JPS6360102A - Production of high-purity aluminum nitride powder - Google Patents

Production of high-purity aluminum nitride powder

Info

Publication number
JPS6360102A
JPS6360102A JP20346386A JP20346386A JPS6360102A JP S6360102 A JPS6360102 A JP S6360102A JP 20346386 A JP20346386 A JP 20346386A JP 20346386 A JP20346386 A JP 20346386A JP S6360102 A JPS6360102 A JP S6360102A
Authority
JP
Japan
Prior art keywords
aluminum nitride
gaseous
purity
gas
nitride powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20346386A
Other languages
Japanese (ja)
Other versions
JPH048364B2 (en
Inventor
Akira Yamane
山根 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO SUTOUFUAA CHEM KK
Tosoh Finechem Corp
Original Assignee
TOYO SUTOUFUAA CHEM KK
Tosoh Finechem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO SUTOUFUAA CHEM KK, Tosoh Finechem Corp filed Critical TOYO SUTOUFUAA CHEM KK
Priority to JP20346386A priority Critical patent/JPS6360102A/en
Publication of JPS6360102A publication Critical patent/JPS6360102A/en
Publication of JPH048364B2 publication Critical patent/JPH048364B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain the title high-purity aluminum nitride powder having excellent thermal characteristics and appropriate for the material of electronic equipment by mixing excess gaseous ammonia and high-purity gaseous org. aluminum compds. at a specified temp., and then subjecting the mixture to a gaseous phase reaction. CONSTITUTION:The mixing zone 1 of a reactor 3 is heated to <=200 deg.C. High- purity gaseous ammonia 8 and a high-purity gaseous org. aluminum compd. 9 (e.g., gaseous triisobutylaluminum and gaseous dimethylaluminum halide) are mixed in >=5 molar ratio of the gaseous ammonia 8 to the gaseous aluminum compd. 9, and the mixture is introduced into the mixing zone 1. The gaseous mixture is then introduced into a reaction zone 2 heated at 600-1,300 deg.C, and subjected to a gaseous phase reaction. The formed aluminum nitride powder is collected by a collector 4, and the desired high-purity aluminum nitride powder is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高純度窒化アルミニウム粉末の製造法に関する
ものである。窒化アルミニウムは高熱伝導性、高絶縁性
等を有し、各種産業用及び民生用の機械1機器材料酸い
は電子は器材材用セラミックとして注目されているもの
であるが、熱的特性がカチオン不純物や酸素により大き
く影響を受けることから高純度窒化アルミニウムの開発
が望まれている。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing high purity aluminum nitride powder. Aluminum nitride has high thermal conductivity, high insulation properties, etc., and is attracting attention as a material for various industrial and consumer machinery and equipment. The development of high-purity aluminum nitride is desired because it is greatly affected by impurities and oxygen.

本発明は気相反応によるカチオン不純物や酸素を含まな
い高純度窒化アルミニウム粉末の製造法に関するもので
ある。
The present invention relates to a method for producing high-purity aluminum nitride powder free of cationic impurities and oxygen using a gas phase reaction.

〔従来の技術〕[Conventional technology]

窒化アルミニウム粉末の製造法には下記の方法がある。 There are the following methods for producing aluminum nitride powder.

(1)金属アルミニウム粉、末に窒素またはアンモニア
を直接反応させ、後焼成する方法。(特開昭50−16
0199 ’) (2)アルミナとカーボンとの混合粉末を窒素雰囲気中
で加熱する方法。(特開昭60−180906 )(3
)有機アルミニウム化合物をアンモニアまた° は−綴
あるいは二級アミン類と反応させ窒化アルミニウム前駆
体を調製した後、不活性ガス、真空下或いはアンモニア
気流中400°C以上で加熱する方法。(特開昭53−
68700)(4)塩化アルミニウムもしくは臭化アル
ミニウムガスのいずれか或い・は両者の混合ガスとアン
モニアガスを気相反応させる方法。(特開昭61−91
008> 上記のうち(1)、(2)は原料に起因するカチオン不
純物及び酸素が混在しく2L (3)の方法ではカーボ
ン分を除去することは出来ない。
(1) A method in which metal aluminum powder is directly reacted with nitrogen or ammonia and then post-fired. (Unexamined Japanese Patent Publication No. 50-16
0199') (2) A method of heating a mixed powder of alumina and carbon in a nitrogen atmosphere. (Unexamined Japanese Patent Publication No. 60-180906) (3
) A method in which an aluminum nitride precursor is prepared by reacting an organoaluminum compound with ammonia, aluminum or secondary amines, and then heated at 400°C or higher under an inert gas, vacuum, or in an ammonia stream. (Unexamined Japanese Patent Publication No. 53-
68700) (4) A method of causing a vapor phase reaction between aluminum chloride gas, aluminum bromide gas, or a mixture of both gases and ammonia gas. (Unexamined Japanese Patent Publication No. 61-91
008> Among the above methods (1) and (2), cationic impurities and oxygen caused by the raw materials are mixed, and the carbon content cannot be removed by the method of 2L (3).

また(4)の方法ではカーボン分のない窒化アルミニウ
ム粉末は得られるが、副生ずるハロゲン化水素ガスのた
め装置の腐食、廃ガス処理等の問題が残されている。
Although the method (4) yields carbon-free aluminum nitride powder, problems such as equipment corrosion and waste gas treatment remain due to the hydrogen halide gas produced as a by-product.

以上の公知技術の他に有機アルミニウム化合物ガスとア
ンモニアガスとの気相反応による窒化アルミニウムの合
成法が知られている。例えばHanasev r tら
はJournal of the Electro−c
hemical 5ociety VOl、118 N
o、111864〜1868ページ(1971)でトリ
メチルアルミニウムとアンモニアとを気相反応させ基板
上に窒化アルミニウムの結晶を成長させることを報告し
ている。
In addition to the above known techniques, a method for synthesizing aluminum nitride by a gas phase reaction between organoaluminum compound gas and ammonia gas is known. For example, Hanasev r t et al. Journal of the Electro-c
chemical 5ocity VOl, 118N
o, pp. 111864-1868 (1971), reports that trimethylaluminum and ammonia are reacted in a gas phase to grow aluminum nitride crystals on a substrate.

また特開昭61−113771号公報には前例と同一原
料を使用し、光化学反応を用いた気相法により基板上に
窒化アルミニウムの薄膜を形成させる方法が開示されて
いる。しかしこの方法で1qられた窒化アルミニウムの
カーボン含有量は1%と高く高純度とは言い難い。
Further, Japanese Patent Application Laid-open No. 113771/1983 discloses a method of forming a thin film of aluminum nitride on a substrate by a vapor phase method using a photochemical reaction, using the same raw materials as in the previous example. However, the carbon content of aluminum nitride produced by this method is as high as 1%, and it cannot be said to have high purity.

以上述べた如くいずれも塞板−ヒへの蒸着が目的であり
窒化アルミニウム粉末が製造された例はない。
As mentioned above, the purpose of all of these methods is to vapor-deposit them onto a plug-in plate, and there is no example in which aluminum nitride powder has been produced.

(発明が解決すべき問題点〕 そこで本発明者は、高純度有はアルミニウムガスとアン
モニアガスとを気相反応により作用せしめ高lll1度
窒化アルミニウム扮末を製造する方法について種々検討
した結果、新規な製造法を見い出し本発明に至ったもの
である。
(Problems to be Solved by the Invention) Therefore, the inventors of the present invention have investigated various methods for producing high-purity aluminum nitride powder by reacting high-purity aluminum gas and ammonia gas through a gas phase reaction, and have discovered a new method. The present invention was achieved by discovering a manufacturing method.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は気相反応により高純度有機アルミニウムガスと
アンモニアガスとを作用せしめ収率良く高純度窒化アル
ミニウム粉末を製造する方法であり、その要旨とする所
は高純度有機アルミニウム化合物ガスとアンモニアガス
を気相反応させ窒化アルミニウム粉末を製造する方法に
おいて、アンモニアガスの流量対有機アルミニウム化合
物ガスの流量のモル比が5以上で、しかも200℃以下
で混合したのら、600〜1300℃で気相反応させる
ことを特徴とする高純度窒化アルミニウム粉末の製造法
に存する。
The present invention is a method for producing high-purity aluminum nitride powder with high yield by reacting high-purity organoaluminum gas and ammonia gas through a gas phase reaction. In the method of manufacturing aluminum nitride powder by vapor phase reaction, if the molar ratio of the flow rate of ammonia gas to the flow rate of organoaluminum compound gas is 5 or more and the mixture is at 200°C or less, the gas phase reaction is performed at 600 to 1300°C. The present invention provides a method for producing high purity aluminum nitride powder.

〔作 用〕[For production]

以下詳しく説明すると有機アルミニウム化合物としては
トリアルキルアルミニウムおよびジアルキルアルミニウ
ムモノハイドライド(但し炭素数1〜10のアルキル基
をいう)であり具体的にはトリメチルアルミニウム、ト
リエチルアルミニウム、トリイソブチルアルミニウム、
ジメチルアルミニウムハイドライド、ジエチルアルミニ
ウムハイドライド、ジイソブチルアルミニウムハイドラ
イド等であるが経済面からしてトリイソブチルアルミニ
ウムの使用が有利である。
To explain in detail below, the organoaluminum compounds include trialkylaluminum and dialkylaluminum monohydride (however, refers to an alkyl group having 1 to 10 carbon atoms), and specifically, trimethylaluminum, triethylaluminum, triisobutylaluminum,
Dimethylaluminum hydride, diethylaluminum hydride, diisobutylaluminum hydride, etc. are used, but it is advantageous to use triisobutylaluminum from an economical point of view.

上記の有機アルミニウム化合物にはN2 。N2 for the above organoaluminum compound.

Ar、He、Hz等の非酸化性ガスもしくはこれらの混
合ガスがキャリアーガスとして装入されるが、カーボン
分の汚染をなくすためにはH2ガスが望ましい。キャリ
アーガスとしてH2以外のガスを使用する場合は外部か
ら適当最のHzガスを反応系に導入することも可能であ
る。
A non-oxidizing gas such as Ar, He, Hz, or a mixture thereof is charged as a carrier gas, but H2 gas is preferable in order to eliminate carbon contamination. When using a gas other than H2 as a carrier gas, it is also possible to introduce an appropriate maximum Hz gas into the reaction system from the outside.

有機アルミニウム化合物ガスの流催対キャリアーガスの
流量のモル比は生成する窒化アルミニウムの粒径等の粉
末特性を考慮すると、使用する有機アルミニウム化合物
の種類にもよるが通常1xlO−2以上が望ましい。更
にアンモニアガスの流量対有機アルミニウム化合物ガス
の流量のモル比は5以上であることが必要であり、これ
以下のモル比では窒化アルミニ「クムが安定に生成しな
いばかりかカーボン分の混入を抑制することが困難であ
る。
The molar ratio of the flow rate of the organoaluminum compound gas to the flow rate of the carrier gas is usually desirably 1xlO-2 or more, although it depends on the type of the organoaluminum compound used, taking into consideration the powder properties such as the particle size of the aluminum nitride to be produced. Furthermore, the molar ratio of the flow rate of ammonia gas to the flow rate of organoaluminum compound gas needs to be 5 or more; if the molar ratio is lower than this, not only will aluminum nitride cum not be stably generated, but also the contamination of carbon components will be suppressed. It is difficult to do so.

混合温度及び反応温度であるが先に述べたアンモニアガ
スの流星対有機アルミニウム化合物ガスの流量のモル比
が5以上において混合温度は200′C以下、また反応
温度は600〜1300’Cであることが必要である。
Regarding the mixing temperature and reaction temperature, when the molar ratio of the ammonia gas meteor to the organic aluminum compound gas flow rate is 5 or more, the mixing temperature is 200'C or less, and the reaction temperature is 600 to 1300'C. is necessary.

混合温度が200℃以上では有機アルミニウム化合物が
熱分解し、窒化アルミニウムの収率の低下を招き10°
C以下では本質的な問題はないものの冷却設備等が必要
になることから経済上得策ではない。
If the mixing temperature exceeds 200°C, the organoaluminum compound will thermally decompose, leading to a decrease in the yield of aluminum nitride.
If the temperature is below C, there is no essential problem, but it is not economically advisable because cooling equipment etc. will be required.

また反応温度は600℃以下では未分解のアルキル塁が
残存し、1300℃以上では副生する炭化水素ガスが熱
分解するためいずれもカーボン分の汚染の原因となる。
Further, if the reaction temperature is 600° C. or lower, undecomposed alkyl groups remain, and if the reaction temperature is 1300° C. or higher, by-product hydrocarbon gas is thermally decomposed, which both cause carbon contamination.

上記のごとくして得られる窒化アルミニウムは非晶質又
は殆ど非晶質に近い粉末であり、これを更に高温度例え
ば1400℃以上で焼成することにより結晶化させるこ
とができる。
The aluminum nitride obtained as described above is an amorphous or almost amorphous powder, which can be crystallized by firing at a higher temperature, for example, 1400° C. or higher.

(実施例及び発明の効果〕 次に実施例を示して具体的に説明するが、これに限定さ
れるものではない。
(Examples and Effects of the Invention) Next, examples will be shown and specifically explained, but the invention is not limited thereto.

実施例1 第1図は反応装置の概略を示したものである。Example 1 FIG. 1 schematically shows the reactor.

60℃に加熱した混合帯(1)及び1100’Cに加熱
した反応帯(2)に純度99.999%のアンモニアカ
スを導入口(8)を通して反応管(3)へ導入した。
Ammonia scum with a purity of 99.999% was introduced into the reaction tube (3) through the inlet (8) into the mixing zone (1) heated to 60°C and the reaction zone (2) heated to 1100'C.

一方、容器(5)中のトリイソブチルアルミニウム(A
i純度99.999%)を60°Cに加熱すると共に純
度99.9999%の1−12ガスを980d/分の速
度で容器(5)中に吹き込み、このトリイソブチルアル
ミニウムガスを導入口(9)を通して反応管(3)へ装
入した。アンモニアカスとトリイソブチルアルミニウム
ガスとのセル比は10で実施した。(4)は窒化アルミ
ニウム粉末補集器、(6)は流量調節t4、(7)は熱
電対である。
Meanwhile, triisobutylaluminum (A
1-12 gas with a purity of 99.9999% is blown into the container (5) at a rate of 980 d/min, and this triisobutylaluminum gas is passed through the inlet (9). ) and charged into the reaction tube (3). The cell ratio of ammonia gas to triisobutylaluminum gas was set to 10. (4) is an aluminum nitride powder collector, (6) is a flow rate adjustment t4, and (7) is a thermocouple.

反応終了後回収した粉は白色の微粉末で、X線回折の結
果非晶質であったが、元素分析11@Ai=65.8%
、’N=34.1%であり、赤外分光分析の結果が窒化
アルミニウムと一致することから窒化アルミニウムと同
定された。更にこのものをグラファイト製ボートにとり
純度99.9999%以上の窒素ガス気流下400℃/
時の速度で1400℃まで加熱し、結晶化の高い窒化ア
ルミニウムを得た。この粉末は白色で元素分析を行った
結果C= <O,i%、N=33゜5%、Q=0.6%
The powder recovered after the reaction was a white fine powder, which was found to be amorphous by X-ray diffraction, but elemental analysis 11@Ai = 65.8%
, 'N=34.1%, and the results of infrared spectroscopic analysis were consistent with aluminum nitride, so it was identified as aluminum nitride. Furthermore, this product was placed in a graphite boat and heated at 400°C under a stream of nitrogen gas with a purity of 99.9999% or more.
The aluminum nitride was heated to 1400° C. at a rate of 100° C. to obtain highly crystallized aluminum nitride. This powder is white and elemental analysis shows that C = <O, i%, N = 33°5%, Q = 0.6%.
.

s r =51)l)Ill 、 Fe未検出で平均粒
径は0.05μ汎であり高純度かつ微細な窒化アルミニ
ウム粉末であった。このように平均粒径0.05μmと
超微粉のため焼結にとって有利でおった。
s r =51) l) Ill No Fe was detected, the average particle size was 0.05 μm, and the powder was a highly pure and fine aluminum nitride powder. As described above, the ultrafine powder with an average particle diameter of 0.05 μm was advantageous for sintering.

実施例2〜5 反応温度とアンモニアガスの流は対トリイソブチルアル
ミニウムの流量のモル比を変化させて、実施例1になら
い窒化アルミニウム粉末を製造した。その結果を表1に
示す。
Examples 2 to 5 Aluminum nitride powder was produced according to Example 1 by changing the reaction temperature and the molar ratio of ammonia gas flow to triisobutylaluminum. The results are shown in Table 1.

実施例6〜9 混合温j宴を変化ざV窒化アルミニウム粉末を製造した
。その結果を表2に示す。
Examples 6-9 Aluminum nitride powder was produced by varying the mixing temperature. The results are shown in Table 2.

実施例10〜11 有機アルミニウム化合物をトリイソブチルアルミニウム
からジメヂルアルミニウムハイドライドに変え窒化アル
ミニウム粉末を製造した。その結果を表3に示す。
Examples 10 to 11 Aluminum nitride powder was produced by changing the organic aluminum compound from triisobutylaluminum to dimedylaluminum hydride. The results are shown in Table 3.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製)告法を実施するための反応装置の
概略を示したものである。 1・・・混合帯 2・・・反応帯 3・・・反応管 4・・・窒化アルミニウム粉末補集器 5・・・有機アルミニウム化合物容器 6・・・流最調節計 7・・・熱電対 8・・・アンモニアガス導入管 9・・・有機アルミニウム化合物導入管第1図
FIG. 1 schematically shows a reaction apparatus for carrying out the production method of the present invention. 1...Mixing zone 2...Reaction zone 3...Reaction tube 4...Aluminum nitride powder collector 5...Organic aluminum compound container 6...Flow control meter 7...Thermocouple 8...Ammonia gas introduction pipe 9...Organic aluminum compound introduction pipe Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)高純度有機アルミニウム化合物ガスとアンモニア
ガスを気相反応させ窒化アルミニウム粉末を製造する方
法において、アンモニアガスの流量対有機アルミニウム
化合物ガスの流量のモル比が5以上で、しかも200℃
以下で混合したのち、600〜1300℃で気相反応さ
せることを特徴とする高純度窒化アルミニウム粉末の製
造法。
(1) In the method of manufacturing aluminum nitride powder by causing a vapor phase reaction between high purity organoaluminum compound gas and ammonia gas, the molar ratio of the flow rate of ammonia gas to the flow rate of organoaluminum compound gas is 5 or more, and the temperature is 200°C.
A method for producing high-purity aluminum nitride powder, which is characterized in that it is mixed as follows and then subjected to a gas phase reaction at 600 to 1300°C.
(2)高純度有機アルミニウム化合物がトリアルキルア
ルミニウムおよびジアルキルアルミニウムモノハイドラ
イド(但し炭素数1〜10のアルキル基をいう)である
特許請求の範囲第1項記載の製造法。
(2) The production method according to claim 1, wherein the high-purity organoaluminum compound is trialkylaluminum and dialkylaluminium monohydride (provided that it refers to an alkyl group having 1 to 10 carbon atoms).
JP20346386A 1986-08-29 1986-08-29 Production of high-purity aluminum nitride powder Granted JPS6360102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20346386A JPS6360102A (en) 1986-08-29 1986-08-29 Production of high-purity aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20346386A JPS6360102A (en) 1986-08-29 1986-08-29 Production of high-purity aluminum nitride powder

Publications (2)

Publication Number Publication Date
JPS6360102A true JPS6360102A (en) 1988-03-16
JPH048364B2 JPH048364B2 (en) 1992-02-14

Family

ID=16474544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20346386A Granted JPS6360102A (en) 1986-08-29 1986-08-29 Production of high-purity aluminum nitride powder

Country Status (1)

Country Link
JP (1) JPS6360102A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217311A (en) * 1989-02-16 1990-08-30 Mitsui Toatsu Chem Inc Production of powdery aluminum nitride
US7267808B2 (en) 2004-07-08 2007-09-11 Mitsui Chemicals, Inc. Aluminum nitride powder, method for producing the same and use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217311A (en) * 1989-02-16 1990-08-30 Mitsui Toatsu Chem Inc Production of powdery aluminum nitride
US7267808B2 (en) 2004-07-08 2007-09-11 Mitsui Chemicals, Inc. Aluminum nitride powder, method for producing the same and use thereof

Also Published As

Publication number Publication date
JPH048364B2 (en) 1992-02-14

Similar Documents

Publication Publication Date Title
JPS6112844B2 (en)
US4865830A (en) Gas phase preparation of aluminum nitride
US20120063983A1 (en) Method for Synthesis of Boron Nitride Nanopowder
CN1318293C (en) Method for solid-phase double decomposition to synthesize nanometer aluminium nitride
JPS6360102A (en) Production of high-purity aluminum nitride powder
CN107640750B (en) Boron nitride nanosheet powder and low-cost batch preparation method thereof
US3342551A (en) Method and apparatus for producing a semiconducting compound of two or more components
Kalyoncu BN powder synthesis at low temperatures
CN111187183A (en) Method for synthesizing zinc carbodiimide by vapor deposition
RU2415079C1 (en) Method of producing stabilised silicon clusters
JP2670331B2 (en) Method for producing aluminum nitride powder
JP3325344B2 (en) Method for producing aluminum nitride powder
JPS58150427A (en) Preparation of fine powder of metal compound
JP2831411B2 (en) Method for producing aluminum nitride powder
EP0225412B1 (en) Production of silicon imides and of silicon nitride thereof
JP2726703B2 (en) Method for producing aluminum nitride powder
JPS6191008A (en) Method of synthesizing aluminum nitride powder
JP2619888B2 (en) Manufacturing method of aluminum nitride
JPS6111885B2 (en)
JPH01230779A (en) Production of aluminum nitride
JPS5973412A (en) Preparation of powder of silicone nitride
JPH03218917A (en) Production of boron trichloride
JPH06219730A (en) Production of solid material composed mainly of boron, carbon and nitrogen
JPH08245206A (en) Boron carbonitride compound and method for synthesizing the same
JPS63176302A (en) Production of fine high-purity aluminum nitride powder