JPS6358714A - Manufacture of nb3sn multi-core superconductor - Google Patents

Manufacture of nb3sn multi-core superconductor

Info

Publication number
JPS6358714A
JPS6358714A JP61203144A JP20314486A JPS6358714A JP S6358714 A JPS6358714 A JP S6358714A JP 61203144 A JP61203144 A JP 61203144A JP 20314486 A JP20314486 A JP 20314486A JP S6358714 A JPS6358714 A JP S6358714A
Authority
JP
Japan
Prior art keywords
composite
tube
wire
wires
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61203144A
Other languages
Japanese (ja)
Inventor
鈴木 英元
市原 政光
神定 良昌
伸夫 青木
智幸 熊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP61203144A priority Critical patent/JPS6358714A/en
Publication of JPS6358714A publication Critical patent/JPS6358714A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は多心構造の超電導線の製j貨方法に係り、特に
パイプ法によるN1)3,5n超電導線の加工性を改善
したN1)3Sn多心超電導線の製造方法に関する。
[Detailed Description of the Invention] [Purpose of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing a superconducting wire with a multi-core structure, and particularly to the processability of N1) 3,5n superconducting wire by the pipe method. The present invention relates to a method for manufacturing a N1)3Sn multicore superconducting wire with improved characteristics.

(従来の技術) 従来、N1)3sn超電導線の製造方法としてパイプ法
によるものが知られている。この方法は、Nb管内部に
Cu ′#1fflSnロンドを収容するとともに、こ
のNb管の外側にCuを配置した複合体に断面減少加工
を施した後、Nb管内部のCLIと3nの拡散熱処理お
よびN1)3Sn生成の熱処理を施すことにより、Nb
3Sn超電導線を製造するもので(特開昭52−169
97号公報> 、cu−sn合金を用いるブロンズ法で
必要とする多数の中間焼鈍を全く必要としない利点を有
する。この方法で多心線、いわゆるマルチ線を製造する
場合には、熱処理前の複合体に断面減少加工を施して、
断面が略正六角形の複合線を製造し、この複合線の多数
本をその側面を当接してCu管内に収容した後、静水圧
押出1ノ]1工、スウ■−ジング加工、冷間伸線bロエ
等により所定形状の線材に加工し、次いて拡散熱処理お
よび\b3Sn牛成の熱処理を施す方法か採用されてい
る。
(Prior Art) Conventionally, a pipe method is known as a method for manufacturing N1)3sn superconducting wire. This method involves accommodating Cu′#1fflSn Rondo inside the Nb tube and applying cross-sectional reduction processing to a composite body in which Cu is placed outside the Nb tube, followed by CLI and 3n diffusion heat treatment inside the Nb tube. N1) By performing heat treatment to generate 3Sn, Nb
For manufacturing 3Sn superconducting wire (Japanese Unexamined Patent Publication No. 1698-1989)
No. 97 Publication>, it has the advantage of not requiring a large number of intermediate annealing processes that are required in the bronze method using a cu-sn alloy. When manufacturing multi-core wires, so-called multi-wires, using this method, the composite before heat treatment is processed to reduce its cross section.
A composite wire with a substantially regular hexagonal cross section is manufactured, and after placing a large number of composite wires in a Cu tube with their sides abutted, they are subjected to isostatic extrusion, swaging, and cold stretching. A method is employed in which the wire is processed into a wire rod of a predetermined shape using a wire rod or the like, and then subjected to diffusion heat treatment and \b3Sn heat treatment.

(発明が解決しようとする問題点) しかしながら、上記の多心線の製造方法においては、複
合線内のNb管の外径が80amφ程磨まで加工される
とCI管内部の複合線が局所的に異常変形を生じ、その
結果加工後のNb管の肉厚か不均一となり、Nb :]
 3n生成の熱処理時にNbの肉厚の薄い部分からSn
がマトリックスのCl中へ拡散してその抵抗(nを上昇
させることがあり、従って細線化か回動であるというテ
(1点を有していた。
(Problems to be Solved by the Invention) However, in the above-mentioned method for manufacturing a multi-core wire, when the outer diameter of the Nb tube in the composite wire is polished to about 80 amφ, the composite wire inside the CI tube is partially polished. Abnormal deformation occurs, resulting in uneven wall thickness of the Nb pipe after processing, and Nb :]
During heat treatment to generate 3n, Sn is removed from the thin Nb wall part.
may diffuse into the Cl of the matrix and increase its resistance (n), so it had one point, which is thinning or rotation.

本発明は上記の難点を解消するためになされたしので、
パイプ法による多心線の細線化を可能にし、かつ饅れた
超電導特性を右するNb3Sn超゛市々線の装定〕)払
を提供することをその目的とする。
The present invention has been made to solve the above-mentioned difficulties, and therefore,
The purpose of this invention is to provide an Nb3Sn superconductor that enables the thinning of multi-core wires by the pipe method and provides excellent superconducting properties.

[発明の構成] (問題点を解決するための手段と作用)本発明はNb管
の内側にCl被覆Snロッドを収容するとともに、前記
Nb管の外側にCuを配置した複合体に断面減少加工を
施して断面略正六角形に成形した複合線の多数本を、そ
の側面を相互に当接配置してC1管内に収容した後、断
面減少加工および熱処理を施して超電導線を製造する方
法において、Cu管内の最外層に配置される一部あるい
は全部の複合線のNb管内のCu/Sn量比を、その内
側に隣接して配置される他の複合線に対するω比よりも
大きくしたことを特徴とする。
[Structure of the Invention] (Means and Effects for Solving the Problems) The present invention accommodates a Cl-coated Sn rod inside an Nb tube, and processes a cross-section reduction process to a composite body in which Cu is placed outside the Nb tube. In a method for manufacturing a superconducting wire, a large number of composite wires formed into substantially regular hexagonal cross sections are housed in a C1 tube with their side surfaces in contact with each other, and then subjected to cross-section reduction processing and heat treatment, A feature is that the Cu/Sn amount ratio of some or all of the composite wires placed in the outermost layer in the Cu tube in the Nb tube is larger than the ω ratio of other composite wires placed adjacent to the inside thereof. shall be.

本発明においては、CLI管内に収容される最外層の複
合線中のCu量に対する3n量を少なくすることにより
、多心線の断面減少加工時の異常変形、即ち、不均一変
形を防止するものであるが、必ずしも最外層の複合線全
てに適用t!ずに、1hにCl3管に稠密に複合線を配
置した場合に、最外層表面の凹凸状の署るしい位置に配
置される複合線のみに適用しても有効である。
In the present invention, by reducing the amount of 3n relative to the amount of Cu in the outermost composite wire housed in the CLI tube, abnormal deformation, that is, non-uniform deformation during cross-section reduction processing of the multi-filament wire is prevented. However, it does not necessarily apply to all the compound lines in the outermost layer. However, when composite wires are densely arranged in a Cl3 pipe in 1 hour, it is also effective to apply this method only to the composite wires arranged at positions with significant irregularities on the surface of the outermost layer.

また内層の多数の複合線は、中心部に配置される複合線
の複数本のNb管内のCLl/ B n rz比を大き
くし、順次外側に配置される複合線中のそのω比を小さ
くすることも有効である。
In addition, the large number of composite wires in the inner layer increases the CLl/B n rz ratio in the multiple Nb tubes of the composite wire placed in the center, and sequentially decreases the ω ratio in the composite wires placed on the outside. It is also effective.

本発明において、複合線を構成するNb、CtJ、3n
金属は純金属以外にその特性や加工性等を改善するため
に、これらをベースとする合金を用いることし当然含ま
れ、例えばNb管やCu管に対しては]川等を添加した
合金を用いることもできる。
In the present invention, Nb, CtJ, 3n constituting the composite line
In addition to pure metals, it is natural to use alloys based on pure metals to improve their properties and workability. It can also be used.

(実施例) 以下本発明の一実施例を図面を用いて説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第2図は本発明に用いられる複合線1の断面を示したも
ので、複合線1はSnロッド2を中心として、その外周
に無酸素銅層3、Nb層4および無酸素銅層5が順次被
覆され、正六角形断面の構造をイアする。
FIG. 2 shows a cross section of the composite wire 1 used in the present invention. The composite wire 1 has an Sn rod 2 at its center and an oxygen-free copper layer 3, a Nb layer 4, and an oxygen-free copper layer 5 on its outer periphery. The structure is coated sequentially and has a regular hexagonal cross section.

このような複合線1は、Snロッドの外周に無酸素鋼管
、Nb管a3よび無酸素鋼管を順次配置した後、スウェ
ージング加工や伸線加工等の断面減少加工を施すことに
より製造される。
Such a composite wire 1 is manufactured by sequentially arranging an oxygen-free steel pipe, a Nb pipe a3, and an oxygen-free steel pipe around the outer periphery of an Sn rod, and then performing a cross-sectional reduction process such as swaging or wire drawing.

第1図に示すように、上記の複合線の多数本が無酸素鋼
管6中にその側面を当接して稠密に充填される。
As shown in FIG. 1, a large number of the above-mentioned composite wires are densely packed into an oxygen-free steel pipe 6 with their sides in contact with each other.

この場合、中心部に配置される複数本の複合線1aのN
b管内部の3n量に対する無酸素銅■の比、すなわちC
u/Sn♀比はに1であり、その外周に順次配置される
それぞれ複数本の複合線1b、1CのCu/Sn 量比
はそれぞれに2およびに3である。さらに最外層に配置
され、かつその表面が凹凸状をなす最も異常変形を生じ
易い複数本の複合線1dのCu/5nffi比はに4で
あり、これらの量比の間には Kl >K2 >K3  でかつ に4 >K3 の関係か成立する。
In this case, N of the multiple compound lines 1a placed in the center
b The ratio of oxygen-free copper to the amount of 3n inside the tube, that is, C
The u/Sn♀ ratio is 1, and the Cu/Sn ratios of the plurality of composite wires 1b and 1C sequentially arranged around the outer periphery are 2 and 3, respectively. Further, the Cu/5nffi ratio of the plurality of composite wires 1d, which are disposed in the outermost layer and have uneven surfaces and are most likely to cause abnormal deformation, is 4, and between these quantitative ratios, Kl > K2 > K3 and the relationship 4 > K3 holds true.

このようにしてj7られたl’M成体7に静水圧押出加
工、スウエージング加工、冷間伸線加工を施して線材を
製造した後、Nb3Sn生成の熱処理を施して多心超電
導線が製j貨される。第3図に示すように、この超電導
線8は!酸素銅マトリックス9中に多数の管状のNbフ
ィラメント10が配置され、このフィラメントの内側に
Nb 3 Sn層11が環状に生成された構)六を有す
る。
The l'M composite 7 thus formed is subjected to hydrostatic extrusion, swaging, and cold wire drawing to produce a wire rod, and then subjected to heat treatment to generate Nb3Sn to produce a multicore superconducting wire. will be sold. As shown in Figure 3, this superconducting wire 8! A large number of tubular Nb filaments 10 are arranged in an oxygen-copper matrix 9, and a ring-shaped Nb 3 Sn layer 11 is formed inside the filaments.

尚、\1) 3Sn 層の内側はCu−3n合金12で
ある。ざらに上記のNb 3Sn生成の熱処理に先立っ
てCuと3nの合金化のための拡散熱処理を施すことも
有効である。
Note that \1) The inside of the 3Sn layer is a Cu-3n alloy 12. It is also effective to perform a diffusion heat treatment for alloying Cu and 3N prior to the above-described heat treatment for producing Nb 3Sn.

具体例 第1図に示すように外径801mφ、内径71龍φの無
酸素鋼管中に複合線1aの37本を中心に配置し、その
外側および最外層の一部に複合線1bの162本および
さらにその中間に複合線1Cの732本を充填配置した
。この場合第1図における複合線1bと最外層の複合線
1dは同一構造とし、各複合線の形状は対辺間路FPJ
i2.13 mvの正六角形断面とした。上記複合線の
Nb管内のCLIと3nのωは、これらが拡散熱処理後
Cυ−3n合金を形成したliに、複合<、?11 a
に対してはにtl−5wt%Sn、同1bに対してcu
−iowt%sn同1Cに対してCu−30wt%3n
となるように選定した。この無酸素鋼管中に931本の
複合線を収容した構成体に四面減少加工を施し、外径3
mTl1φの線材を製j青した。
Specific Example As shown in Fig. 1, 37 composite wires 1a are placed at the center in an oxygen-free steel pipe with an outer diameter of 801 mφ and an inner diameter of 71 mm, and 162 composite wires 1b are placed on the outside and in a part of the outermost layer. Further, 732 composite wires 1C were arranged in the middle. In this case, the composite line 1b in FIG. 1 and the outermost composite line 1d have the same structure, and the shape of each composite line is the path between opposite sides FPJ.
It had a regular hexagonal cross section of i2.13 mv. The CLI and ω of 3n in the Nb tube of the above composite wire are composite <,? 11a
tl-5wt%Sn for 1b, cu for 1b
-iowt%sn Cu-30wt%3n for the same 1C
It was selected to be. This structure, which accommodates 931 composite wires in this oxygen-free steel pipe, has been subjected to four-sided reduction processing, with an outer diameter of 3
A wire rod of mTl1φ was manufactured.

この線Hの銅比は0.8Nb管フイラメントの外径は8
0μmφおよび肉厚は12μmである。次いで740’
CX24時間の熱処理を施してNbaSn多心超電導線
を製造した。この超電導線の臨界電流値(Ic)は15
丁(テスラ)で1800A、 13Tで2700Aであ
り、その残留抵抗比(RRR)は220であった。
The copper ratio of this wire H is 0.8, and the outer diameter of the Nb tube filament is 8
The diameter is 0 μm and the wall thickness is 12 μm. then 740'
A NbaSn multi-core superconducting wire was manufactured by performing CX heat treatment for 24 hours. The critical current value (Ic) of this superconducting wire is 15
The current was 1800A for Tesla and 2700A for 13T, and their residual resistance ratio (RRR) was 220.

比較例 具体例の無酸素鋼管中に収容される931本の複合、腺
のNb管内の拡散熱処理後の組成をCtJ−25wt%
3nとした他は具体例と同条件で超電導線を1シソ造し
た。この超電導線の臨界電流値は15Tで165OA、
13Tで2450Aであり、その残留抵抗比は80でお
った。
Comparative Example The composition of the 931 composite, glandular Nb pipes housed in the specific oxygen-free steel pipes after diffusion heat treatment was CtJ-25wt%.
One superconducting wire was produced under the same conditions as in the specific example except that the wire was 3n. The critical current value of this superconducting wire is 165OA at 15T,
It was 2450A at 13T, and its residual resistance ratio was 80.

[発明の効果] 以上述べたように本発明の方法によれば、パイプ法によ
るNb3Sn多心超電導線を製造する際に、異常変形、
即ち不均一変形を生じ易い部分のNb管のCI/Sn 
量比を大さくしたことにより、細線化した場合でもNb
管の破断を生ぜず、従ってその超電導特性を向上させる
ことができる。
[Effects of the Invention] As described above, according to the method of the present invention, abnormal deformation,
In other words, the CI/Sn of the Nb pipe in the part where non-uniform deformation is likely to occur.
By increasing the quantity ratio, even when thinning the wire, Nb
No breakage of the tube occurs, thus improving its superconducting properties.

【図面の簡単な説明】 第1図は本発明の方法に用いられる断面減少加工前の構
成体の組込状態の一実施例を示す断面図、第2図は第1
図で用いられる複合体の断面図、第3図は本発明によっ
て製造されるNb3Sn多心超電導線の一実施例を示す
断面図で必る。 1・・・・・・・・・複合線 2・・・・・・・・・Snロッド 3.5・・・無酸素銅層 4・・・・・・・・・Nb層 6・・・・・・・・・無閑素銅管 8・・・・・・・・・超電コ9線 9・・・・・・・・・無閑素銅マトリックス10・・・
・・・・・・Nbフィラメント11・・・・・・・・・
Nb3Sn層 12・・・・・・・・・Cu−3n合金出願人  昭和
電線電纜株式会社 代理人弁理士  須 山 佐 − (ばか1名) 第1 ロ ーA2 図 第3図
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a sectional view showing an example of the assembled state of the structure before cross-section reduction processing used in the method of the present invention, and FIG.
The cross-sectional view of the composite used in the figure, FIG. 3, is a cross-sectional view showing one embodiment of the Nb3Sn multicore superconducting wire manufactured according to the present invention. 1...Composite wire 2...Sn rod 3.5...Oxygen-free copper layer 4...Nb layer 6...・・・・・・Free copper tube 8・・・・・・Superelectric 9 wire 9・・・・・・Free copper matrix 10・・・
・・・・・・Nb filament 11・・・・・・・・・
Nb3Sn layer 12...Cu-3n alloy Applicant Showa Cable and Wire Co., Ltd. Patent attorney Sa Suyama - (1 idiot) 1st Row A2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)Nb管の内側にCu被覆Snロッドを収容すると
ともに、前記Nb管の外側にCuを配置した複合体に断
面減少加工を施して断面略正六角形に成形した複合線の
多数本を、その側面を相互に当接配置してCu管内に収
容した後、断面減少加工および熱処理を施して超電導線
を製造する方法において、Cu管内の最外層に配置され
る一部あるいは全部の複合線のNb管内のCu/Sn量
比を、その内側に隣接して配置される他の複合線に対す
る量比よりも大きくしたことを特徴とするNb_3Sn
多心超電導線の製造方法。
(1) A large number of composite wires are formed by accommodating a Cu-coated Sn rod inside an Nb tube, and applying cross-section reduction processing to a composite body in which Cu is placed outside the Nb tube to have a substantially regular hexagonal cross section. In a method of manufacturing a superconducting wire by placing the wires in a Cu tube with their sides in contact with each other, and then subjecting them to cross-section reduction processing and heat treatment, some or all of the composite wires placed in the outermost layer in the Cu tube are Nb_3Sn characterized in that the Cu/Sn amount ratio in the Nb pipe is made larger than the amount ratio for other composite wires arranged adjacently inside the Nb pipe.
A method for manufacturing multi-core superconducting wire.
(2)最外層を除く多数の複合線のNb管内部のCu被
覆Snロッド中のCu/Sn量比は、中心部から外側に
配置されるに従つて順次低下してなる特許請求の範囲第
1項記載のNb_3Sn多心超電導線の製造方法。
(2) The Cu/Sn ratio in the Cu-coated Sn rods inside the Nb tubes of a large number of composite wires excluding the outermost layer gradually decreases from the center to the outside. A method for manufacturing a Nb_3Sn multicore superconducting wire according to item 1.
JP61203144A 1986-08-29 1986-08-29 Manufacture of nb3sn multi-core superconductor Pending JPS6358714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61203144A JPS6358714A (en) 1986-08-29 1986-08-29 Manufacture of nb3sn multi-core superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61203144A JPS6358714A (en) 1986-08-29 1986-08-29 Manufacture of nb3sn multi-core superconductor

Publications (1)

Publication Number Publication Date
JPS6358714A true JPS6358714A (en) 1988-03-14

Family

ID=16469143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61203144A Pending JPS6358714A (en) 1986-08-29 1986-08-29 Manufacture of nb3sn multi-core superconductor

Country Status (1)

Country Link
JP (1) JPS6358714A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142301A (en) * 2010-12-30 2011-08-03 西部超导材料科技有限公司 Method for assembling 300 to 1000-core composite superconducting blank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142301A (en) * 2010-12-30 2011-08-03 西部超导材料科技有限公司 Method for assembling 300 to 1000-core composite superconducting blank

Similar Documents

Publication Publication Date Title
JPS6358714A (en) Manufacture of nb3sn multi-core superconductor
JPH08180752A (en) Nb3sn superconductive wire and manufacture thereof
JPS6358716A (en) Manufacture of nb3sn multi-core superconductor
JPS6358715A (en) Manufacture of nb3sn multi-core superconductor
JP3124448B2 (en) Method for manufacturing Nb (3) Sn superconducting wire
JPS58189909A (en) Method of producing nb3sn superconductor
JPS63271818A (en) Manufacture of nb3sn superconductive wire by external diffusion method
JPS6113508A (en) Method of producing low copper ratio nb3sn superconductive wire
JPS63245826A (en) Manufacture of compound superconductive wire
JPH01304616A (en) Manufacture of nb3 sn multi-superconductor wire
JPH01304617A (en) Manufacture of nb3 sn multi-superconductor wire
JPH0381247B2 (en)
JPH0240809A (en) Manufacture of nb3sn multifiber superconducting wire
JPH041446B2 (en)
JPS61115613A (en) Production of nb-ti multicore superconductive wire
JPS5871508A (en) Method of producing nb3sn series extrefine multicore superconductive wire
JPH0381915A (en) Manufacture of composite superconductive material
JPS62240751A (en) Manufacture of nb3sn super conducting wire by internal diffusion method
JPS6044914A (en) Method of producing nb3sn multicore superconductive wire
JPH0717992B2 (en) Nb (bottom 3) Method for manufacturing Sn multicore superconducting wire
JPH05242742A (en) Superconducting wire and its manufacture
JPS60250509A (en) Method of producing nb3sn composite superconductive wire
JPH0676662A (en) Manufacture of nb3sn superconducting wire
JPH0462765A (en) Connection of superconductive wire of nb3sn
JPH05114321A (en) Manufacture of nb3sn superconducting lead wire