JPS6360499B2 - - Google Patents

Info

Publication number
JPS6360499B2
JPS6360499B2 JP4002883A JP4002883A JPS6360499B2 JP S6360499 B2 JPS6360499 B2 JP S6360499B2 JP 4002883 A JP4002883 A JP 4002883A JP 4002883 A JP4002883 A JP 4002883A JP S6360499 B2 JPS6360499 B2 JP S6360499B2
Authority
JP
Japan
Prior art keywords
base material
electrode base
hydride powder
electrode
metal hydrides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4002883A
Other languages
Japanese (ja)
Other versions
JPS59167947A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4002883A priority Critical patent/JPS59167947A/en
Publication of JPS59167947A publication Critical patent/JPS59167947A/en
Publication of JPS6360499B2 publication Critical patent/JPS6360499B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0732Main electrodes for high-pressure discharge lamps characterised by the construction of the electrode

Description

【発明の詳細な説明】 本発明はストロボフラツシユ装置等に用いられ
る閃光放電管用電極の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in electrodes for flash discharge tubes used in strobe flash devices and the like.

閃光放電管の陰極としては、イオン衝撃に対し
て特に強いことが必要のため、一般的には金属多
孔質焼結体にアルカリ金属またはアルカリ土類金
属の酸化物や、これらと遷移金属との複合酸化物
等の電子放出物質を含浸したものが用いられてい
る。この焼結体をタングステンまたはモリブテン
等の耐熱性電極基材に保持する方法として、金属
粉末を円筒形または円柱形に加圧成形した焼結体
に、前記電極基材を挿入圧着または先端に溶接し
固定する方法が用いられている。
The cathode of a flash discharge tube needs to be particularly strong against ion bombardment, so it is generally a porous metal sintered body containing an alkali metal or alkaline earth metal oxide, or a combination of these and a transition metal. A material impregnated with an electron-emitting substance such as a composite oxide is used. As a method of holding this sintered body on a heat-resistant electrode base material such as tungsten or molybdenum, the electrode base material is inserted into a sintered body made of metal powder and pressed into a cylindrical or cylindrical shape, and the electrode base material is crimped or welded to the tip. A method of fixing is used.

しかしながらこのような従来の電極構造では、
放電管のチユーブ内径が、約2mm以上の場合は比
較的容易に製作できるが、近時この種放電管の小
型化に対する要求が多く、このためチユーブの内
径が小さくなるとこの製造は難かしく、特に内径
が1.5mm以下のキヤピラリチユーブの場合には、
前記の如き従来構造では、極めて困難となるので
焼結電極が封入される部分は、内径が大きいチユ
ーブを継いた構造が用いられる。
However, with this conventional electrode structure,
If the inner diameter of the tube of the discharge tube is approximately 2 mm or more, it can be manufactured relatively easily, but recently there has been a growing demand for miniaturization of this type of discharge tube, and for this reason, it is difficult to manufacture this type of tube when the inner diameter of the tube becomes small. For capillary tubes with an inner diameter of 1.5 mm or less,
Since it is extremely difficult to use the conventional structure as described above, a structure in which a tube with a large inner diameter is connected is used for the part where the sintered electrode is enclosed.

このような構造の放電管では、焼結電極の周囲
は比較的広い空間となるので、いわゆるデツドス
ペースとなり発光効率が低下するし、量産性も極
めて悪くかつ小型化の目的にも反する等の欠点が
ある。
In a discharge tube with such a structure, there is a relatively large space around the sintered electrode, which results in a so-called dead space, which reduces luminous efficiency, is extremely difficult to mass-produce, and goes against the goal of miniaturization. be.

本発明は上記の欠点を解決しさらに製造コスト
を大幅に引き下げることを目的としたものであ
る。
The present invention aims to solve the above-mentioned drawbacks and further to significantly reduce manufacturing costs.

すなわち本発明は前記の如く、加圧成形により
製造した焼結体を、電極基材に挿入圧着または溶
接することなく、電極基材の先端表面に直接焼結
層を構成するもので、以下実施例について説明す
る。
That is, as described above, the present invention forms a sintered layer directly on the tip surface of the electrode base material without inserting the sintered body produced by pressure molding into the electrode base material and crimping or welding it. Let's discuss an example.

水素化チタン(TiH2)の、37μm程度の粉末を
極性の高い液体有機化合物、例えばエタノール
(比誘電率ε=24.3)中に分散懸濁し、これを泳
動浴として、直径0.7mmのタングステン電極基材
を陰極とし、電位勾配50V/cmで5秒間電気泳動
することにより、タングステン電極基材の先端部
1.5mmの表面に厚さが約0.05mmの均一な水素化チ
タン被覆を形成した。
Titanium hydride (TiH 2 ) powder with a diameter of approximately 37 μm is dispersed and suspended in a highly polar liquid organic compound, such as ethanol (relative dielectric constant ε = 24.3), and this is used as a migration bath to attach a tungsten electrode group with a diameter of 0.7 mm. The tip of the tungsten electrode base material was electrophoresed for 5 seconds at a potential gradient of 50 V/cm using the material as a cathode.
A uniform titanium hydride coating with a thickness of approximately 0.05 mm was formed on a 1.5 mm surface.

なおここで使用したタングステン電極基材は、
第1図の如き従来から用いられているタングステ
ン電極基材1に、ハンダ付けを容易にするためニ
ツケルのリード線2を密接3したものである。
The tungsten electrode base material used here is
In order to facilitate soldering, a nickel lead wire 2 is closely attached to a conventionally used tungsten electrode base material 1 as shown in FIG.

前記の水素化チタンを均一に被覆したタングス
テン基材は、つぎに5×10-5Torr程度の真空中
で1100℃10分間加熱保持され第2図の如くタング
ステン電極基材1の先端表面に、チタンの焼結層
4を形成した。この場合焼結温度が、1100℃のた
めリード線として溶接されたニツケル線は、融点
が1452℃であるので熱的に悪影響はなかつた。こ
のようにして得たタングステン電極基材の焼結層
4には、セシウム化合物の電子放出物質を常法に
より含浸し、これを陰極としてチユーブ径約1
mm、アーク長約14mm、ガス圧650Torrのキヤピラ
リー放電管を組立てた。
The tungsten base material uniformly coated with titanium hydride is then heated and held at 1100°C for 10 minutes in a vacuum of about 5 x 10 -5 Torr to form a layer on the tip surface of the tungsten electrode base material 1 as shown in Figure 2. A sintered layer 4 of titanium was formed. In this case, the sintering temperature was 1100°C, and the nickel wire welded as the lead wire had a melting point of 1452°C, so there was no adverse thermal effect. The sintered layer 4 of the tungsten electrode base material obtained in this way is impregnated with an electron-emitting substance of a cesium compound by a conventional method, and this is used as a cathode to form a tube with a diameter of about 1 mm.
A capillary discharge tube with an arc length of approximately 14 mm and a gas pressure of 650 Torr was assembled.

これはトリガー電圧4KVで、最低発光電圧
135V、入力エネルギ9.0ジユールのとき、3000回
の放電に充分耐え、従来のものと比べて発光効率
は約10%向上し非常に高性能な閃光放電管が得ら
れた。
This is the trigger voltage 4KV, the lowest light emission voltage
At 135V and input energy of 9.0 joules, the tube could withstand 3,000 discharges, and the luminous efficiency was improved by about 10% compared to conventional ones, resulting in an extremely high-performance flash discharge tube.

以上の実施例は、水素化チタン粉末についてで
あるが、この外にも水素化ジルコニウム
(ZrH2)、ニツケルミツシユメタル合金
(MmNi5)の水素化粉末等、遷移金属のうち元素
周期表〜族に属するものおよびランタノイ
ド、アクチノイドの金属型水素化物の粉末やこれ
らの混合物、上記金属型水素化物を構成する金属
2種以上の合金やこれらと他の金属との合金の水
素化物粉末およびこれら合金の水素化物粉末の混
合物においても、同様な結果が得られた。
The above examples are about titanium hydride powder, but in addition to this, there are also hydrogenated powders of zirconium hydride (ZrH 2 ), nickel metal alloy (MmNi 5 ), and other transition metals from the periodic table of elements. Powders of metal hydrides of lanthanoids, actinides, and mixtures thereof, alloys of two or more metals constituting the above metal hydrides, hydride powders of alloys of these with other metals, and alloys thereof. Similar results were obtained for a mixture of hydride powders.

なおこのような水素化金属の粉末で焼結層を作
成するときは、水素化物でない同一金属粉末の場
合よりも、その焼結温度は200〜300℃低くても焼
結できた。
When creating a sintered layer using such metal hydride powder, the sintering temperature could be 200 to 300°C lower than when using the same metal powder that is not a hydride.

つぎに電気泳動に用いる液体有機化合物は、前
記エタノールに限らず、比誘電率εが6以上のも
の(以下括弧内の数字は20または25℃のεの値を
示す)。例えばメタノール(32.6)、2−プロパノ
ール(18.0)、1−ヘキサノール(13.3)、1−ド
デカノール(6.5)等のアルコール類や、アセト
ン(20.7)、ジエチルチトン(17.0)等のケトン
類等でもよい。
Next, the liquid organic compound used for electrophoresis is not limited to the above-mentioned ethanol, but has a dielectric constant ε of 6 or more (the numbers in parentheses below indicate the value of ε at 20 or 25°C). For example, alcohols such as methanol (32.6), 2-propanol (18.0), 1-hexanol (13.3), and 1-dodecanol (6.5), and ketones such as acetone (20.7) and diethyl titone (17.0) may be used.

この場合特に電解質を加えなくても、前記水素
化金属粉末は正に帯電し、良く分散することが実
験的にも確かめられた。
In this case, it was experimentally confirmed that the metal hydride powder was positively charged and well dispersed even without adding an electrolyte.

なお比誘電率が6未満の液体有機化合物、例え
ば酢酸アミル(4.75)のようなエステル類でも、
エタノール等の極性の高い液体有機化合物を添加
すれば前記と同様に使用可能である。
Note that even liquid organic compounds with a dielectric constant of less than 6, such as esters such as amyl acetate (4.75),
If a highly polar liquid organic compound such as ethanol is added, it can be used in the same manner as above.

つぎに焼結層に含浸充填する電子放出物質は、
セシウム化合物に限らず、アルカリ金属、アルカ
リ土類金属、希土類元素金属の酸化物またはこれ
ら金属を成分とした複合酸化物もしくは、上記金
属の棚化物等公知の電子放出物質を常法によつて
用いることができる。
Next, the electron emitting material to be impregnated into the sintered layer is
In addition to cesium compounds, known electron-emitting substances such as oxides of alkali metals, alkaline earth metals, and rare earth metals, composite oxides containing these metals, or shelved products of the above metals are used in a conventional manner. be able to.

従来この種電極の製造方法として、耐熱性電極
基材に、耐熱性金属粒子の懸濁液を塗布するため
スプレー法、刷毛塗り法および浸漬法等が行われ
ているが、これらの場合は金属粒子の粒度の選
定、基材への付着力が充分でない、均一な被覆厚
が得にくい等、問題点が多い。
Conventional methods for producing this type of electrode include spraying, brush coating, and dipping methods to apply a suspension of heat-resistant metal particles to a heat-resistant electrode base material; There are many problems such as the selection of particle size, insufficient adhesion to the substrate, and difficulty in obtaining a uniform coating thickness.

しかるに本発明においては、前記の如く限定さ
れた金属の水素化物の粉末を、誘電率が6以上の
液体有機化合物に懸濁した泳動浴で、電気泳動に
より電着するものであるから、充分な付着力をも
つ所望厚さの均一被覆層をもつ耐熱金属電極基材
が容易に得られ、つぎの焼結工程に移せるもので
ある。したがつて電着条件の選定により、各種サ
イズの放電管、特にキヤピラリーチユーブの放電
管類に最適な陰極が容易に得られるので、作業性
もよく、コストダウン効果は極めて大きい。
However, in the present invention, the powder of the metal hydride limited as described above is electrodeposited by electrophoresis in a migration bath in which the powder is suspended in a liquid organic compound having a dielectric constant of 6 or more. A heat-resistant metal electrode base material having a uniform coating layer of a desired thickness with adhesive strength can be easily obtained and can be transferred to the next sintering step. Therefore, by selecting the electrodeposition conditions, cathodes suitable for discharge tubes of various sizes, particularly capillary reach tubes, can be easily obtained, resulting in good workability and an extremely large cost reduction effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に使用した電極基材の
正面図、第2図は同じく焼結層を形成した電極基
材の正面図である。 1……タングステン電極基材、2……リード
線、3……溶接部、4……焼結層。
FIG. 1 is a front view of an electrode base material used in an example of the present invention, and FIG. 2 is a front view of an electrode base material on which a sintered layer is also formed. DESCRIPTION OF SYMBOLS 1...Tungsten electrode base material, 2...Lead wire, 3...Welded part, 4...Sintered layer.

Claims (1)

【特許請求の範囲】 1 耐熱性電極基材の表面に、遷移金属のうち元
素周期表〜族に属するもの、およびランタノ
イド、アクチノイドの金属型水素化物の粉末やこ
れらの混合物、上記金属型水素化物を構成する金
属2種以上の合金や、これらと他の金属との合金
の水素化物粉末およびこれら合金の水素化物粉末
の混合物のいづれかを被覆した後、焼結し多孔質
焼結層を形成し、この焼結層の空孔内に電子放出
物質を含浸充填することを特徴とする閃光放電管
用電極。 2 遷移金属のうち元素周期表〜族に属する
もの、およびランタノイド、アクチノイドの金属
型水素化物の粉末やこれらの混合物、上記金属型
水素化物を構成する金属2種以上の合金や、これ
らと他の金属との合金の水素化物粉末およびこれ
ら合金の水素化物粉末の混合物のいづれかを、比
誘電率が6以上の液体有機化合物の1種または2
種以上の液体中に、分散懸濁しこれを泳動浴と
し、耐熱性電極基材を1極として電気泳動法によ
り、この電極基材の先端に前記金属の水素化物粉
末を電着被覆後焼結し、かつ常法により電子放出
物質を含浸充填させることを特徴とする閃光放電
用電極の製造方法。
[Scope of Claims] 1. On the surface of the heat-resistant electrode base material, powders of transition metals belonging to groups of the periodic table of elements, lanthanides and actinides, powders of metal hydrides, mixtures thereof, and the above metal hydrides. After coating with either an alloy of two or more metals constituting the material, a hydride powder of an alloy of these with other metals, or a mixture of hydride powder of these alloys, sintering is performed to form a porous sintered layer. , an electrode for a flash discharge tube characterized in that the pores of this sintered layer are impregnated and filled with an electron-emitting substance. 2. Powders and mixtures of metal hydrides of transition metals belonging to groups of the periodic table of elements, lanthanides and actinides, alloys of two or more metals constituting the above metal hydrides, and these and other metal hydrides. Either a hydride powder of an alloy with a metal or a mixture of hydride powder of these alloys is mixed with one or two liquid organic compounds having a dielectric constant of 6 or more.
The metal hydride powder is electrodeposited on the tip of the electrode base material by electrophoresis using a heat-resistant electrode base material as one pole, and then sintered. A method for producing an electrode for flash discharge, characterized in that the electrode is impregnated and filled with an electron-emitting substance by a conventional method.
JP4002883A 1983-03-12 1983-03-12 Electrode for flash discharge tube and its manufacturing method Granted JPS59167947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4002883A JPS59167947A (en) 1983-03-12 1983-03-12 Electrode for flash discharge tube and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4002883A JPS59167947A (en) 1983-03-12 1983-03-12 Electrode for flash discharge tube and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS59167947A JPS59167947A (en) 1984-09-21
JPS6360499B2 true JPS6360499B2 (en) 1988-11-24

Family

ID=12569449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4002883A Granted JPS59167947A (en) 1983-03-12 1983-03-12 Electrode for flash discharge tube and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS59167947A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253997U (en) * 1988-10-06 1990-04-18

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2548598Y2 (en) * 1991-05-30 1997-09-24 株式会社小松製作所 Crawler track end seal assembly
JP3977259B2 (en) * 2001-02-19 2007-09-19 パナソニック フォト・ライティング 株式会社 Discharge tube, manufacturing method thereof, strobe device and camera using the same
JP4977524B2 (en) * 2007-05-16 2012-07-18 岡谷電機産業株式会社 Discharge tube and manufacturing method thereof
EP2892064B1 (en) * 2012-08-31 2017-09-27 Shin-Etsu Chemical Co., Ltd. Production method for rare earth permanent magnet
JP6090589B2 (en) * 2014-02-19 2017-03-08 信越化学工業株式会社 Rare earth permanent magnet manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253997U (en) * 1988-10-06 1990-04-18

Also Published As

Publication number Publication date
JPS59167947A (en) 1984-09-21

Similar Documents

Publication Publication Date Title
US2912611A (en) Thermionic cathodes
US4518890A (en) Impregnated cathode
US2339392A (en) Cathode
NL8500749A (en) METHOD FOR MANUFACTURING POROUS NON-VAPORABLE GETER DEVICES AND MADE GETTER DEVICES MADE THEREFORE
JPH09509525A (en) Field emitter flat display accommodating getter and manufacturing method thereof
US3798492A (en) Emissive electrode
US3879830A (en) Cathode for electron discharge device having highly adherent emissive coating of nickel and nickel coated carbonates
US4675570A (en) Tungsten-iridium impregnated cathode
US2497496A (en) Electrode structure for electric discharge devices or lamps
US2438732A (en) Electron tube cathode
JPS6360499B2 (en)
NL8500750A (en) CATHODE JET TUBE WITH AN ELECTROPHORETIC GETTING DEVICE.
US3837909A (en) Coated coil emissive electrode
EP0068265A2 (en) Cathode member for an electric discharge device
US2769114A (en) Anode for electron tubes
US2447973A (en) Coated anode for electron discharge devices
US2497109A (en) Electrode for electron tubes
US3722045A (en) Methods of improving adherence of emissive material in thermionic cathodes
EP0157634B1 (en) Tungsten-iridium impregnated cathode
JP2001155679A (en) Gas discharge lamp
JPS6062034A (en) Hot-cathode frame body
US3720985A (en) Method of improving adherence of emissive material in thermionic cathodes
JPS5842132A (en) Direct-heated dispenser cathode and manufacturing method
JP2984179B2 (en) Method of manufacturing heater and cathode ray tube having inorganic insulating film
KR20060120196A (en) Cathode with integrated getter and low work function for cold cathode methods for manufacturing such a cathod