチアウ
トラン運転を行い得る運転方法、および、上記の
方法を容易に実施してその効果を発揮せしめ得る
運転装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and is capable of performing stretch outrun operation in a two-shaft steam turbine plant having a half-speed machine without the risk of causing ruffles in the secondary shaft to which the half-speed low-pressure turbine and the generator are directly connected. It is an object of the present invention to provide an operating method capable of carrying out the above-mentioned method, and an operating device capable of easily carrying out the above-mentioned method and exhibiting its effects.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するため、本発明の運転方法
は、高圧タービンと中圧タービンと発電機とを相
互に直結した1次軸、並びに、低圧タービンと発
電機とを直結した2次軸とを有する2軸蒸気ター
ビンプラントのストレツチアウトラン運転におい
て、中圧タービンの排気蒸気の一部を、低圧ター
ビンを経由せずに復水器にバイパスさせることを
特徴とする。
In order to achieve the above object, the operating method of the present invention includes a primary shaft that directly connects a high-pressure turbine, an intermediate-pressure turbine, and a generator, and a secondary shaft that directly connects a low-pressure turbine and a generator. In the stretch outrun operation of a two-shaft steam turbine plant having the present invention, a part of the exhaust steam of the intermediate pressure turbine is bypassed to the condenser without passing through the low pressure turbine.

また、本発明の運転装置は上記の本発明方法を
容易に使用してその効果を発揮させるために、高
圧タービンと中圧タービンと発電機とを相互に直
結した1次軸、並びに、低圧タービンと発電機と
を直結した2次軸とを有する2軸蒸気タービンプ
ラントにおいて、中圧タービンの排気口と復水器
との間に、ダンプ弁を備えたダンプ排管を介装接
続したことを特徴とする。
In addition, in order to easily use the method of the present invention and exhibit its effects, the operating device of the present invention has a primary shaft in which a high pressure turbine, an intermediate pressure turbine, and a generator are directly connected to each other, and a low pressure turbine. In a two-shaft steam turbine plant having a secondary shaft directly connected to a generator and a generator, a dump exhaust pipe equipped with a dump valve is interposed and connected between the exhaust port of the intermediate pressure turbine and the condenser. Features.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の一実施例を図面を参照して説明す
る。
Next, one embodiment of the present invention will be described with reference to the drawings.

第2図は、本発明のストレツチアウトラン運転
を実施するために構成した2軸蒸気タービンプラ
ントの実施例を示す。この2軸蒸気タービンプラ
ントは高圧タービン1、中圧タービン2、及び2
極発電機3を結合した1次軸、及び、低圧ター
ビン4,5と4極発電機6とを結合した半速の2
次軸とによつて構成されている。
FIG. 2 shows an embodiment of a two-shaft steam turbine plant configured to carry out the stretch outrun operation of the present invention. This two-shaft steam turbine plant consists of a high pressure turbine 1, an intermediate pressure turbine 2, and a
A primary shaft coupled with a polar generator 3, and a half-speed shaft coupled with a low pressure turbine 4, 5 and a quadrupole generator 6.
It is composed of the following axes.

通常運転時には、ボイラー7から発生した蒸気
は加減弁8を通り高圧タービン1で仕事を行い、
再熱器9で再び加熱されインターセプト弁10を
通り中圧タービン2へ入る。中圧タービン2を出
た蒸気はクロスオーバー管12を通り低圧タービ
ン4,5へ導びかれ、復水器13を経て、ボイラ
ー7へ回収される。
During normal operation, steam generated from the boiler 7 passes through the control valve 8 and performs work in the high pressure turbine 1.
It is heated again in the reheater 9, passes through the intercept valve 10, and enters the intermediate pressure turbine 2. Steam exiting the intermediate pressure turbine 2 is guided to the low pressure turbines 4 and 5 through a crossover pipe 12, passes through a condenser 13, and is recovered to the boiler 7.

上記中圧タービン2の排気部14と復水器13
との間に、ダンプ弁16を設けたダンプ配管15
を介装接続する。これにより、中圧タービン2の
排気蒸気の一部を、低圧タービン4,5に流通さ
せることなく復水器13をバイパスさせることが
できるようになる。
Exhaust section 14 and condenser 13 of the intermediate pressure turbine 2
Dump piping 15 with a dump valve 16 provided between
Intermediate connection. Thereby, a part of the exhaust steam of the intermediate pressure turbine 2 can be bypassed through the condenser 13 without flowing to the low pressure turbines 4 and 5.

上記のように構成したストレツチアウトラン運
転装置を用いてストレツチアウトラン運転を行つ
た1実施例を次に述べる。
An example in which stretch outrun operation was performed using the stretch outrun operation device constructed as described above will be described below.

1次軸を約100RPMに保持するだけの蒸気を
高圧タービン1と中圧タービン2に流し、ダンプ
弁16を開ける。このダンプ弁16は、ストレツ
チアウトの場合のみ開くものであつて、通常運転
の場合は閉止しておく。該ダンプ弁16を閉じた
状態にしていると、本発明装置の適用としてダン
プ配管15、ダンプ弁16を付設したことは、当
該蒸気タービンプラントの機能に何らの影響を及
ぼさない。
Steam enough to maintain the primary shaft at about 100 RPM is passed through the high pressure turbine 1 and the intermediate pressure turbine 2, and the dump valve 16 is opened. This dump valve 16 is opened only in the case of stretch-out, and is kept closed during normal operation. When the dump valve 16 is in the closed state, the addition of the dump pipe 15 and the dump valve 16 as an application of the device of the present invention has no effect on the function of the steam turbine plant.

上述のごとくダンプ弁16を開くと、中圧ター
ビン2を駆動した蒸気の大部分はダンプ弁16を
通つて復水器13に流入する。そして、その一部
分は低圧タービン4,5を流通して復水器13に
流入する。このようにして、1次軸を駆動する
高圧タービン1と中圧タービン2とは約
1000RPMでストレツチアウトラン運転され、2
次軸を駆動する低圧タービン4,5は少量の高
温蒸気が流通して加温されるが別段の回転動力を
発生しない。
When the dump valve 16 is opened as described above, most of the steam that has driven the intermediate pressure turbine 2 flows into the condenser 13 through the dump valve 16. Then, a part of it flows through the low pressure turbines 4 and 5 and flows into the condenser 13. In this way, the high pressure turbine 1 and intermediate pressure turbine 2 that drive the primary shaft are approximately
Stretch outrun operation at 1000RPM, 2
The low-pressure turbines 4 and 5 that drive the next shafts are heated by a small amount of high-temperature steam flowing through them, but do not generate any additional rotational power.

第3図はストレツチアウトラン運転中の1次タ
ービン(1次軸を駆動している高、中圧タービ
ン)の回転数、復水器真空度、及びダンプ弁16
の開度の関係を示す。第3図A,B,Cは横軸に
共通目盛で時間をとり、同図Aの縦軸には1次タ
ービンの回転数、同図Bの縦軸には復水器真空
度、同図Cの縦軸にはダンプ弁16の開度を、そ
れぞれとつてある。
Figure 3 shows the rotational speed of the primary turbine (high and medium pressure turbine driving the primary shaft), condenser vacuum degree, and dump valve 16 during stretch outrun operation.
This shows the relationship between the opening degrees. In Fig. 3 A, B, and C, the horizontal axis shows time on a common scale, the vertical axis in Fig. 3 A shows the rotation speed of the primary turbine, and the vertical axis in Fig. 3 B shows the degree of condenser vacuum. The vertical axis of C indicates the opening degree of the dump valve 16, respectively.

本発明のストレツチアウトラン運転方法をとる
ことにより運転中高温の蒸気にさらされる高圧タ
ービン1、及び中圧タービン2はストレツチアウ
トラン中の蒸気により、ケーシングは十分伸ばさ
れ、又ロータは約1000RPMで回転していること
から静止時に比較し十分高い蒸気からメタルへの
熱伝達によりロータ中心部まで暖められ、昇速負
荷併入時以降の蒸気温度とメタル温度のミスマツ
チを軽減することができる。
By adopting the stretch outrun operation method of the present invention, the high pressure turbine 1 and the intermediate pressure turbine 2, which are exposed to high temperature steam during operation, have their casings sufficiently stretched by the steam during the stretch outrun, and the rotor is rotated at approximately 1000 RPM. Since the rotor is rotating, the heat transfer from the steam to the metal is sufficiently higher than when the rotor is stationary, and the center of the rotor is warmed, reducing the mismatch between the steam temperature and the metal temperature after the acceleration load is added.

一方、低圧タービン4,5はターニング運転の
状態を継続し、そのメタル温度あるいは蒸気温度
は復水器13の真空度に対応する飽和蒸気温度に
等しくなる。従つて、復水器真空装置を行つて真
空度を例えば650mmHg〜730mmHgまで変化させ
た場合、低圧タービンの温度は約29℃から約53℃
まで変化する。これにより低圧タービン4,5を
構成している大型の溶接構造物であるケーシング
を伸ばすことができる。
On the other hand, the low pressure turbines 4 and 5 continue their turning operation, and their metal temperature or steam temperature becomes equal to the saturated steam temperature corresponding to the degree of vacuum in the condenser 13. Therefore, if a condenser vacuum device is used to change the degree of vacuum from, for example, 650 mmHg to 730 mmHg, the temperature of the low pressure turbine will vary from about 29°C to about 53°C.
changes up to. This allows the casing, which is a large welded structure that constitutes the low-pressure turbines 4 and 5, to be extended.

第4図はダンプ弁16の開閉の条件を示したも
のであり、ストレツチアウトラン及びタービンリ
セツトの条件に加え、1次タービン回転数の条件
を付け加えることにより、通常運転中等にストレ
ツチアウトランのボタン誤操作等により、不用意
にダンプ弁16が開くことを防止している。
FIG. 4 shows the conditions for opening and closing the dump valve 16. In addition to the conditions for stretch outrun and turbine reset, by adding the condition for the primary turbine rotation speed, it is possible to control the stretch outrun button during normal operation. This prevents the dump valve 16 from opening inadvertently due to erroneous operation or the like.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明方法によれば、半
速機を有する2軸蒸気タービンプラントにおい
て、2次軸の盲運転によるラビング振動やロータ
曲がり変形の危険を冒すことなくストレツチアウ
トラン運転を行うことができる。
As detailed above, according to the method of the present invention, stretch outrun operation is possible in a two-shaft steam turbine plant having a half-speed machine without running the risk of rubbing vibration or rotor bending deformation due to blind operation of the secondary shaft. It can be carried out.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は振動計の計器感度を示す図表、第2図
は本発明装置の一実施例を示す系統図である。第
3図Aはストレツチアウトラン運転時の1次ター
ビン回転数を示す図表、同図Bは同じく復水器真
空度を示す図表、同図Cは同じくダンプ弁開度を
示す図表である。第4図はダンプ弁の開閉条件を
示す図表である。 1…高圧タービン、2…中圧タービン、4,5
…低圧タービン、7…ボイラ、8…加減弁、9…
再熱器、10…インターセプト弁、12…クロス
オーバー管、13…復水器、14…中圧排気部、
15…ダンプ配管、16…ダンプ弁、…1次
軸、…2次軸。
FIG. 1 is a chart showing the instrument sensitivity of a vibration meter, and FIG. 2 is a system diagram showing an embodiment of the device of the present invention. FIG. 3A is a chart showing the primary turbine rotational speed during stretch outrun operation, FIG. 3B is a chart showing the condenser vacuum degree, and FIG. 3C is a chart showing the dump valve opening degree. FIG. 4 is a chart showing the opening and closing conditions of the dump valve. 1...High pressure turbine, 2...Intermediate pressure turbine, 4,5
...Low pressure turbine, 7...Boiler, 8...Adjustment valve, 9...
Reheater, 10... Intercept valve, 12... Crossover pipe, 13... Condenser, 14... Medium pressure exhaust section,
15...Dump piping, 16...Dump valve,...Primary shaft,...Secondary shaft.

Claims (1)

【特許請求の範囲】 1 高圧タービンと中圧タービンと発電機とを相
互に直結した1次軸、並びに、低圧タービンと発
電機とを直結した2次軸とを有する2軸蒸気ター
ビンプラントのストレツチアウトラン運転におい
て、中圧タービンの排気蒸気の一部を、低圧ター
ビンを経由せずに復水器にバイパスさせることを
特徴とする、2軸蒸気タービンのストレツチアウ
トラン運転方法。 2 高圧タービンと中圧タービンと発電機とを相
互に直結した1次軸、並びに、低圧タービンと発
電機とを直結した2次軸とを有する2軸蒸気ター
ビンプラントにおいて、中圧タービンの排気口と
復水器との間に、ダンプ弁を備えたダンプ配管を
介装したことを特徴とする、2軸蒸気タービンの
ストレツチアウトラン運転装置。
[Claims] 1. A stress relief system for a two-shaft steam turbine plant having a primary shaft in which a high-pressure turbine, an intermediate-pressure turbine, and a generator are directly connected to each other, and a secondary shaft in which a low-pressure turbine and a generator are directly connected to each other. A stretch outrun operation method for a two-shaft steam turbine, characterized in that in the stretch outrun operation, a part of exhaust steam from an intermediate pressure turbine is bypassed to a condenser without passing through a low pressure turbine. 2. In a two-shaft steam turbine plant having a primary shaft that directly connects a high-pressure turbine, an intermediate-pressure turbine, and a generator to each other, and a secondary shaft that directly connects a low-pressure turbine and a generator, the exhaust port of the intermediate-pressure turbine A stretch outrun operation device for a two-shaft steam turbine, characterized in that a dump pipe equipped with a dump valve is interposed between the condenser and the condenser.
JP6566983A 1983-04-15 1983-04-15 Stretch-out running of twin-shaft steam turbine and device therefor Granted JPS59192806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6566983A JPS59192806A (en) 1983-04-15 1983-04-15 Stretch-out running of twin-shaft steam turbine and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6566983A JPS59192806A (en) 1983-04-15 1983-04-15 Stretch-out running of twin-shaft steam turbine and device therefor

Publications (2)

Publication Number Publication Date
JPS59192806A JPS59192806A (en) 1984-11-01
JPS6361483B2 true JPS6361483B2 (en) 1988-11-29

Family

ID=13293633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6566983A Granted JPS59192806A (en) 1983-04-15 1983-04-15 Stretch-out running of twin-shaft steam turbine and device therefor

Country Status (1)

Country Link
JP (1) JPS59192806A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101867U (en) * 1989-02-01 1990-08-14
JPH02101866U (en) * 1989-02-01 1990-08-14
WO2012114892A1 (en) * 2011-02-25 2012-08-30 三菱重工業株式会社 Steam turbine driving machine, and ship and gas liquefaction apparatus each equipped with steam turbine driving machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2952702A1 (en) 2014-06-04 2015-12-09 Siemens Aktiengesellschaft Method for heating or maintaining the temperature of a steam turbine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101867U (en) * 1989-02-01 1990-08-14
JPH02101866U (en) * 1989-02-01 1990-08-14
WO2012114892A1 (en) * 2011-02-25 2012-08-30 三菱重工業株式会社 Steam turbine driving machine, and ship and gas liquefaction apparatus each equipped with steam turbine driving machine
JP2012176691A (en) * 2011-02-25 2012-09-13 Mitsubishi Heavy Ind Ltd Steam turbine driving machine, ship equipped with steam turbine driving machine, and gas liquefaction apparatus
CN103380056A (en) * 2011-02-25 2013-10-30 三菱重工业株式会社 Steam turbine driving machine, and ship and gas liquefaction apparatus each equipped with steam turbine driving machine

Also Published As

Publication number Publication date
JPS59192806A (en) 1984-11-01

Similar Documents

Publication Publication Date Title
JP5455631B2 (en) Target angle control type clutch connection method
JPS62251409A (en) Method and device for cooling steam turbine in single-shaft combined plant
CN105841966A (en) Turbo generator set vibration fault diagnosis method based on forward reasoning
JPS6361483B2 (en)
JPH02230905A (en) Excessive speed protection device for gas turbine-steam turbine combined cycle
US1416760A (en) Elastic-fluid turbine or turbine-driven unit
JP2602951B2 (en) How to start a combined cycle plant
US10577962B2 (en) Turbomachine temperature control system
CN113739991A (en) Dynamic balance method and device for stable thermal unbalance vibration of rotor
JPH08284615A (en) Control method for single shaft type combined cycle generating facility and device thereof
US2174806A (en) Turbine apparatus
JPH04171202A (en) Steam turbine power generating plant
Pennacchi et al. Spiral vibrations in power units: modeling and experimental evidences
JPS6130702B2 (en)
Vania et al. Intermittent rub caused by carbonized oil in a steam turbine
WO2023100457A1 (en) Control device, control method, and system
Setiawan et al. Optimization Gas Turbine Balancing Methods to Increase Availability and Reliability with Case Study Gas Turbine Type MW701D in Gresik Combined Cycle Power Plant
Mohanty et al. Enhancement of Turbine Performance Using Root Cause Failure Analysis and LPDE Correction
Chatterton et al. On the Effects of a Shaft Crack Propagation on the Dynamic Behavior of a Steam Turbine
Pennacchi et al. Early detection of non-linear effects in fluid-film journal bearings
Shiohata et al. Method of determining locations of unbalances in rotating machines
JPS602483B2 (en) Steam turbine plant control equipment
JPS5937208A (en) Protection for steam turbine
Guy Through trouble to improvement
SU930036A1 (en) Method of checking multi-rotor turbine technological condition