JPS6358215B2 - - Google Patents

Info

Publication number
JPS6358215B2
JPS6358215B2 JP55074351A JP7435180A JPS6358215B2 JP S6358215 B2 JPS6358215 B2 JP S6358215B2 JP 55074351 A JP55074351 A JP 55074351A JP 7435180 A JP7435180 A JP 7435180A JP S6358215 B2 JPS6358215 B2 JP S6358215B2
Authority
JP
Japan
Prior art keywords
roll
weight
wear
core material
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55074351A
Other languages
Japanese (ja)
Other versions
JPS572862A (en
Inventor
Takashi Kikuhara
Osamu Shimotamura
Toshio Yaegashi
Yasuo Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7435180A priority Critical patent/JPS572862A/en
Publication of JPS572862A publication Critical patent/JPS572862A/en
Publication of JPS6358215B2 publication Critical patent/JPS6358215B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な複合ロールの製造法に係り、特
に肉盛ロールの製造法に関する。 一般に熱間圧延ロールには耐摩耗性、耐熱亀裂
性、強靭性という相反する性質が要求される。つ
まり、ロール材の耐摩耗性を高めるのに高炭素含
有量及び高合金元素含有量とすると耐熱亀裂性、
強靭性が低下し、逆に耐熱亀裂性、靭性を向上さ
せるためには炭素量を低くすることが必要とな
り、その結果として耐摩耗性が劣つたものとな
る。これらの性質をバランスさせるために同一材
質からなるロール材で満足させるのは困難である
ので、ロール表面に耐摩耗性、耐熱亀裂性を与
え、芯部を強靭性にする複合ロールが知られてい
る。即ちその方法として、中抜鋳造法、遠心鋳造
法、鉄板隔壁鋳造法等の鋳造法によるものと、サ
ブマージドアーク溶接肉盛法、エレクトロスラグ
溶接肉盛法等の溶接肉盛法によるものがある。し
かし、前者の鋳造法によりロールを製造した場
合、鋳造時の冷却速度には限界があり、炭化物は
個々のものが網目状に多数凝集して晶出し、その
形状も粗大である。その結果、この鋳造材は組織
的に脆弱なものとなるため、熱処理により組織を
改善し、靭性を高めているが、熱処理だけでは炭
化物を微細かつ均一に分散させることは不可能で
ある。さらに、このものはロール使用中に、炭化
物の多い部分で摩耗が少なく、炭化物の少ない部
分で摩耗が多いため、肌荒れを生ずる欠点があ
り、また、炭化物にそつて熱疲労亀裂が発生する
ため、耐熱亀裂性が劣るという問題がある。 また、サブマージドアーク溶接肉盛法によりロ
ールを製造する場合、溶着金属の成分としてとく
に炭素含有量が高くなると溶接割れが発生しやす
くなり、肉盛の厚さが大きくなると溶接割れの発
生、作業工数の増加が問題となり、さらに鋳造組
織を有するため前述の如く肌荒れ、耐熱疲労性が
低く、健全なロールが得られにくい。 エレクトロスラグ溶接肉盛法は他の溶接方法に
比較し厚く肉盛することができ、また鋳造法に比
較し、冷却速度が速いため、炭化物を微細化でき
るために、ロールの製造法として適している。し
かし、炭化物は微細ではあるが網目状に多数凝集
して晶出し、それを熱処理のみで均一に分散させ
ることは不可能である。そのため前述したように
肌荒れ及び熱疲労亀裂が生じる欠点がある。 本発明の目的は耐摩耗性のすぐれた複合ロール
の製造法を提供するにある。 本発明は、所定形状のロール芯材表面に該芯材
より耐摩耗性が大きい耐摩耗性金属を融着する複
合ロールの製造法において、前記ロール芯材とし
てC0.3〜1重量%と炭化物形成元素を含有する鋼
を用い、前記耐摩耗性金属としてC1.5〜3重量
%、Cr7〜20重量%、Ni2重量%以下、Mo2重量
%以下、V2重量%以下を含有する鋼を用い、エ
レクトロスラグ溶接にて融着した後、熱間鍛造
し、次いで焼入れ焼戻しの熱処理を行つて共晶炭
化物が基地粒内に分散したマルテンサイト組織を
有するロール表面金属組織を得ることを特徴とす
る複合ロールの製造法にある。 前記耐摩耗性金属は、熱間鍛造及び熱処理を施
すことによつて、共晶炭化物が基地粒内にほぼ均
一に分散して存在するマルテンサイト組織を有す
る。このような粒内への共晶炭化物の分散によつ
てロール全面の摩耗が防止され、著しく耐摩耗性
が向上する。さらに熱疲労に対する抵抗も向上さ
れる。 ロール芯材は芯材として必要な強度を保持する
ためにC0.3〜1重量%、必要に応じて要求される
量の炭化物形成元素を含有する鋼が用いられる。 耐摩耗性金属は芯材より耐摩耗性が高いことが
勿論であるが、特に上述の芯材に対してC1.5〜3
重量%、Cr7〜20重量%、Ni2重量%以下、Mo2
重量%以下、V2重量%以下を含有する鋼からな
るものが好適である。 芯材表面に耐摩耗性金属を融着した後に熱間鍛
造を行うことにより耐摩耗性金属中の共晶炭化物
を基地粒内にほぼ均一に分散させた組織に形成さ
せることができ、その結果、耐摩耗性の高い複合
ロールを得ることができる。 耐摩耗性金属を融着させるには肉盛溶接が好ま
しく、特にエレクトロスラグ溶接が共晶炭化物を
微細化させることから、その後の熱間鍛造を容易
に行うことができ、このことが共晶炭化物を基地
粒内により均一に分散させるのに有効ならしめて
いるものと考えられる。よつて本発明の複合ロー
ルの製造はエレクトロスラグ溶接による肉盛溶接
によるのが好適である。 エレクトロスラグその他の溶接法により肉盛ロ
ールを製造するにあたり問題となることは、芯材
の強靭性、ロール使用面の耐摩耗性、耐熱亀裂性
である。圧延効率を高めるためにはロールを小径
化しなければならない。しかしロールを小径化す
るとロールにかかる応力はそれに伴い大となるの
で、芯材の強靭化が必要となる。従つて、芯材の
炭素量が0.3重量%以下となると、かたさが低下
し傷がつきやすくなるとともに疲労強度が低下す
るため、芯材の炭素量は0.3%以上を含有する鋼
が好ましい。また、炭素量が1重量%を超えると
機械的性質が低下し大きな応力に耐えられず折損
する恐れがあるので、1%以下が好ましい。その
ため芯材の炭素量は0.3〜1重量%を含有する鋼
が好ましい。 ロールの圧延使用面に耐摩耗性を付与させる耐
摩耗性金属は基地粒内にかたい共晶炭化物を微細
かつ均一に分散させたものが必要である。高炭素
高クロム系の材料に析出する炭化物には、(Fe、
Cr)3C型、(Fe、Cr)7C3型、(Fe、Cr)23C6型の3
種に分類されるが、そのビツカースかたさHvは、
(Fe、Cr)3C型で1100〜2000、(Fe、Cr)7C3型で
2000〜2700、(Fe、Cr)23C6型で1400〜1800であ
る。耐摩耗性を向上させるためには、最もかたい
(Fe、Cr)7C3型の炭化物を析出させることが好ま
しい。第1図に炭素およびクロム量による炭化物
の析出形態の差違を示すが、(Fe、Cr)7C3型炭化
物を析出する範囲は図の斜線の部分である。しか
し、炭素量が1.5%未満では炭化物析出量が少な
く耐摩耗性が低下し、ロールとして十分とはいえ
ない。また、炭素量が3.0%を超えると組織は白
銑化し耐摩耗性は向上するが、耐熱性が劣化し、
熱疲労亀裂による肌荒れが発生しやすくなり使用
上問題が生じる。従つて本発明における耐摩耗性
金属の化学成分は炭素1.5〜3.0重量%、それに対
応し(Fe、Cr)7C3型炭化物を析出する範囲でク
ロム7〜20重量%が好ましい。このような高炭素
高クロム系材料は凝固時に網目状に炭化物を晶出
するため、耐摩耗性、耐熱亀裂性を向上させるに
あたり、炭化物を微細かつ均一に分散させる必要
がある。そのため本発明では凝固時に析出した大
型炭化物を熱間鍛造により分断し、微細かつ均一
に分散させるものである。これにより芯部に強靭
性をもたせかつ圧延使用面は耐摩耗性、耐熱亀裂
性にすぐれたロールを製造することが可能とな
る。また、Ni、Mo、Vはロールの強靭化、焼戻
し抵抗の向上をはかる目的でロールの用途に応じ
て添加することが好ましい。 実施例 芯材は直径300mmのSCM4材市販材を使用し直
径400mmの水冷モールドを用いて外層に高炭素高
クロム系材料をエレクトロスラグ溶接により肉厚
50mmに肉盛溶接した。芯材および溶着金属の化学
成分(重量%)を表に示す。
The present invention relates to a novel method for manufacturing a composite roll, and more particularly to a method for manufacturing an overlay roll. In general, hot rolling rolls are required to have contradictory properties such as wear resistance, heat cracking resistance, and toughness. In other words, if high carbon content and high alloying element content are used to improve the wear resistance of roll materials, heat cracking resistance,
Toughness decreases, and conversely, in order to improve heat cracking resistance and toughness, it is necessary to lower the carbon content, resulting in poor wear resistance. It is difficult to balance these properties with roll materials made of the same material, so composite rolls are known that provide wear resistance and heat crack resistance to the roll surface and toughness to the core. There is. That is, the methods include casting methods such as hollow casting, centrifugal casting, and steel plate bulkhead casting, and welding methods such as submerged arc welding and electroslag welding. . However, when a roll is manufactured by the former casting method, there is a limit to the cooling rate during casting, and the carbides crystallize in a network-like agglomeration of many individual carbides, resulting in a coarse shape. As a result, this cast material becomes structurally fragile, so heat treatment is used to improve the structure and increase toughness, but it is impossible to finely and uniformly disperse carbides by heat treatment alone. Furthermore, when using this roll, there is less wear in areas with a lot of carbide, and more wear in areas with less carbide, which has the disadvantage of causing rough skin, and thermal fatigue cracks occur along the carbide. There is a problem of poor heat cracking resistance. In addition, when manufacturing rolls using the submerged arc welding overlay method, weld cracks are likely to occur when the carbon content of the deposited metal becomes particularly high, and when the overlay thickness increases, weld cracks occur and the work The increase in the number of man-hours becomes a problem, and since it has a cast structure, as mentioned above, the surface becomes rough and the heat fatigue resistance is low, making it difficult to obtain a sound roll. The electroslag welding overlay method allows thicker overlays than other welding methods, and compared to casting methods, the cooling rate is faster and carbides can be made finer, making it suitable as a roll manufacturing method. There is. However, although the carbides are fine, they aggregate and crystallize in large numbers in the form of a network, and it is impossible to uniformly disperse them by heat treatment alone. Therefore, as mentioned above, there is a drawback that rough skin and thermal fatigue cracks occur. An object of the present invention is to provide a method for manufacturing a composite roll with excellent wear resistance. The present invention provides a method for manufacturing a composite roll in which a wear-resistant metal having higher abrasion resistance than the core material is fused to the surface of a roll core material having a predetermined shape. Using steel containing forming elements, using steel containing C1.5-3% by weight, Cr7-20% by weight, Ni2% by weight or less, Mo2% by weight or less, V2% by weight or less as the wear-resistant metal, A composite characterized in that a roll surface metal structure having a martensitic structure in which eutectic carbides are dispersed in base grains is obtained by fusion by electroslag welding, hot forging, and then heat treatment of quenching and tempering. It's in the manufacturing method of the roll. The wear-resistant metal has a martensitic structure in which eutectic carbides are almost uniformly dispersed within the base grains by hot forging and heat treatment. Such dispersion of eutectic carbides within the grains prevents wear of the entire surface of the roll, significantly improving wear resistance. Furthermore, resistance to thermal fatigue is improved. The roll core material is made of steel containing 0.3 to 1% by weight of C and, if necessary, a required amount of carbide-forming elements in order to maintain the strength required for the core material. It goes without saying that wear-resistant metals have higher wear resistance than core materials, but especially for the core materials mentioned above, C1.5 to 3
Weight%, Cr7~20wt%, Ni2wt% or less, Mo2
Preferably, the material is made of steel containing V2% by weight or less. By performing hot forging after fusing a wear-resistant metal to the surface of the core material, it is possible to form a structure in which the eutectic carbides in the wear-resistant metal are almost uniformly dispersed within the base grains. , a composite roll with high wear resistance can be obtained. Overlay welding is preferred for fusing wear-resistant metals, and electroslag welding in particular refines eutectic carbides, making subsequent hot forging easier. It is thought that this makes it effective in dispersing more uniformly within the matrix grains. Therefore, it is preferable to manufacture the composite roll of the present invention by overlay welding using electroslag welding. Problems in manufacturing overlay rolls using electroslag or other welding methods are the toughness of the core material, the wear resistance of the roll surface, and the heat cracking resistance. In order to increase rolling efficiency, the diameter of the rolls must be reduced. However, if the diameter of the roll is made smaller, the stress applied to the roll increases accordingly, so the core material needs to be made tougher. Therefore, if the carbon content of the core material is 0.3% by weight or less, the hardness decreases and the steel becomes easily scratched, and the fatigue strength decreases, so it is preferable that the core material contains a carbon content of 0.3% or more. Furthermore, if the carbon content exceeds 1% by weight, the mechanical properties will deteriorate and there is a risk that the material will not be able to withstand large stress and break, so it is preferably 1% or less. Therefore, steel containing 0.3 to 1% by weight of carbon in the core material is preferable. The wear-resistant metal that imparts wear resistance to the rolling surface of the roll must have hard eutectic carbides finely and uniformly dispersed within the base grains. Carbides precipitated in high-carbon, high-chromium materials include (Fe,
Cr) 3 C type, (Fe, Cr) 7 C 3 type, (Fe, Cr) 23 C 6 type 3
Although it is classified as a species, its bitcurs hardness Hv is
(Fe, Cr) 1100-2000 for 3 C type, (Fe, Cr) 7 C 3 type
2000-2700, (Fe, Cr) 23C 6 type is 1400-1800. In order to improve wear resistance, it is preferable to precipitate the hardest (Fe, Cr) 7 C 3 type carbide. FIG. 1 shows the difference in the precipitation form of carbides depending on the amount of carbon and chromium, and the range where (Fe, Cr) 7 C 3 type carbides are precipitated is the shaded area in the figure. However, if the carbon content is less than 1.5%, the amount of carbide precipitated is small and the wear resistance is reduced, making it unsatisfactory as a roll. Additionally, if the carbon content exceeds 3.0%, the structure becomes white and wear resistance improves, but heat resistance deteriorates.
Skin roughness due to thermal fatigue cracks is likely to occur, causing problems in use. Therefore, the chemical composition of the wear-resistant metal in the present invention is preferably 1.5 to 3.0% by weight of carbon and 7 to 20% by weight of chromium, so long as the corresponding (Fe, Cr) 7 C 3 type carbide is precipitated. Since such high-carbon, high-chromium materials crystallize carbides in a network shape during solidification, it is necessary to disperse the carbides finely and uniformly in order to improve wear resistance and heat cracking resistance. Therefore, in the present invention, large carbides precipitated during solidification are divided by hot forging and dispersed finely and uniformly. This makes it possible to manufacture a roll whose core has toughness and whose rolling surface has excellent wear resistance and heat crack resistance. Further, Ni, Mo, and V are preferably added depending on the purpose of the roll for the purpose of toughening the roll and improving the tempering resistance. Example: The core material is a commercially available SCM4 material with a diameter of 300 mm, and the outer layer is made of a high carbon, high chromium material by electroslag welding using a water-cooled mold with a diameter of 400 mm.
Welded overlay to 50mm. The chemical components (wt%) of the core material and weld metal are shown in the table.

【表】 エレクトロスラグ溶接は、肉盛溶接部の割れを
防止するため芯材を200〜300℃に予熱し、溶接電
流を0.6〜1A/mm2とし、フラツクスにCaF274%、
NaF24%、Mn1%、Fe−Si1%を使用して、行つ
た。 第2図はエレクトロスラグ肉盛溶接よる複合ロ
ールを製造する装置の構成図である。ロール芯材
1の表面に管状電極材2を用い、溶接機3によつ
て溶接する。アークが発生するとスラグ8が溶融
するとともに、溶融金属7が形成され、芯材1の
表面に溶接肉盛が形成される。溶融金属7はスト
ツパ9によつて溶け落ちが防止される。スラグは
厚さ50〜60mmに常時調整される。 肉盛後の鋼塊表面から予備実験を行うために肉
盛部分の試料を採取し、これを1100℃近傍で鍛錬
比2.0に熱間鍛造した。鍛造後、油焼入れ及び焼
戻しの熱処理を行つた。 第3図は肉盛溶接したままのa及び熱間鍛造し
たものbの断面の400倍の顕微鏡写真である。図
に示すように、肉盛溶接したままのものは粒界に
網目状に凝集して共晶炭化物が晶出しているのに
対し、鍛造したものは共晶炭化物が粒内に分散し
て粒状に晶出していることがわかる。基地はマル
テンサイト組織である。 第4図は、西原式摩耗試験結果を示す線図であ
る。摩耗試験はタービン油を潤滑材に用い、相手
材にJISのSKH9材を用い、摩耗減量を測定した
ものである。試料は外径30mm、内径16mm、厚さ8
mmである。図に示す如く、本発明の鍛造したもの
は肉盛溶接したままのものに比らべ耐摩耗性がす
ぐれていることがわかる。 第5図は熱衝撃試験における亀裂発生までの回
数を示すグラフである。熱衝撃試験は600℃まで
約7秒で高周波加熱によつて加熱し、引き続いて
水冷する加熱冷却のくり返しによつて行つたもの
である。試料は直径20mm、厚さ50mmである。図に
示す如く、本発明の鍛造したものは肉盛溶接した
ままのものにくらべ亀裂発生までのくり返し数が
約1.5倍すぐれていることが分る。 以上の如く、肉盛溶接した後鍛造したものはす
ぐれた耐摩耗性及び耐衝撃性が得られる見通しが
得られたので、上述したと同じ温度で得られた肉
盛ロールを自由鍛造により鍛錬比2.0になるよう
に熱間鍛造した。鍛造した後、950℃で焼ならし
を行い、次いで880℃で焼なまし処理した後、油
焼入れ及び焼戻しの熱処理を行つた。次いで、表
面研削及び検査を行い、熱間圧延用ロールに用い
た結果、その耐摩耗性が顕著にすぐれ、従来の単
なる肉盛のままのものに比らべ格段に長寿命であ
つた。 以上、本発明のロールは従来のロールに比らべ
耐摩耗性及び耐熱亀裂性がすぐれ、圧延効率が格
段にすぐれていた。
[Table] In electroslag welding, the core material is preheated to 200 to 300℃ to prevent cracks in the overlay weld, the welding current is 0.6 to 1A/ mm2 , and the flux is 74 % CaF2.
This was done using 24% NaF, 1% Mn, and 1% Fe-Si. FIG. 2 is a configuration diagram of an apparatus for manufacturing a composite roll by electroslag overlay welding. A tubular electrode material 2 is used on the surface of the roll core material 1 and welded by a welding machine 3. When the arc is generated, the slag 8 melts, molten metal 7 is formed, and weld overlay is formed on the surface of the core material 1. The molten metal 7 is prevented from melting through by the stopper 9. The slag is constantly adjusted to a thickness of 50 to 60 mm. A sample of the overlaid part was taken from the surface of the steel ingot after overlaying for preliminary experiments, and this was hot forged at around 1100℃ to a forging ratio of 2.0. After forging, heat treatment of oil quenching and tempering was performed. Figure 3 is a 400x microscopic photograph of the cross-section of a as-welded specimen (a) and a hot-forged specimen (b). As shown in the figure, in the as-welded product, eutectic carbide aggregates in a network shape at grain boundaries and crystallizes, whereas in the forged product, eutectic carbide is dispersed within the grains, forming a granular shape. It can be seen that crystallization occurs. The base is a martensitic structure. FIG. 4 is a diagram showing the results of the Nishihara type abrasion test. The wear test used turbine oil as the lubricant and JIS SKH9 material as the mating material, and measured the wear loss. The sample has an outer diameter of 30 mm, an inner diameter of 16 mm, and a thickness of 8 mm.
mm. As shown in the figure, it can be seen that the forged parts of the present invention have better wear resistance than those which have been overlay welded. FIG. 5 is a graph showing the number of times until cracking occurs in a thermal shock test. Thermal shock tests were conducted by heating to 600°C for about 7 seconds using high-frequency heating, followed by water cooling, and repeated heating and cooling. The sample has a diameter of 20 mm and a thickness of 50 mm. As shown in the figure, it can be seen that the forged product of the present invention is about 1.5 times better in the number of cycles until cracking occurs than the as-welded product. As mentioned above, it is expected that products forged after overlay welding will have excellent wear resistance and impact resistance. Therefore, the overlay roll obtained at the same temperature as mentioned above was free forged and the forging ratio was increased. Hot forged to 2.0. After forging, it was normalized at 950°C, then annealed at 880°C, and then subjected to heat treatment of oil quenching and tempering. Next, surface grinding and inspection were carried out, and when the roll was used in a hot rolling roll, it was found to have significantly superior wear resistance and to have a much longer lifespan than conventional rolls with just overlay. As described above, the roll of the present invention had better wear resistance and heat cracking resistance than conventional rolls, and had much better rolling efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炭素量とクロム量の変化による炭化物
形成形態を示す線図、第2図はエレクトロスラグ
溶接による肉盛ロールを製造する構成図、第3図
は断面の顕微鏡写真、第4図は回転数と摩耗量と
の関係を示す線図、第5図は亀裂発生までの回数
を示すグラフである。 1……ロール芯材、2……電極、3……溶接
機、4……水冷治具、6……熱電対、7……溶融
金属、8……スラグ、10……増幅器、11……
直流モータ、12……マニプレータ。
Figure 1 is a diagram showing the form of carbide formation due to changes in the amount of carbon and chromium, Figure 2 is a block diagram of manufacturing a build-up roll by electroslag welding, Figure 3 is a microscopic photograph of a cross section, and Figure 4 is A diagram showing the relationship between the rotational speed and the amount of wear, and FIG. 5 is a graph showing the number of times until cracking occurs. 1... Roll core material, 2... Electrode, 3... Welding machine, 4... Water cooling jig, 6... Thermocouple, 7... Molten metal, 8... Slag, 10... Amplifier, 11...
DC motor, 12...manipulator.

Claims (1)

【特許請求の範囲】[Claims] 1 所定形状のロール芯材表面に該芯材より耐摩
耗性が大きい耐摩耗性金属を融着する複合ロール
の製造法において、前記ロール芯材としてC0.3〜
1重量%と炭化物形成元素とを含有する鋼を用
い、前記耐摩耗性金属としてC1.5〜3重量%、
Cr7〜20重量%、Ni2重量%以下、Mo2重量%以
下、V2重量%以下を含有する鋼を用い、エレク
トロスラグ溶接にて融着した後、熱間鍛造し、次
いで焼入れ焼戻しの熱処理を行つて共晶炭化物が
基地粒内に分散したマルテンサイト組織を有する
ロール表面金属組織を得ることを特徴とする複合
ロールの製造法。
1. In a method for manufacturing a composite roll in which a wear-resistant metal having higher wear resistance than the core material is fused to the surface of a roll core material of a predetermined shape, the roll core material is C0.3~
Using steel containing 1% by weight and a carbide-forming element, 1.5 to 3% by weight of C as the wear-resistant metal,
Steel containing 7 to 20% by weight of Cr, 2% by weight or less of Ni, 2% by weight or less of Mo, and 2% by weight or less of V is used, and after being fused by electroslag welding, it is hot forged, and then heat treated by quenching and tempering. A method for manufacturing a composite roll, characterized by obtaining a roll surface metal structure having a martensitic structure in which eutectic carbides are dispersed within base grains.
JP7435180A 1980-06-04 1980-06-04 Composite roll and its manufacture Granted JPS572862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7435180A JPS572862A (en) 1980-06-04 1980-06-04 Composite roll and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7435180A JPS572862A (en) 1980-06-04 1980-06-04 Composite roll and its manufacture

Publications (2)

Publication Number Publication Date
JPS572862A JPS572862A (en) 1982-01-08
JPS6358215B2 true JPS6358215B2 (en) 1988-11-15

Family

ID=13544611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7435180A Granted JPS572862A (en) 1980-06-04 1980-06-04 Composite roll and its manufacture

Country Status (1)

Country Link
JP (1) JPS572862A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167007A (en) * 1982-03-26 1983-10-03 Hitachi Ltd High strength, high abrasion resistance, and high toughness roll, and its manufacture
JPS61238407A (en) * 1985-04-15 1986-10-23 Hitachi Ltd Compound roll and its production
JPH0768588B2 (en) * 1989-06-26 1995-07-26 株式会社日立製作所 Method for manufacturing metal rolling rolls

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212612A (en) * 1975-07-21 1977-01-31 Nippon Steel Corp Wear resistant tool steel
JPS5380350A (en) * 1976-12-27 1978-07-15 Hitachi Metals Ltd Preparation of roll for hot rolling

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212612A (en) * 1975-07-21 1977-01-31 Nippon Steel Corp Wear resistant tool steel
JPS5380350A (en) * 1976-12-27 1978-07-15 Hitachi Metals Ltd Preparation of roll for hot rolling

Also Published As

Publication number Publication date
JPS572862A (en) 1982-01-08

Similar Documents

Publication Publication Date Title
Ramkumar et al. Investigations on structure–property relationships of activated flux TIG weldments of super-duplex/austenitic stainless steels
EP0309587B1 (en) Abrasion-resistant composite roll and process for its production
US4143258A (en) Welding microstructure control
JPS6247626B2 (en)
US6206814B1 (en) Composite work roll for cold rolling
US3855015A (en) Work roll for hot rolling
JPH03122253A (en) Working roll for rolling metal and its production
JP6516093B2 (en) Composite roll for continuous cast overlay casting rolling
US6110301A (en) Low alloy build up material
JP3509634B2 (en) Low alloy cast steel and its heat treatment method
JPS6358215B2 (en)
JPH04220105A (en) Composite roll for rolling metal, manufacture thereof and rolling mill
JP4922971B2 (en) Composite roll for hot rolling and manufacturing method thereof
JPH08325673A (en) Composite roll for rolling excellent in wear resistance, surface roughening resistance and the like
JPH01240635A (en) Work roll for rolling and its manufacture
JP3030078B2 (en) Abrasion-resistant composite roll excellent in skin roughness resistance and method for producing the same
JP3030077B2 (en) Abrasion-resistant composite roll excellent in crack resistance and method for producing the same
JP2000017384A (en) Extremely clean diecast steel having high ductility and free from formation of microband and its production
JPH0739026B2 (en) Method for manufacturing work roll for hot rolling and rolling method
JPH03207510A (en) Build-up weld roll and its manufacture
JPH0775808A (en) Wear resistant composite roll for rolling shape steel
JPS6161916B2 (en)
JP3530379B2 (en) Work roll for cold rolling
JPH03248703A (en) Work roll for hot rolling and its manufacture
US4465224A (en) Method of reducing microfissuring in welds having an austenitic stainless steel alloy base metal