JPS6359722B2 - - Google Patents

Info

Publication number
JPS6359722B2
JPS6359722B2 JP58160540A JP16054083A JPS6359722B2 JP S6359722 B2 JPS6359722 B2 JP S6359722B2 JP 58160540 A JP58160540 A JP 58160540A JP 16054083 A JP16054083 A JP 16054083A JP S6359722 B2 JPS6359722 B2 JP S6359722B2
Authority
JP
Japan
Prior art keywords
membrane
hollow
fluid
thin tube
membranes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58160540A
Other languages
Japanese (ja)
Other versions
JPS6054710A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16054083A priority Critical patent/JPS6054710A/en
Publication of JPS6054710A publication Critical patent/JPS6054710A/en
Publication of JPS6359722B2 publication Critical patent/JPS6359722B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 本発明は限外過、逆浸透、ミクロ過、透
析、気体分離、気体過等に用いられる中空繊維
状膜を利用した流体用分離器に関する。 (ロ) 用語の定義 本発明において、「中空繊維状膜」とは膜の形
状が直径1cm以下の管状(パイプ状)のもの指
す。従つて、中空繊維状膜には、いわゆる「中空
繊維」と呼ばれる膜から「チユーブ状膜」と呼ば
れる中空繊維よりも中空部直径の大きな膜、さら
には、平面状膜を接着、熱圧着等の手段で筒状に
した膜なども含まれる。 本発明において「細管」とは中空繊維状膜の中
空部に挿入させることができる外径を持つ円筒状
の成形物のことで、その形態は管(パイプ)のみ
に限定されるものではない。すなわち、理解を容
易ならしめるため添附第1図について説明する
と、同図に示す細管1は、細管側壁3全体の内部
が中空となつており、その両端7が開口している
開管(パイプ)である。 「中空繊維状膜より剛直である」とは、細管を
構成する構造体のヤング率が中空繊維状膜のヤン
グ率より大きいことを意味しており、通常、細管
のヤング率は109dyn/cm2以上が望ましく、
1010dyn/cm2であればさらに好ましい。細管のヤ
ング率が膜のそれよりも大きければ、細管と膜を
構成する素材は同一でもよい。 (ハ) 従来の技術 中空繊維状膜は血液透析用膜、限外過用膜、
逆浸透用膜、気体分離用膜として医療・医薬品工
業、食品工業、電子工業などで幅広く利用されて
いる。その孔径範囲は数十Åから数十μmまで目
的に応じて各種の膜が生産されている。 中空繊維状膜を用いた分離装置は、平面状膜を
用いたものと比較して同一膜面積を持つ分離装置
であれば、より小型で充てん容量を少なくするこ
とができ、さらに、モジユールとして組み立てら
れているので取り扱い易く、また、過方法とし
て流体を流しながら過するいわゆる平行過が
効率的に実行できるなどの利点がある。これらの
利点は、一般に分離流体の体積が大きくなる程、
生かされてくる傾向にある。 膜分離技術の急速な進歩に伴ない、優れた特性
の膜が開発され、さらに分離対象の範囲が拡大さ
れるなかで、各々の分離操作に最も適した膜と最
も適した分離容量を持つ分離装置が必要とされて
いる。従来の中空繊維状膜用モジユールは、一定
本数の中空繊維状膜を束にしてその両端を接着剤
等に埋め込み、プラスチツクあるいは金属性の管
中に固定した型であつて、分離すべき流体の容積
に応じて膜面積を自由に選択することは難しい。
特に、分離すべき流体の体積が数十μから数μ
といつた微量の範囲になると有効膜面積や分離
器の充てん容量を非常に小さくする必要性が高ま
るが、従来の装置では対応が困難である。 従来の中空糸状膜モジユールにおいて埋め込む
膜の本数を適当に増減すれば有効膜面積を連続的
に変えた一連の分離モジユールを組み立てること
はできるが、繁雑でコスト高となり工業的には実
用性に乏しい。さらに、有効膜面積が小さくなれ
ば、過流体の量は微量にせざるを得ない。しか
し、従来のモジユールのようにプラスチツクある
いは金属性の筒中に中空繊維状膜を固定したもの
では、過流体の充てん容量が大きいため、少量
の過流体を効率良く捕集することができない。 他方、平面状膜を用いた分離器においては、膜
面積の異なる何種類かの膜装着器を用意せねばな
らず、実用的でないばかりか、100μ以下の微
量流体を分離するのには適さない。 (ニ) 発明が解決しようとする課題 本発明の目的は、上述のような現状を考慮し
て、μオーダーの極微量からkオーダーの大
容量のいかなる体積の分離流体に対しても目的に
応じて最適の膜面積と充てん容量を具備せしめる
ことができる、中空繊維状膜を用いた流体の分離
器を提供するにある。 (ホ) 課題を解決するための手段 本発明に係る流体分離器は、中空繊維状膜の中
空部内部に、この膜より剛直な細管が、膜の閉塞
された端部近くまで挿入されると共に、膜の内壁
と細管側壁との間には膜の長さ方向に沿つて流体
が通過するための空間が形成されており、膜の他
端からは細管が外へ突き出ており、且つ、膜と細
管との間隙は樹脂を介して接合、封鎖されている
ことを特徴とする。 本発明の特徴は、中空繊維状膜の中空部内部に
挿入した細管が1膜支持体と2分離液導入路とし
て機能することである。細管は上記1の目的を満
たすために膜よりも剛直でなくてはならず、ま
た、酸・アルカリその他の腐食性物質に耐え得る
素材であることが望ましい。 第2図は、中空繊維状膜8の一端が接着剤1
4′で接合して閉塞され、他端より細管9を挿入
し、接着剤14で細管と膜8の端が接合、封鎖さ
れた本発明による流体分離器の1例を示してい
る。供給流体(すなわち、過されるべき流体)
15は細管の一端から矢印の方向に流れ、中空繊
維状膜と細管とで形成される空間部を通り、膜
の側壁を通過して過流体16が得られる。 この分離器において、細管は中空繊維状膜の閉
塞端部近くまで挿入されているので、過流体が
微量であつても膜面積を有効に活用できる。 本発明の流体分離器において、細管は中空繊維
状膜の長さの約2/3以上にわたつて挿入されてい
ることが好ましい。 細管の形状は直線状に限らない。例えば、螺旋
状または渦巻き状にすればより小さな空間に大き
な膜面積を確保することができる。また、中空繊
維状膜の閉塞端部は開閉可能に構成することがで
き、このようにすれば、過を行つた後の流体分
離器の洗浄が容易に行える利点がある。 本発明の分離器は、1本の中空繊維状膜の中空
部に膜支持体と供給流体導入路を兼ねた細管が挿
入されているので、1本の中空繊維状膜を1つの
分離器として独立させて使用できる。従つて、中
空繊維状膜の中空部直径や長さを変えることで任
意の有効膜面積を1本の中空繊維状膜に持たせる
ことができる。 中空繊維状膜の中空部内径および長さと有効膜
面積および充てん容量との関係を示すと表1のと
おりである。
(a) Industrial Application Field The present invention relates to a fluid separator using a hollow fibrous membrane used for ultrafiltration, reverse osmosis, microfiltration, dialysis, gas separation, gas filtration, etc. (b) Definition of terms In the present invention, the term "hollow fibrous membrane" refers to a membrane having a tubular (pipe-like) shape with a diameter of 1 cm or less. Therefore, hollow fibrous membranes include so-called "hollow fiber" membranes, membranes with a larger hollow diameter than hollow fibers called "tubular membranes," and even flat membranes that can be bonded, thermocompressed, etc. It also includes membranes made into a cylinder by means of other means. In the present invention, the term "tubule" refers to a cylindrical molded article having an outer diameter that can be inserted into the hollow part of a hollow fibrous membrane, and its form is not limited to a tube (pipe). That is, in order to facilitate understanding, the attached FIG. 1 will be explained. The thin tube 1 shown in the figure is an open tube (pipe) in which the entire thin tube side wall 3 is hollow and both ends 7 are open. It is. "More rigid than a hollow fibrous membrane" means that the Young's modulus of the structure constituting the tubule is greater than the Young's modulus of the hollow fibrous membrane. Usually, the Young's modulus of a tubule is 10 9 dyn/ cm2 or more is desirable;
More preferably, it is 10 10 dyn/cm 2 . As long as the Young's modulus of the capillary is larger than that of the membrane, the materials constituting the capillary and the membrane may be the same. (c) Conventional technology Hollow fibrous membranes are used for hemodialysis membranes, ultrafiltration membranes,
It is widely used as reverse osmosis membranes and gas separation membranes in the medical/pharmaceutical industry, food industry, electronic industry, etc. Various types of membranes are produced with pore sizes ranging from several tens of angstroms to several tens of micrometers depending on the purpose. Separators using hollow fibrous membranes can be smaller and require less filling capacity than those using flat membranes if they have the same membrane area, and can be assembled as modules. It has the advantage that it is easy to handle because it has a parallel filtration method, and that so-called parallel filtration, in which filtration is carried out while flowing a fluid, can be carried out efficiently. Generally speaking, the larger the volume of separation fluid, the greater the advantages of these advantages.
There is a tendency for it to be revived. With the rapid progress of membrane separation technology, membranes with superior properties have been developed and the range of separation targets has expanded. equipment is needed. Conventional hollow fibrous membrane modules are made by bundling a certain number of hollow fibrous membranes, embedding both ends in adhesive, etc., and fixing them in a plastic or metal tube. It is difficult to freely select the membrane area depending on the volume.
In particular, the volume of the fluid to be separated is from several tens of microns to several microns.
When it comes to such a small amount, it becomes necessary to extremely reduce the effective membrane area and the filling capacity of the separator, but this is difficult to do with conventional equipment. It is possible to assemble a series of separation modules in which the effective membrane area is continuously changed by appropriately increasing or decreasing the number of embedded membranes in a conventional hollow fiber membrane module, but this is complicated and expensive, and is industrially impractical. . Furthermore, if the effective membrane area becomes smaller, the amount of excess fluid must be reduced to a very small amount. However, conventional modules in which a hollow fibrous membrane is fixed in a plastic or metal cylinder have a large filling capacity for excess fluid, and cannot efficiently collect a small amount of excess fluid. On the other hand, for separators using flat membranes, it is necessary to prepare several types of membrane mounting devices with different membrane areas, which is not only impractical but also unsuitable for separating microfluids with a size of 100μ or less. . (d) Problems to be Solved by the Invention In consideration of the above-mentioned current situation, the purpose of the present invention is to solve the problem of separating fluids of any volume, from a microscopic amount on the μ order to a large volume on the k order, depending on the purpose. An object of the present invention is to provide a fluid separator using a hollow fibrous membrane, which can have an optimal membrane area and filling capacity. (e) Means for Solving the Problems The fluid separator according to the present invention comprises a hollow fibrous membrane in which a thin tube that is more rigid than the membrane is inserted into the hollow part of the membrane up to a point close to the closed end of the membrane. A space for fluid to pass along the length of the membrane is formed between the inner wall of the membrane and the side wall of the capillary, and a capillary protrudes outward from the other end of the membrane, and The gap between the capillary and the thin tube is bonded and sealed via a resin. A feature of the present invention is that the thin tube inserted into the hollow part of the hollow fibrous membrane functions as one membrane support and two separation liquid introduction channels. In order to satisfy the above-mentioned objective 1, the thin tube must be more rigid than the membrane, and is preferably made of a material that can withstand acids, alkalis, and other corrosive substances. In FIG. 2, one end of the hollow fibrous membrane 8 is attached to the adhesive 1.
4' is joined and closed, a thin tube 9 is inserted from the other end, and the ends of the thin tube and membrane 8 are bonded and sealed with adhesive 14. An example of a fluid separator according to the present invention is shown. Feed fluid (i.e. the fluid to be filtered)
15 flows from one end of the capillary in the direction of the arrow, passes through the space formed by the hollow fibrous membrane and the capillary, passes through the side wall of the membrane, and obtains a superfluid 16. In this separator, the thin tube is inserted close to the closed end of the hollow fibrous membrane, so even if the amount of excess fluid is small, the membrane area can be effectively utilized. In the fluid separator of the present invention, it is preferable that the thin tube is inserted over about 2/3 or more of the length of the hollow fibrous membrane. The shape of the tubule is not limited to a straight shape. For example, a spiral or spiral shape can ensure a large membrane area in a smaller space. Further, the closed end of the hollow fibrous membrane can be configured to be openable and closable, which has the advantage that the fluid separator can be easily cleaned after filtration. In the separator of the present invention, a thin tube serving as a membrane support and a supply fluid introduction path is inserted into the hollow part of one hollow fibrous membrane, so that one hollow fibrous membrane can be used as one separator. Can be used independently. Therefore, by changing the diameter and length of the hollow portion of the hollow fibrous membrane, a single hollow fibrous membrane can have any desired effective membrane area. Table 1 shows the relationship between the inner diameter and length of the hollow portion of the hollow fibrous membrane and the effective membrane area and filling capacity.

【表】【table】

【表】 表1に示すように、例えば中空部内径が0.2cm
の中空繊維を15cm用いると有効膜面積約9.5cm2
(これは直径47mmの平面状膜を用いた分離器の平
均的な有効膜面積と等しい)、細管の体積を無視
した充てん容量が500μの分離器を構成するこ
とができる。内径が0.03cm(300μm)の場合に
は、長さ10cmで有効膜面積1cm2、充てん容量7μ
、長さを1cmとすれば、実に充てん容量1μ
以下の分離器が構成できる。 本発明における1本の流体の分離器を複数本並
列に連結することで、容易に膜面積の大きな分離
器として構成することができる。 ラツトやウサギを使用しての血液体外循環実験
(例えば人工透析、血漿交換など)では、使用す
る動物の血液流量に合わせて分離器を準備する必
要があるが、本発明により迅速に、かつ、正確に
有効膜面積の増減ができる。 従来の中空繊維膜分離モジユールでは、多数の
中空繊維の中に1本でもピンホールをもつものが
あれば、モジユール全体を交換する必要があつた
が、本発明における分離器では、たとえ使用中に
ピンホール等が生じても、不良となつた1本のみ
を交換することができ、実験、作業等の大幅な中
断を回避でき、かつ、膜の無駄もない。 第3図は、シリコンなどのチユーブ24を供給
流体15の流路に用い、流体の分離器を複数本並
列に連結して、垂直過を行う接続方法を示す。 従来の中空繊維膜は1本、1本の膜に支持体が
ないので、中空繊維外部から内部へ向つての加圧
または中空繊維内部からの吸引の際には中空部の
変形により透過効率の低下、透過流体の捕集不能
などが起りやすかつた。しかしながら、本発明の
分離器は、中空繊維状膜より剛直な細管を用いて
いるので、中空繊維状膜外部に供給流体を流し中
空繊維状膜内部に透過流体を取り出す方式におい
ても上記のような従来みられた問題は生じない。 本流体分離器は少量の過流体で行なわれる試
験(例えば、液体クロマトグラフイー、ガスクロ
マトグラフイー、薄層クロマトグラフイー、各種
血液検査、各種酸素反応など)での試料調製に適
している。
[Table] As shown in Table 1, for example, the inner diameter of the hollow part is 0.2 cm.
When using 15 cm of hollow fiber, the effective membrane area is approximately 9.5 cm 2
(This is equivalent to the average effective membrane area of a separator using a flat membrane with a diameter of 47 mm), making it possible to construct a separator with a filling capacity of 500 μ, ignoring the volume of the capillaries. When the inner diameter is 0.03cm (300μm), the length is 10cm, the effective membrane area is 1cm 2 and the filling capacity is 7μm.
, if the length is 1cm, the filling capacity is actually 1μ
The following separators can be configured. By connecting a plurality of one fluid separators in parallel in the present invention, a separator with a large membrane area can be easily constructed. In extracorporeal blood circulation experiments using rats or rabbits (e.g., artificial dialysis, plasma exchange, etc.), it is necessary to prepare a separator according to the blood flow rate of the animal being used. Effective membrane area can be increased or decreased accurately. In conventional hollow fiber membrane separation modules, if even one of the many hollow fibers had a pinhole, it was necessary to replace the entire module, but with the separator of the present invention, even if during use, Even if a pinhole or the like occurs, only the defective one can be replaced, thereby avoiding major interruptions in experiments, work, etc., and there is no wastage of membranes. FIG. 3 shows a connection method in which a tube 24 made of silicon or the like is used as a flow path for the supply fluid 15 and a plurality of fluid separators are connected in parallel to perform vertical filtration. Conventional hollow fiber membranes do not have a support for each membrane, so when pressure is applied from the outside of the hollow fibers to the inside or suction is applied from inside the hollow fibers, the permeation efficiency is reduced due to the deformation of the hollow part. This was likely to cause a drop in the flow rate and an inability to collect the permeated fluid. However, since the separator of the present invention uses thin tubes that are more rigid than hollow fibrous membranes, even in the system in which the supply fluid is passed outside the hollow fibrous membrane and the permeate fluid is taken out inside the hollow fibrous membrane, the above-mentioned method is not possible. The problems seen in the past do not occur. This fluid separator is suitable for sample preparation in tests conducted with a small amount of superfluid (for example, liquid chromatography, gas chromatography, thin layer chromatography, various blood tests, various oxygen reactions, etc.).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の流体用分離器に用いる細管
の定義を説明するための説明図であり、第2図
は、本発明の流体分離器の構造の一例を示す断面
図であり、第3図は、本発明の流体分離器の利用
形態の一例を示す説明図である。 1…細管、3…細管側壁、7…細管開口部、8
…中空繊維状膜、9…細管、14,14′…接着
部、15…供給流体、16…過流体、24…チ
ユーブ(例えばシリコンゴム管)、27…シリコ
ンゴム栓。
FIG. 1 is an explanatory diagram for explaining the definition of a thin tube used in the fluid separator of the present invention, and FIG. 2 is a sectional view showing an example of the structure of the fluid separator of the present invention. FIG. 3 is an explanatory diagram showing an example of a usage form of the fluid separator of the present invention. 1... Thin tube, 3... Thin tube side wall, 7... Thin tube opening, 8
...Hollow fibrous membrane, 9... Thin tube, 14, 14'... Adhesive part, 15... Supply fluid, 16... Perfluid, 24... Tube (for example, silicone rubber tube), 27... Silicone rubber stopper.

Claims (1)

【特許請求の範囲】[Claims] 1 中空繊維状膜の中空部内部に、この膜より剛
直な細管が、膜の閉塞された端部近くまで挿入さ
れると共に、膜の内壁と細管側壁との間には膜の
長さ方向に沿つて流体が通過するための空間が形
成されており、膜の他端からは細管が外へ突き出
ており、且つ、膜と細管との間隙は樹脂を介して
接合、封鎖されていることを特徴とする流体分離
器。
1 Inside the hollow part of the hollow fibrous membrane, a thin tube that is more rigid than this membrane is inserted close to the closed end of the membrane, and between the inner wall of the membrane and the side wall of the thin tube in the longitudinal direction of the membrane. A space is formed along the membrane for fluid to pass through, a thin tube protrudes outward from the other end of the membrane, and the gap between the membrane and the thin tube is bonded and sealed via resin. Characteristic fluid separator.
JP16054083A 1983-09-02 1983-09-02 Fluid separator Granted JPS6054710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16054083A JPS6054710A (en) 1983-09-02 1983-09-02 Fluid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16054083A JPS6054710A (en) 1983-09-02 1983-09-02 Fluid separator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9932988A Division JPS63291606A (en) 1988-04-23 1988-04-23 Separator for fluids

Publications (2)

Publication Number Publication Date
JPS6054710A JPS6054710A (en) 1985-03-29
JPS6359722B2 true JPS6359722B2 (en) 1988-11-21

Family

ID=15717185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16054083A Granted JPS6054710A (en) 1983-09-02 1983-09-02 Fluid separator

Country Status (1)

Country Link
JP (1) JPS6054710A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6212001B2 (en) * 2014-07-16 2017-10-11 日本特殊陶業株式会社 Separation membrane structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49123185A (en) * 1973-03-30 1974-11-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49123185A (en) * 1973-03-30 1974-11-25

Also Published As

Publication number Publication date
JPS6054710A (en) 1985-03-29

Similar Documents

Publication Publication Date Title
US12023158B2 (en) Device for whole blood cross flow filtration using a cannula needle
US8128822B2 (en) MECS dialyzer
US4211597A (en) Method for making artificial kidney
US4231871A (en) Artificial kidney and method for making same
JPH11501866A (en) Filtration cassette and filter with this laminated
JP3077020B2 (en) Hollow fiber type separation membrane module
JP6722772B2 (en) Radial path filter elements, systems and methods of using same
JPH0286817A (en) Hollow yarn-type fluid treating device
US3522885A (en) Parallel flow hemodialyzer
JP2005537924A5 (en)
EP0122920A1 (en) Filter
US3464562A (en) Dialyzing apparatus and method of making the same
JP2017000922A (en) Fluid sorting type pore diffusion membrane separation module
JPS6359722B2 (en)
JP6422032B2 (en) Flow separation type pore diffusion membrane separation module for concentration
EP0030938A1 (en) Blood perfusion units
US3956449A (en) Flat plate dialyzer and method of making same
EP1359993B1 (en) Hollow fiber membrane cassette
JP2004524140A5 (en)
US12011692B2 (en) Separation device
JPS63291606A (en) Separator for fluids
JPS6326162Y2 (en)
JPH10337449A (en) Constricted filter element and hollow fiber membrane module
JPS6337041Y2 (en)
JPS601766Y2 (en) Hollow fiber element with less membrane contamination