JPS6359565B2 - - Google Patents

Info

Publication number
JPS6359565B2
JPS6359565B2 JP55069112A JP6911280A JPS6359565B2 JP S6359565 B2 JPS6359565 B2 JP S6359565B2 JP 55069112 A JP55069112 A JP 55069112A JP 6911280 A JP6911280 A JP 6911280A JP S6359565 B2 JPS6359565 B2 JP S6359565B2
Authority
JP
Japan
Prior art keywords
movable part
substrate
manufacturing
mechanical
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55069112A
Other languages
Japanese (ja)
Other versions
JPS56164928A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6911280A priority Critical patent/JPS56164928A/en
Priority to US06/242,627 priority patent/US4421381A/en
Priority to GB8108973A priority patent/GB2075762B/en
Publication of JPS56164928A publication Critical patent/JPS56164928A/en
Publication of JPS6359565B2 publication Critical patent/JPS6359565B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/12Mounting in enclosures for networks with interaction of optical and acoustic waves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/085Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by electromagnetic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10554Moving beam scanning
    • G06K7/10594Beam path
    • G06K7/10603Basic scanning using moving elements
    • G06K7/10633Basic scanning using moving elements by oscillation
    • G06K7/10643Activating means
    • G06K7/10653Activating means using flexible or piezoelectric means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • H04R9/046Construction
    • H04R9/047Construction in which the windings of the moving coil lay in the same plane

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Acoustics & Sound (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、絶縁基板で構成される可動部上のコ
イルに電流を流すと共に、絶縁基板の平面方向と
同一方向の磁界を与え、可動部を機械振動させる
機械振動子の製造方法に関し、更に詳しくは、特
定な周波数で共振する共振子や、周波数選択性を
有するフイルター、力、圧力、密度、粘度等の各
種物理量の検出素子として利用可能な機械振動子
の製造方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention allows electric current to flow through a coil on a movable part made of an insulating substrate, and also applies a magnetic field in the same direction as the planar direction of the insulating substrate. Regarding the manufacturing method of a mechanical vibrator that mechanically vibrates, in more detail, it can be used as a resonator that resonates at a specific frequency, a filter that has frequency selectivity, and a detection element for various physical quantities such as force, pressure, density, and viscosity. The present invention relates to a method of manufacturing a mechanical vibrator.

(従来の技術) 従来より、絶縁基板で構成される可動部上のコ
イルに電流を流すと共に、絶縁基板の平面方向と
同一方向の磁界を与え、可動部を機械振動させる
機械振動子は、例えば特公昭45−36779号公報に
見られるように公知である。
(Prior Art) Conventionally, a mechanical vibrator that mechanically vibrates the movable part by passing a current through a coil on a movable part made of an insulating substrate and applying a magnetic field in the same direction as the plane of the insulating substrate has been used, for example. This is well known as seen in Japanese Patent Publication No. 45-36779.

(発明が解決しようとする課題) しかしながら、この様な構成の機械振動子はフ
レームに相当する基板に可動部(振動部)に相当
する半導体板を金属化部分あるいは合金領域で固
着するような構成であるために、その製造方法が
複雑である上に、固着部分の機械的強度などにお
いて問題があつた。
(Problem to be Solved by the Invention) However, a mechanical vibrator having such a structure has a structure in which a semiconductor plate corresponding to a movable part (vibrating part) is fixed to a substrate corresponding to a frame using a metallized part or an alloy region. Therefore, the manufacturing method is complicated, and there are problems with the mechanical strength of the fixed portion.

本発明は、この様な問題点に鑑みてなされたも
のであつて、その目的は、製造方法が簡単で、品
質、性能の揃つた機械振動子を安価に製造できる
製造方法を提供することにある。
The present invention has been made in view of these problems, and its purpose is to provide a manufacturing method that is simple and that can inexpensively manufacture mechanical vibrators with uniform quality and performance. be.

(課題を解決するための手段) 第1図は本発明の製造方法の手順を示すフロー
チヤートである。本発明の製造方法は、はじめに
絶縁基板として異方性エツチングのできる基板材
料を用意し、 次に基板材料上に、パターンとパターンとの間
隔を所定の値より小さくなるように選定したコイ
ルパターンと、パターンとパターンとの間隔を所
定の値より大きくなるように選定したバネ部及び
フレームに相当する形状のマスクパターンとをホ
トリソグラフイの技術によつて形成し、 続いてマスクパターンをつけた基板材料をエツ
チング剤に入れてエツチング加工する。
(Means for Solving the Problems) FIG. 1 is a flowchart showing the steps of the manufacturing method of the present invention. In the manufacturing method of the present invention, a substrate material that can be anisotropically etched is first prepared as an insulating substrate, and then coil patterns are formed on the substrate material, the distance between the patterns being selected to be smaller than a predetermined value. A mask pattern having a shape corresponding to a spring portion and a frame is formed by photolithography, and the spacing between the patterns is selected to be larger than a predetermined value, and then a substrate with the mask pattern is formed. Add the material to an etching agent and perform the etching process.

(作用) マスクパターンをつけた基板材料をエツチング
剤に入れることによつて、基板材料に可動部とこ
の可動部につながるバネ部とこのバネ部を介して
可動部を支持するフレームとが形成されると共
に、可動部にコイルが形成される。
(Function) By placing the substrate material with the mask pattern in an etching agent, a movable part, a spring part connected to the movable part, and a frame supporting the movable part via the spring part are formed in the substrate material. At the same time, a coil is formed in the movable part.

(実施例) 以下図面を用いて、本発明の実施例を詳細に説
明する。
(Example) Examples of the present invention will be described in detail below with reference to the drawings.

第2図は、本発明の方法によつて完成される機
械振動子の構成を示す構成図である。図におい
て、1はフレーム、2は可動部で、フレーム1に
細くなつたバネ部31,32を介して支持されて
いる。
FIG. 2 is a block diagram showing the structure of a mechanical vibrator completed by the method of the present invention. In the figure, 1 is a frame, and 2 is a movable part, which is supported by the frame 1 via tapered spring parts 31 and 32.

これらのフレーム1、可動部2及びバネ部3
1,32は、ひとつの絶縁基板によつて構成され
ている。ここで絶縁基板としては、例えば厚さが
5×105m程度の水晶基板、Si基板が使用される。
4はコイルパターンで、ここでは可動部2の両面
に形成されており、両面に形成したコイル相互間
は可動部2の中央に設けられた貫通孔21を介し
て電気的に接続されている。
These frame 1, movable part 2 and spring part 3
1 and 32 are constituted by one insulating substrate. Here, as the insulating substrate, for example, a crystal substrate or a Si substrate with a thickness of about 5×10 5 m is used.
Reference numeral 4 denotes a coil pattern, which is formed on both sides of the movable part 2, and the coils formed on both sides are electrically connected through a through hole 21 provided in the center of the movable part 2.

51はバネ部32を通つて導き出されたコイル
4のリード線で、表側と裏側とに設けられてい
る。
51 is a lead wire of the coil 4 led out through the spring portion 32, and is provided on the front side and the back side.

この様に構成された機械振動子を図示する矢印
B方向(絶縁基板の平面方向と同一方向)の磁界
中に配置すると共に、コイルパターン4にリード
線51を介して電流を流すと、可動部2にねじり
トルクを働かせることができる。
When the mechanical vibrator configured in this way is placed in a magnetic field in the direction of arrow B (the same direction as the planar direction of the insulating substrate), and a current is passed through the coil pattern 4 through the lead wire 51, the movable part 2, torsional torque can be applied.

いま、コイルパターン4に電流を流したとき可
動部2に生ずるトルクをTとし、可動部2のバネ
ブ31,32の寸法を第3図に示すように定める
とすれば、可動部2の曲がり角θとトルクTとの
関係は(1)式で示すことができる。
Now, if the torque generated in the movable part 2 when current is passed through the coil pattern 4 is T, and the dimensions of the springb 31 and 32 of the movable part 2 are determined as shown in FIG. 3, then the bending angle θ of the movable part 2 is The relationship between and torque T can be expressed by equation (1).

θ=(1/K)・{h/(a・b3)}・(T/G)…(1
) ただし、kは定数 aはバネ部32の幅 bはバネ部32の厚さ hはバネ部32の長さ Gは剛性係数 また、可動部2の回転慣性モーメントをJとす
ると、機械系の固有振動は、(2)式のような微分方
程式を満足する。
θ=(1/K)・{h/(a・b 3 )}・(T/G)…(1
) However, k is a constant a is the width of the spring part 32 b is the thickness of the spring part 32 h is the length of the spring part 32 G is the stiffness coefficient Also, if the rotational inertia moment of the movable part 2 is J, then the mechanical system The natural vibration satisfies a differential equation such as equation (2).

J(d2θ/dt2)+A・θ=0 …(2) ただし、J=(m・L2)/12 mは可動部の全質量 Lは可動部の幅 Aはバネ部31,32のバネ定数 A=(2/h)・k・a・b3・G (2)式から、可動部2の固有振動数fは、(3)式で
表すことができ、周波数安定性のよい周波数発振
器となる。
J (d 2 θ/dt 2 )+A・θ=0 …(2) However, J=(m・L 2 )/12 m is the total mass of the moving part L is the width of the moving part A is the spring part 31, 32 Spring constant A=(2/h)・k・a・b 3・G From equation (2), the natural frequency f of the movable part 2 can be expressed as equation (3), which provides good frequency stability. Becomes a frequency oscillator.

f=(1/2π)√() …(3) ここで可動部2を気体あるいは液体中で振動さ
せる場合、この可動部2は周囲の気体、液体を一
緒に動かすために、可動部2の回転慣性モーメン
トJの等価的な値が変化し、この結果、可動部2
の固有振動数fが変化することになる。
f=(1/2π)√()...(3) Here, when the movable part 2 is vibrated in gas or liquid, the movable part 2 is moved in order to move the surrounding gas and liquid together. The equivalent value of the rotational inertia J changes, and as a result, the movable part 2
The natural frequency f of will change.

回転慣性モーメントJの等価的な値の変化は、
可動部2の周囲の気体、液体の密度あるいは粘度
に比例していることから、固有振動数fの変化は
気体、液体の密度あるいは粘度に対応したものと
なる。従つて、可動部2の固有振動数fを測定す
ることによつて可動部2の周囲の気体、液体の密
度あるいは粘度を知ることができる。
The change in the equivalent value of the rotational moment of inertia J is
Since it is proportional to the density or viscosity of the gas or liquid surrounding the movable part 2, the change in the natural frequency f corresponds to the density or viscosity of the gas or liquid. Therefore, by measuring the natural frequency f of the movable part 2, it is possible to know the density or viscosity of the gas or liquid surrounding the movable part 2.

第4図は、第2図に示す構成の機械振動子を製
造する本発明の製造方法の一例を示す簡略工程図
である。
FIG. 4 is a simplified process diagram showing an example of the manufacturing method of the present invention for manufacturing the mechanical vibrator having the configuration shown in FIG.

本発明においては、まずはじめに絶縁基板とし
て、異方性エツチングのできる基板材料、例えば
水晶、Si基板を用意する。この例では、水晶のZ
板を使用する場合を示しており、aは、この水晶
基板10の光学軸Z、機械軸Y、電気軸Xの方向
を示している。
In the present invention, first, a substrate material capable of anisotropic etching, such as quartz or a Si substrate, is prepared as an insulating substrate. In this example, the crystal Z
The case where a plate is used is shown, and a indicates the direction of the optical axis Z, mechanical axis Y, and electrical axis X of this crystal substrate 10.

次に、bに示ように、この水晶基板10上に、
例えばCr、Niのような材料の第1マスク物質層
11を被害すると共に、この第1マスク物質層1
1上に、例えばAuのような材料の第2のマスク
物質層12を被着させる。更にこの第2のマスク
物質層12上にレジスト層13を被着する。ここ
で、第1、第2の各物質層は、それぞれスパツタ
あるいは蒸着等によつて被着することができる。
また、レジスト層13は塗布等によつて被着す
る。
Next, as shown in b, on this crystal substrate 10,
damage the first masking material layer 11 of materials such as Cr, Ni, and
1, a second masking material layer 12 of a material such as Au is deposited. Furthermore, a resist layer 13 is deposited on this second masking material layer 12. Here, each of the first and second material layers can be deposited by sputtering, vapor deposition, or the like.
Further, the resist layer 13 is applied by coating or the like.

次に、cに示すように、水晶基板10上に形成
すべきコイルパターン及びフレーム1、可動部
2、バネ部31,32、貫通孔21などの形状を
ホトリソグラフイの技術によつて作成する。ここ
で、水晶基板10を切り離すか、つながつた状態
として残すかは、各パターンと、パターンの間隔
l1,l2によつて適宜選択しておくものとす
る。
Next, as shown in c, the coil pattern to be formed on the crystal substrate 10 and the shapes of the frame 1, the movable part 2, the spring parts 31, 32, the through holes 21, etc. are created by photolithography technology. . Here, whether to separate the crystal substrate 10 or leave it in a connected state shall be appropriately selected depending on each pattern and the intervals l1 and l2 between the patterns.

即ち、水晶基板10を切り離す場合、パターン
と、パターンとの間隔l1は、 l1>(t/2)・{tan(90−θA) +tan(90−θB)} …(4) に選定し、水晶基板10をつながつた状態として
残す場合は、パターンとパターンとの間隔l2
は、 l2<(t/2)・{tan(90−θA) +tan(90−θB)} …(5) に選定する。
That is, when separating the crystal substrate 10, the distance l1 between the patterns is selected as l1>(t/2)・{tan(90−θA) +tan(90−θB)}…(4) If the substrates 10 are left in a connected state, the spacing l2 between the patterns
is selected as l2<(t/2)・{tan(90−θA) +tan(90−θB)}…(5).

ここで、tは水晶基板10の厚さ θA、θBは水晶基板10の所定の結晶方向のエ
ツチング角度{d参照} 続いて、cに示すようなマスクパターンを付け
た水晶基板10を水晶加工剤、例えばフツ素酸水
溶液に入れ、エツチング加工する。すると、水晶
基板10は、dに示すように間隔l1の部分は切
り離され、間隔l2の部分は残つた状態になるよ
うに選択的に除去され、所定の形状を持つた水晶
振動子が完成する。
Here, t is the thickness of the crystal substrate 10, θA, θB are the etching angles of the crystal substrate 10 in a predetermined crystal direction {see d}. Next, the crystal substrate 10 with a mask pattern as shown in c is coated with a crystal processing agent. For example, it is placed in a fluoric acid aqueous solution and etched. Then, as shown in d, the crystal substrate 10 is selectively removed so that the part at the interval l1 is separated and the part at the interval l2 remains, and a crystal resonator having a predetermined shape is completed. .

このように、dに示すようにエツチングされる
理由は、水晶基板10において、そのZ軸方向か
らのエツチング速度が、dに示す結晶面A,Bの
エツチング速度より数十倍以上速いためで、この
場合、図示する角度θAが30度、θBが80度となつ
て横方向のエツチングがそれ以上進まなくなるか
らである。
The reason why the crystal substrate 10 is etched as shown in d is that the etching speed from the Z-axis direction is several tens of times faster than the etching speed on the crystal planes A and B shown in d. In this case, the illustrated angle θA becomes 30 degrees and θB becomes 80 degrees, and the etching in the lateral direction does not proceed any further.

なお、ここでは両方の面からエツチングをする
ことを想定しているが、片方の面からエツチング
することもでき、この場合、間隔l1,l2は、
(4)式、(5)式の関係の2倍に選定される。
Note that although it is assumed here that etching is performed from both sides, it is also possible to perform etching from one side. In this case, the spacing l1, l2 is
The relationship between equations (4) and (5) is selected to be twice as large.

この様な製造方法によるものは、コイルパター
ンの形成と、フレームや可動部の形状を少ない工
程でしかも多数同時に出来るもので、高性能で品
質の揃つた機械振動子を安価に製造できるという
利点がある。
This manufacturing method allows the formation of coil patterns and the shapes of frames and movable parts in a small number of steps at the same time, and has the advantage of being able to manufacture mechanical vibrators with high performance and uniform quality at low cost. be.

第5図、本発明によつて製造された機械振動子
を含んで密度計を構成する場合の構成ブロツク図
である。MVは機械振動子を総括的に示したもの
であつて、この機械振動子の等価回路は、第6図
に示すように、インダクタンスとコンデンサと抵
抗の直列共振回路で示すことができる。OSは発
振回路で、機械振動子MVを含んで例えば自励発
振回路を構成しており、この発振回路からの発振
周波数fは、機械振動子MV周囲の気体または液
体の密度あるいは粘度に対応している。CPはマ
イクロプロセツサで構成される演算回路で、発振
回路OSからの発振周波数fを入力しており、密
度あるいは粘度に関連する信号を演算によつて得
ている。
FIG. 5 is a block diagram of a density meter including a mechanical vibrator manufactured according to the present invention. MV generally represents a mechanical oscillator, and the equivalent circuit of this mechanical oscillator can be represented by a series resonant circuit of an inductance, a capacitor, and a resistor, as shown in FIG. OS is an oscillation circuit that includes a mechanical oscillator MV to constitute, for example, a self-excited oscillation circuit, and the oscillation frequency f from this oscillation circuit corresponds to the density or viscosity of the gas or liquid surrounding the mechanical oscillator MV. ing. CP is an arithmetic circuit composed of a microprocessor, which inputs the oscillation frequency f from the oscillation circuit OS, and obtains a signal related to density or viscosity by calculation.

即ち、(3)式において、例えば密度に対応して変
化する可動部2の回転慣性モーメントの変化量を
ΔJとすると、固有振動数fは(6)式で示すことが
でき、(6)式を利用して密度に関連した信号を演算
によつて求めることになる。
That is, in equation (3), if the amount of change in the rotational inertia moment of the movable part 2 that changes depending on the density is ΔJ, the natural frequency f can be expressed as equation (6), and equation (6) The density-related signal is calculated using the .

ただしΔJは密度に比例しているものとする。 However, it is assumed that ΔJ is proportional to the density.

第7図、第8図は本発明の製造方法によつて製
造される他の機械振動子の構成を示す図である。
FIG. 7 and FIG. 8 are diagrams showing the structure of another mechanical vibrator manufactured by the manufacturing method of the present invention.

第7図の実施例は、フレーム1に2個の可動部
2A,2Bをそれぞれバネ部31,32によつて
支持されるようにしたものである。ここで2個の
可動部2A,2Bの形状は、同一でもよく、また
異なつた形状でもよい。この様な構成において、
可動部2Aの固有震動数をfA、可動部2Bの固
有震動数をfBとし、fA、fBの差または比を演算
することによつて、機械振動子自身の温度特性な
どに起因する誤差を軽減できる。
In the embodiment shown in FIG. 7, two movable parts 2A and 2B are supported on the frame 1 by spring parts 31 and 32, respectively. Here, the shapes of the two movable parts 2A and 2B may be the same or different shapes. In such a configuration,
By assuming the natural vibration frequency of the moving part 2A as fA and the natural vibration frequency of the moving part 2B as fB, and calculating the difference or ratio of fA and fB, errors caused by the temperature characteristics of the mechanical vibrator itself are reduced. can.

第8図の実施例は、フレーム1にバネ部31,
32によつて支持される可動部2を設けると共
に、この可動部2に、2このコイル4A,4Bを
形成させて4端子構成としたものである。
In the embodiment shown in FIG. 8, the frame 1 includes a spring portion 31,
A movable part 2 supported by a terminal 32 is provided, and two coils 4A and 4B are formed on the movable part 2 to form a four-terminal configuration.

第9図は、第8図に示す構造の機械振動子の等
価回路である。2個のコイル2A,2Bは機械振
動子の共振回路を介して結合しており、この共振
回路の共振周波数(機械振動子の固有振動数に対
応)で選択特性を持つメカニカルフイルタとして
の役目を持つと共に、複数個の固有振動数の異な
る振動子の組み合わせを行えば、より帯域の広い
フイルタとすることができる。
FIG. 9 is an equivalent circuit of the mechanical vibrator having the structure shown in FIG. 8. The two coils 2A and 2B are coupled through a resonant circuit of a mechanical vibrator, and function as a mechanical filter with selection characteristics at the resonant frequency of this resonant circuit (corresponding to the natural frequency of the mechanical vibrator). By combining a plurality of oscillators with different natural frequencies, a filter with a wider band can be obtained.

(発明の効果) 以上詳細に説明したように、本発明によれば、
機械振動子の形状の形成と、可動部へのコイルパ
ターンの形成を同時にかつ、少ない工程で行える
もので、高性能で品質の揃つた機械振動子を一度
に多数製造することが可能で、一つの機械振動子
の製造コストを安価にできる。
(Effects of the Invention) As explained in detail above, according to the present invention,
It is possible to form the shape of the mechanical vibrator and the coil pattern on the movable part at the same time and with fewer steps, making it possible to manufacture a large number of high-performance, high-quality mechanical vibrators at once. The manufacturing cost of one mechanical vibrator can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法の手順を示すフロー
チヤート、第2図は本発明の方法によつて完成さ
れる機械振動子の構成を示す構成図、第3図は第
2図における可動部、バネ部付近の寸法を示す斜
視図、第4図は第2図に示す構成の機械振動子を
製造する本発明の製造方法の一例を示す簡略工程
図、第5図は本発明によつて製造された機械振動
子を含んで密度計を構成する場合の構成ブロツク
図、第6図は機械振動子の等価回路、第7図、第
8図は本発明の製造方法によつて製造される他の
機械振動子の構成を示す図、第9図は第8図に示
す構造の機械振動子の等価回路である。 1……フレーム、2……可動部、31,32…
…バネ部、4……コイルパターン。
FIG. 1 is a flowchart showing the steps of the manufacturing method of the present invention, FIG. 2 is a block diagram showing the structure of a mechanical vibrator completed by the method of the present invention, and FIG. 3 is the movable part in FIG. , a perspective view showing the dimensions near the spring part, FIG. 4 is a simplified process diagram showing an example of the manufacturing method of the present invention for manufacturing a mechanical vibrator having the configuration shown in FIG. 2, and FIG. A block diagram of the configuration of a density meter including a manufactured mechanical vibrator, FIG. 6 shows an equivalent circuit of the mechanical vibrator, and FIGS. 7 and 8 show a density meter manufactured by the manufacturing method of the present invention. FIG. 9, which is a diagram showing the structure of another mechanical vibrator, is an equivalent circuit of the mechanical vibrator having the structure shown in FIG. 1...Frame, 2...Movable part, 31, 32...
...Spring part, 4...Coil pattern.

Claims (1)

【特許請求の範囲】 1 絶縁基板の所定部分を抜き取り残りの部分で
構成される可動部とこの可動部につながるバネ部
とこのバネ部を介して前記可動部を支持するフレ
ームとからなり、前記可動部上に設けたコイルに
電流を流すと共に、前記絶縁基板の平面方向と同
一方向の磁界を与え、前記可動部を機械振動させ
る機械振動子の製造方法であつて、 前記絶縁基板として異方性エツチングのできる
基板材料を用意し、 前記基板材料上に、パターンとパターンとの間
隔を所定の値より小さくなるように選定したコイ
ルパターンと、パターンとパターンとの間隔を所
定の値より大きくなるように選定した前記バネ部
及びフレームに相当する形状のマスクパターンと
をホトリソグラフイの技術によつて形成し、 コイルパターンとマスクパターンをつけた基板
材料をエツチング剤に入れてエツチング加工する
ことを特徴とする機械振動子の製造方法。
[Scope of Claims] 1. A movable part formed by extracting a predetermined part of an insulating substrate and the remaining part, a spring part connected to this movable part, and a frame supporting the movable part via this spring part, A method for manufacturing a mechanical vibrator in which a current is passed through a coil provided on a movable part and a magnetic field is applied in the same direction as the plane of the insulating substrate to mechanically vibrate the movable part, the insulating substrate being anisotropic. A substrate material that can be etched is prepared, and coil patterns are formed on the substrate material so that the spacing between the patterns is smaller than a predetermined value, and the spacing between the patterns is larger than the predetermined value. The spring portion selected as above and a mask pattern having a shape corresponding to the frame are formed by photolithography technology, and the substrate material with the coil pattern and mask pattern is placed in an etching agent and etched. Features: A method for manufacturing mechanical vibrators.
JP6911280A 1980-04-04 1980-05-22 Mechanical vibrator Granted JPS56164928A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6911280A JPS56164928A (en) 1980-05-22 1980-05-22 Mechanical vibrator
US06/242,627 US4421381A (en) 1980-04-04 1981-03-11 Mechanical vibrating element
GB8108973A GB2075762B (en) 1980-04-04 1981-03-23 Mechanical vibrating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6911280A JPS56164928A (en) 1980-05-22 1980-05-22 Mechanical vibrator

Publications (2)

Publication Number Publication Date
JPS56164928A JPS56164928A (en) 1981-12-18
JPS6359565B2 true JPS6359565B2 (en) 1988-11-21

Family

ID=13393218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6911280A Granted JPS56164928A (en) 1980-04-04 1980-05-22 Mechanical vibrator

Country Status (1)

Country Link
JP (1) JPS56164928A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5897610A (en) * 1981-12-08 1983-06-10 Yokogawa Hokushin Electric Corp Torsion-to-frequency transducer
JP4846710B2 (en) * 2005-02-17 2011-12-28 パナソニック株式会社 Piezoelectric speaker and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948985A (en) * 1972-06-28 1974-05-11
JPS5115388A (en) * 1974-07-29 1976-02-06 Citizen Watch Co Ltd SUISHOSHINDOSHI
JPS5487083A (en) * 1977-12-22 1979-07-11 Seiko Instr & Electronics Ltd Piezoelectric oscillator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948985A (en) * 1972-06-28 1974-05-11
JPS5115388A (en) * 1974-07-29 1976-02-06 Citizen Watch Co Ltd SUISHOSHINDOSHI
JPS5487083A (en) * 1977-12-22 1979-07-11 Seiko Instr & Electronics Ltd Piezoelectric oscillator

Also Published As

Publication number Publication date
JPS56164928A (en) 1981-12-18

Similar Documents

Publication Publication Date Title
US4421381A (en) Mechanical vibrating element
JP4001029B2 (en) Tuning fork type piezoelectric vibrating piece, method for manufacturing the same, and piezoelectric device
EP0797300B1 (en) Piezoelectric vibrator and manufacturing method thereof
US20030167841A1 (en) Micro-electro-mechanical gyroscope
JP2009526420A (en) Tuning frequency of piezoelectric thin film resonator (FBAR)
JP2005533400A (en) Micro-bridge structure with reduced central mass for very high frequency MEM resonators
JPH11512816A (en) Monolithic accelerometer
US9413333B2 (en) Nanomechanical resonator array and production method thereof
JP3952811B2 (en) Piezoelectric vibrating piece, method for manufacturing piezoelectric vibrating piece, and piezoelectric device
JP5468444B2 (en) Manufacturing method of tuning fork type crystal piece
JPH0643179A (en) Acceleration sensor and manufacture of said sensor
JP4010218B2 (en) Method for manufacturing piezoelectric vibrating piece
JPS6359565B2 (en)
JP5465572B2 (en) Manufacturing method of tuning fork type crystal piece
JPS6342742Y2 (en)
JP4517332B2 (en) Quartz crystal unit, crystal unit and crystal oscillator manufacturing method
JPS6281807A (en) Piezoelectric thin film resonator
JP2009207022A (en) Piezoelectric vibration piece, piezoelectric device, and frequency adjusting method of tuning-fork piezoelectric vibrator
JP4771062B2 (en) Measuring element for vibrating gyroscope
JP2017207283A (en) Manufacturing method for vibration element
JP2010187059A (en) Walk type vibration piece and method of manufacturing the same
JP3230359B2 (en) Resonant vibration element
US20100289096A1 (en) Vibrating nano-scale or micro-scale electromechanical component with enhanced detection level
JP4554118B2 (en) Method of manufacturing tuning fork type angular velocity sensor element
US8669687B2 (en) Method of adjusting the resonance frequency of a micro-machined vibrating element