JPS6357719B2 - - Google Patents

Info

Publication number
JPS6357719B2
JPS6357719B2 JP4374881A JP4374881A JPS6357719B2 JP S6357719 B2 JPS6357719 B2 JP S6357719B2 JP 4374881 A JP4374881 A JP 4374881A JP 4374881 A JP4374881 A JP 4374881A JP S6357719 B2 JPS6357719 B2 JP S6357719B2
Authority
JP
Japan
Prior art keywords
heat
absorbent
refrigerant
reaction
thermal energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4374881A
Other languages
Japanese (ja)
Other versions
JPS57157995A (en
Inventor
Fujitaro Goto
Yoshihiro Nakajima
Ichiro Fujiwara
Isao Nomura
Kyoshi Yamakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Daikin Kogyo Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP4374881A priority Critical patent/JPS57157995A/en
Publication of JPS57157995A publication Critical patent/JPS57157995A/en
Publication of JPS6357719B2 publication Critical patent/JPS6357719B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0036Domestic hot-water supply systems with combination of different kinds of heating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies

Description

【発明の詳細な説明】 本発明は、熱エネルギーを化学エネルギーに転
換した状態の下で貯蔵し、また必要に応じてこの
熱エネルギーを取り出し得る熱エネルギー貯蔵装
置の新規な構成に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel configuration of a thermal energy storage device capable of storing thermal energy under conditions of conversion to chemical energy and extracting this thermal energy as required.

太陽熱、排熱などの低コスト熱源によつて暖房
や給湯を行う装置では、必要なときに何時でも熱
エネルギーを取出すことが出来にくいところから
蓄熱機能を持つたものが望ましく、しかも取出す
熱エネルギーは利用目的に合致して或る程度温度
レベルを変えて取り出し、利用できるものである
ことが好ましい。
For equipment that uses low-cost heat sources such as solar heat and waste heat for space heating and hot water supply, it is desirable to have a heat storage function since it is difficult to extract thermal energy whenever needed. It is preferable that the material can be taken out and used while changing the temperature level to some extent depending on the purpose of use.

この場合、温水などの顕熱利用による蓄熱方式
では蓄熱器が大型化するし、保温性の高い防熱構
造としなければならないので装置コストが高騰す
る問題があり、また、蓄熱温度には限界があつて
高温状態で蓄熱できない不利があつた。
In this case, in a heat storage method that uses sensible heat such as hot water, the heat storage device becomes large and requires a heat-insulating structure with high heat retention, which raises the cost of the equipment, and there is also a limit to the heat storage temperature. This had the disadvantage of not being able to store heat in high-temperature conditions.

このような問題点に対処して、可逆熱化学反応
サイクルを利用して熱エネルギーを化学エネルギ
ーに転換した状態となして比較的低温状態での蓄
熱可能となし、かつ必要時にこの蓄熱エネルギー
を取り出し得るようにした熱エネルギー貯蔵装置
が最近に至つて着目されてきている。
In order to address these problems, thermal energy can be converted into chemical energy using a reversible thermochemical reaction cycle, allowing heat to be stored at relatively low temperatures, and this stored thermal energy can be extracted when necessary. Recently, attention has been focused on thermal energy storage devices designed to obtain thermal energy.

ところが従来のこの種装置では、熱化学反応物
質から発生する生成熱を暖房・給湯の用に供する
温水に与えるために設けられている反応槽1′が、
第1図に示すようなシエルアンドチユーブ式また
は第2図に示すようなシエルアンドコイル式の熱
交換器であつて、第1図々示のものは、伝熱管
7′の管長を可及的に大きくとり、熱交換面積を
増大しようとすれば伝熱管7′の収容本数が多く
なつて熱化学反応物質の収容スペースは減少し、
その結果、蓄熱効率が却つて低下することから反
応槽を大形にせざるを得ない欠点があつた。
However, in a conventional device of this type, a reaction tank 1' provided for supplying generated heat generated from a thermochemical reactant to hot water used for space heating and hot water supply,
A shell and tube type heat exchanger as shown in FIG. 1 or a shell and coil type heat exchanger as shown in FIG. If an attempt is made to increase the heat exchange area by increasing the heat exchange area, the number of heat exchanger tubes 7' to be accommodated will increase, and the space for accommodating the thermochemical reactants will decrease.
As a result, there was a drawback that the heat storage efficiency was rather reduced, so that the reaction tank had to be made larger.

一方、第2図々示のものは、伝熱管7′が密接
した配置となつているので、反応時に固化する如
き物質は使用するのに難点があり、反応槽内に撹
拌機を設けなければならない等使用上種々の制約
があつて実用的でなかつた。
On the other hand, in the case shown in Figure 2, since the heat transfer tubes 7' are arranged closely together, it is difficult to use substances that solidify during the reaction, and a stirrer must be installed in the reaction tank. It was not practical due to various restrictions on its use.

また、前記両反応槽にとつて共通している問題
としては、接触面積を大きく取り難い構造である
こと、熱化学反応物質ではある一定の厚み以上に
なると殆ど反応が進行しなくなるので、未反応部
分ができ易くて実質的に蓄熱量が小さくなるこ
と、熱交換器の構造面から捉えると管周に熱化学
反応物質が一様に存在する訳には行かなくて厚い
ところと薄いところの差が大きくなり、反応終了
時間は厚みの大きい最遠部分で決定されるのでこ
のように厚みが不均一であると、能率が非常に悪
いことなどが挙げられる。
In addition, problems common to both of the above reactors are that they have a structure that makes it difficult to increase the contact area, and that the reaction of thermochemical reactants hardly progresses when the thickness exceeds a certain level. From the structural perspective of the heat exchanger, it is not possible for thermochemical reactants to exist uniformly around the tube, so there is a difference between thick and thin sections. becomes large and the reaction completion time is determined by the farthest part where the thickness is large, so if the thickness is uneven like this, the efficiency will be very poor.

以上述べた如く、従来の装置が実用上、種々の
問題点を有していることに鑑みて、本発明はかか
る従来欠陥を克服し得る如き特有構造の熱エネル
ギー貯蔵装置をここに提供すべく成されたもので
あつて、特にエネルギー貯蔵ならびに利用に際し
て、低コスト、高充填率化による効率向上を可能
にするために、冷媒ガスの通過は許容し、吸収剤
溶液の通過は撥水作用によつて抑制し得る性質を
持つ多孔質材の利用を基本として、この撥水性多
孔質材から形成した壁により反応容器内を吸収材
貯溜部と気相部とに仕切らせると共に、吸収剤の
層厚さが均一となり、かつ吸収剤との接触面積が
大となる如く前記壁を配置せしめることにより、
吸収剤の流動は規制する一方、冷媒ガスの流動に
は自由性を持たせるようにしたものであり、かく
して吸収剤と冷媒との間の化合、分解を有効に行
わせる如くした点に構成の特徴が存するものであ
る。
As mentioned above, in view of the fact that conventional devices have various problems in practical use, the present invention aims to provide a thermal energy storage device with a unique structure that can overcome such conventional defects. In order to improve efficiency through low cost and high filling rate, especially in energy storage and utilization, the passage of refrigerant gas is allowed, and the passage of absorbent solution is made to have a water repellent effect. Based on the use of a porous material that has the property of suppressing water repellency, the interior of the reaction vessel is partitioned into an absorbent reservoir and a gas phase by a wall formed from this water-repellent porous material, and an absorbent layer is also used. By arranging the wall so that the thickness is uniform and the contact area with the absorbent is large,
While the flow of the absorbent is regulated, the flow of the refrigerant gas is allowed to flow freely, thus effectively combining and decomposing the absorbent and the refrigerant. It has characteristics.

以下、本発明装置の具体的内容を明らかにする
ため、添付図面の実施例によつて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to clarify the specific details of the apparatus of the present invention, an explanation will be given below with reference to embodiments shown in the accompanying drawings.

装置の説明に先立つて熱エネルギーの貯蔵態様
を先ず説明する。
Prior to explaining the device, the manner in which thermal energy is stored will be explained first.

熱エネルギーの貯蔵方法として、固体又は液体
の顕熱を利用するもの、気体、液体および固体・
液体間の相変化における潜熱を利用するものがあ
るが、可逆熱化学反応サイクルを利用した熱貯蔵
は例えば熱化学方程式 CaO+H2OCa(OH)2+15.2Kcal で示されるように、2つの物質から化合物が生成
されるときに生成熱を発生し、化合物が元の物質
に分解する際に分解熱を吸収するという可逆反応
を利用して、2つの物質に分解した状態で熱エネ
ルギーを蓄積し、必要なときに化合物を生成して
その際の生成熱を取り出し得るようにしたもので
あつて、可逆熱化学反応サイクル利用の熱貯蔵装
置(ケミカルヒートポンプ)の反応時間を決定す
る要素は熱化学反応物質の反応速度および反応条
件の準備である。
Thermal energy storage methods include methods that utilize the sensible heat of solids or liquids, gases, liquids, and solids.
There are methods that utilize the latent heat during phase change between liquids, but heat storage using a reversible thermochemical reaction cycle is an example of heat storage from two substances, as shown by the thermochemical equation CaO + H 2 OCa (OH) 2 + 15.2Kcal. Utilizing a reversible reaction in which heat of formation is generated when a compound is generated and heat of decomposition is absorbed when the compound decomposes into the original substance, thermal energy is stored in the state of being decomposed into two substances. The heat storage device (chemical heat pump) that uses a reversible thermochemical reaction cycle generates a compound when necessary and extracts the generated heat.The element that determines the reaction time of the heat storage device (chemical heat pump) is the thermochemical reaction. The rate of reaction of substances and the preparation of reaction conditions.

ここにいう熱貯蔵装置では、吸収剤中への冷媒
ガスの分散供給および冷媒ガスの排出と、反応熱
の効率的な取出しおよび供給の問題が要素として
挙げられるものである。
In the heat storage device referred to herein, the problems of distributed supply of refrigerant gas into the absorbent, discharge of the refrigerant gas, and efficient extraction and supply of reaction heat are cited as factors.

従つて、冷媒ガスの供給、反応熱の取出し等に
ついて改善が成されると、反応速度の大きい物質
は勿論のこと、反応速度の小さい物質であつても
反応所要時間を短縮できるものであり、この点を
根拠として実用的にすぐれた装置を提供しようと
するのが本発明の骨子である。
Therefore, if improvements are made in the supply of refrigerant gas, extraction of reaction heat, etc., the reaction time can be shortened not only for substances with a high reaction rate but also for substances with a low reaction rate. Based on this point, the gist of the present invention is to provide a practically excellent device.

しかして、本発明装置の構造は第3図において
示されるが先ず、本発明装置の要部をなす反応容
器1と貯溜容器2との要素を説明すると、反応容
器1は下方に、貯溜容器2は上方に夫々設置され
て、両容器1,2の各気相部間を冷媒通路3で連
絡している。
The structure of the apparatus of the present invention is shown in FIG. are installed above, and the gas phase portions of both containers 1 and 2 are connected through a refrigerant passage 3.

反応容器1は第4図において詳細に示されてい
るが、シエル4内の上部の流入側ヘツダー9と下
部の流出側ヘツダー10と、それ等両ヘツダー
9,10間に並列状を成して橋架せしめた多数の
伝熱管7…とからなる構造の熱交換器5を収設し
て、流入側ヘツダー9、伝熱管7…、流出側ヘツ
ダー10を流通する利用側流体W1と前記吸収剤
との間で、吸収剤と冷媒との反応時の生成熱およ
び分解熱の熱交換を行わせる如く設けられてい
る。
The reaction vessel 1, shown in detail in FIG. 4, has an upper inlet header 9 and a lower outlet header 10 in the shell 4, which are parallel to each other. A heat exchanger 5 having a structure consisting of a large number of bridged heat exchanger tubes 7 is installed, and the user fluid W 1 and the absorbent are distributed through the inlet header 9, the heat exchanger tubes 7, and the outlet header 10 . The absorbent and the refrigerant are provided to exchange heat of generation and decomposition during the reaction between the absorbent and the refrigerant.

さらに、前記反応容器1は、該器内に撥水性多
孔質材により形成した多数の管状の壁6を、前記
冷媒通路3に連通する気相部11に連通させ、該
壁6によつて、気相部11と吸収剤貯溜部12と
を仕切らせた構造となしている。
Furthermore, the reaction vessel 1 has a large number of tubular walls 6 formed of a water-repellent porous material in the vessel communicated with the gas phase portion 11 that communicates with the refrigerant passage 3, and by the walls 6, It has a structure in which the gas phase section 11 and the absorbent storage section 12 are partitioned.

この壁6は前述したように、本発明を特徴づけ
るための要素をなすものであつて、気体は容易に
通過させるが、液体については撥水作用で撥かせ
ることにより通過を抑制させる如き多孔質材によ
つて形成されており、従つて冷媒通路3から流入
してきた冷媒ガスは多孔質の壁6を通つて吸収剤
に接触して化合すると共に、吸収剤から分解した
冷媒ガスは前記壁6を逆方向に通過して冷媒通路
3の方に流れるようになり、化合と分解とが確実
に行われる。
As mentioned above, this wall 6 is a feature that characterizes the present invention, and is made of a porous material that allows gas to easily pass through but inhibits the passage of liquid by repelling it with water repellency. Therefore, the refrigerant gas flowing in from the refrigerant passage 3 passes through the porous wall 6 and comes into contact with the absorbent to combine, and the refrigerant gas decomposed from the absorbent flows through the wall 6. The refrigerant passes through the refrigerant in the opposite direction and flows toward the refrigerant passage 3, ensuring that the combination and decomposition are performed.

この様な性質を有する撥水性多孔質材とは、吸
収剤および冷媒に対し、弾く力すなわち接触角が
大きいほど多孔質の孔から液体を通すのに要する
圧力が高くなる。この圧力(△P)は次式で表わ
される。
A water-repellent porous material having such properties has a larger repelling force, that is, a contact angle, with respect to the absorbent and refrigerant, the higher the pressure required to pass the liquid through the porous pores. This pressure (ΔP) is expressed by the following formula.

△P=2rcosα/d 接触角=α、液体を押し下げる高さ=h、 液体の表面張力=r、毛細管の半径=d、 比重=ρ、 この様に接触角が吸収剤および冷媒が大きくな
る材料は臨界表面張力が小さいほどこの接触角が
大きく、たとえば、水の場合ポリテトラフルオロ
エチレン(臨界表面張力18dyne/cm)では110゜も
の接触角を持つことから、撥水性多孔質材として
は臨界表面張力が30dyne/cm以下の材料で構成
するか、適当な多孔性母材にエマルジヨン、溶液
の形態で含浸せしめるかあるいはオイル状のもの
を同じく多孔性母材に含浸せしめることによつて
得られるものである。
△P=2rcosα/d Contact angle = α, height to push down the liquid = h, surface tension of liquid = r, radius of capillary = d, specific gravity = ρ, Materials with large contact angles such as absorbent and refrigerant The smaller the critical surface tension, the larger the contact angle; for example, in the case of water, polytetrafluoroethylene (critical surface tension 18 dyne/cm) has a contact angle of 110°, so it is considered a critical surface for water-repellent porous materials. Composed of a material with a tensile strength of 30 dyne/cm or less, or obtained by impregnating a suitable porous matrix in the form of an emulsion or solution, or impregnating the same porous matrix with an oil-like material. It is.

例えば、臨界表面張力が30dyne/cm以下の材
料としては、ポリプロピレン、シリコンオイル、
シリコンゴム、シリコン樹脂などのシリコン系材
料、ポリテトラフルオロエチレン、ポリフルオロ
エチレンとエチレン、プロピレン、パーフルオロ
プロピレン、フツ化ビニリデン、パーフルオロビ
ニルエーテルなどとの1種又はそれ以上の共重合
体、あるいは末端構成がパーフルオロ基で構成さ
れたアクリル系重合体、共重合体などのフツ素系
材料が挙られる。
For example, materials with a critical surface tension of 30 dyne/cm or less include polypropylene, silicone oil,
Silicone materials such as silicone rubber and silicone resin, polytetrafluoroethylene, one or more copolymers of polyfluoroethylene and ethylene, propylene, perfluoropropylene, vinylidene fluoride, perfluorovinylether, etc., or terminal Examples include fluorine-based materials such as acrylic polymers and copolymers that are composed of perfluoro groups.

また、多孔性母材としては焼結合金、紙、不織
布、布、金鋼などが挙られ、具体的には冷媒が水
蒸気の場合、シリコン含浸紙あるいはパーフルオ
ロアクリル共重合体で表面処理された紙などが適
用され、また冷媒がアンモニアの場合、ポリテト
ラフルオロエチレンあるいはテトラフルオロエチ
レンとパーフルオロプロピレンとの共重合体で構
成された多孔体あるいは焼結合金などに含浸熱処
理された多孔体などが適用されるが、これに限定
されるものではない。
Examples of porous base materials include sintered alloys, paper, nonwoven fabrics, cloth, and steel. Specifically, when the refrigerant is water vapor, the surface is treated with silicone-impregnated paper or perfluoroacrylic copolymer. Paper, etc. is used, and if the refrigerant is ammonia, a porous body made of polytetrafluoroethylene or a copolymer of tetrafluoroethylene and perfluoropropylene, or a porous body impregnated with a sintered alloy and heat-treated is used. Applies to, but is not limited to.

このような撥水性多孔質材で壁6を形成する
と、液体は該壁6に接して表面張力作用により撥
水されて壁6の微小通路には流入しなく、一方、
冷媒ガスは容易に微小通路内を流通し、かくして
上述した如き所期の特性は満足に発揮されるもの
である。
When the wall 6 is formed of such a water-repellent porous material, the liquid comes into contact with the wall 6 and is repelled by the action of surface tension, and does not flow into the micro passages of the wall 6.
The refrigerant gas easily flows through the micro passages, and thus the desired characteristics as described above are satisfactorily exhibited.

なお、シエル4は周壁を断熱材により防熱処理
し、周囲に熱放散しないよう防熱構造に形成して
いる。
Note that the shell 4 has a peripheral wall that is heat-insulated using a heat insulating material, and is formed into a heat-insulating structure so as not to dissipate heat to the surroundings.

次に、前記貯溜容器2は、密閉構造をなす容器
内に、冷媒が適当量貯蔵され、前記冷媒通路3を
取り巻いた配置にて熱交換器8を収設し、容器の
周壁を介して器内冷媒と外気とが熱交換し得るよ
うに設けており、熱交換器8内を流通する熱源側
流体と冷媒との間で凝縮熱および蒸発熱の熱交換
が成されるように形成している。
Next, in the storage container 2, an appropriate amount of refrigerant is stored in a container having a sealed structure, and a heat exchanger 8 is housed in a position surrounding the refrigerant passage 3. It is provided so that the internal refrigerant and the outside air can exchange heat, and is formed so that the heat of condensation and the heat of evaporation can be exchanged between the heat source side fluid flowing in the heat exchanger 8 and the refrigerant. There is.

上記冷媒通路3は、重力に送らう反転通路を有
しない上下方向に延設した適宜径の管を用いて、
その下端開口部を吸収剤が収容される反応容器1
内の気相部に連通させて接続すると共に、冷媒が
収容される貯溜容器2内を直立状に貫挿し立上ら
せて、その上端開口部を該容器2内の気相部とな
る上方部に臨ませている。
The refrigerant passage 3 is made of a pipe of an appropriate diameter extending in the vertical direction and having no reversing passage for feeding by gravity.
Reaction container 1 in which an absorbent is accommodated at its lower end opening
At the same time, the refrigerant is inserted vertically into the storage container 2 in which the refrigerant is stored, and the upper end opening is connected to the gas phase portion in the container 2. I am having him attend the club.

上述の構成になる反応容器1と貯溜容器2とを
利用して、可逆熱化学反応サイクルによる熱貯蔵
運転を行わせるが、化合物生成時に多量の熱を発
生する2つの物質としては各種の物質が挙げられ
るが、例えばヨウ化ナトリウム(NaI、固体)と
アンモニア(NH3、液体)とを用いて粉体状を
なすNaIを反応容器1内の吸収剤貯溜部に略々満
杯で収容する一方、NH3を貯溜容器2内に適当
量収容する。
The reaction vessel 1 and the storage vessel 2 configured as described above are used to carry out a heat storage operation through a reversible thermochemical reaction cycle, but various substances may be used as the two substances that generate a large amount of heat during compound production. For example, while storing NaI in powder form using sodium iodide (NaI, solid) and ammonia (NH 3 , liquid) in the absorbent reservoir in the reaction vessel 1, A suitable amount of NH 3 is stored in the storage container 2.

そして、貯溜容器2内を熱交換器8によつて加
熱すると、該容器2内のNH3液は蒸発気化して
ガスとなり、このガスは反応容器1内との圧力差
によつて冷媒通路3を経て反応容器1内に送り込
まれる。
Then, when the inside of the storage container 2 is heated by the heat exchanger 8, the NH 3 liquid inside the container 2 is evaporated and becomes gas, and this gas is transferred to the refrigerant passage 3 due to the pressure difference with the inside of the reaction container 1. It is fed into the reaction vessel 1 through the steps.

反応容器1内に流入したNH3ガスは前記壁6
の多数設けられた微小通路を通過してNaI固体に
接し、熱化学反応を行いヨウ化ナトリウムのアン
ミン錯体(NaI・nNH3、液体)を生成する。
The NH 3 gas that has flowed into the reaction vessel 1 flows through the wall 6.
It passes through a large number of microchannels and comes into contact with the NaI solid, where it undergoes a thermochemical reaction to produce an ammine complex of sodium iodide (NaI/nNH 3 , liquid).

このときの熱化学方程式は、 NaI+nNH3NaI・nNH3+△Hcal で表示され、化合物生成に伴つて生成熱(△H)
を発生する。
The thermochemical equation at this time is expressed as NaI + nNH 3 NaI・nNH 3 + △Hcal, and as the compound is formed, the heat of formation (△H)
occurs.

△Hは温度、圧力により異るが、例えば35℃で
のアンミン錯体の生成熱はアンモニア1Kg当り
442Kcal/Kgであるのに対して、アンモニアの凝
縮潜熱は268Kcal/Kgとなる。
△H varies depending on temperature and pressure, but for example, the heat of formation of ammine complex at 35℃ is per 1 kg of ammonia.
While it is 442Kcal/Kg, the latent heat of condensation of ammonia is 268Kcal/Kg.

この生成熱を熱交換器5における伝熱管7…内
の水に伝えて温水となし、暖房用あるいは給湯用
の温水として取り出すことができる。
The generated heat is transferred to the water in the heat exchanger tubes 7 in the heat exchanger 5 to produce hot water, which can be taken out as hot water for heating or hot water supply.

液状のNaI・nNH3は壁6を通過しないので吸
収剤貯溜部に停滞したままであり、従つて伝熱管
7…内の水との間の熱交換効率は大である。
Since the liquid NaI/nNH 3 does not pass through the wall 6, it remains stagnant in the absorbent reservoir, and therefore the efficiency of heat exchange with the water in the heat transfer tubes 7 is high.

以上の温水取り出しとは逆に、熱交換器5の伝
熱管7…内に温水を流通させると、NaI・nNH3
は加熱されて分解熱の吸収に伴いNaIとNH3とに
分解し、NH3は前記壁6を通り抜けて冷媒通路
3を経、貯溜容器2内に送り込まれる一方、分解
によつて得られたNaIは固体で吸収剤貯溜部に堆
積する。
Contrary to the hot water extraction described above, when hot water is passed through the heat exchanger tubes 7 of the heat exchanger 5, NaI/nNH 3
is heated and decomposed into NaI and NH 3 as the heat of decomposition is absorbed, and NH 3 passes through the wall 6, passes through the refrigerant passage 3, and is sent into the storage container 2. NaI is solid and deposits in the absorbent reservoir.

貯溜容器2内に流入したNH3ガスを熱交換器
8と外気の少くとも何れか一方で冷却すると、凝
縮液化して貯溜容器2内に貯溜される。
When the NH 3 gas that has flowed into the storage container 2 is cooled by at least one of the heat exchanger 8 and the outside air, it is condensed and liquefied and stored in the storage container 2 .

かくして、反応容器1内にはNaIが、貯溜容器
2内にはNH3液が夫々分離した状態で貯溜され
るが、これは生成熱を可逆熱化学反応サイクルの
利用により化学エネルギーの形で貯蔵しているこ
とを意味している。
In this way, NaI is stored in the reaction vessel 1 and NH 3 liquid is stored in the storage vessel 2 in a separated state, but this is because the generated heat is stored in the form of chemical energy by utilizing a reversible thermochemical reaction cycle. It means doing.

以上述べた運転において、生成熱すなわち貯蔵
された保有熱は暖房・給湯用として有効に利用さ
れるし、一方、分解に必要な熱源としては太陽
熱、排熱などを利用することが可能である。
In the operation described above, the generated heat, that is, the stored heat, is effectively used for heating and hot water supply, while solar heat, waste heat, etc. can be used as the heat source required for decomposition.

次に、第3図に示す実用装置は太陽熱利用方式
暖・冷房給湯装置であつて、反応容器1、貯溜容
器2、貯湯タンク13、フアンコイル16、給湯
栓17および集熱器19を主要部材として構成
し、それ等をポンプ22〜24、三方弁25〜3
0が介された配管によつて図示の配管系統を形成
している。
Next, the practical device shown in FIG. 3 is a heating/cooling hot water supply system using solar heat, and the main components are a reaction vessel 1, a storage vessel 2, a hot water storage tank 13, a fan coil 16, a hot water tap 17, and a heat collector 19. These are configured as pumps 22 to 24 and three-way valves 25 to 3.
The illustrated piping system is formed by the piping through which 0 is inserted.

貯溜容器2は前記熱交換器8に加えて熱交換コ
イル21および冷却フアン18を備えている。
In addition to the heat exchanger 8, the storage container 2 includes a heat exchange coil 21 and a cooling fan 18.

一方、貯湯タンク13は補助ヒータ14と熱交
換コイル15とを内蔵して、給湯用温水を適当な
温度に加熱する熱交換コイル15の能力が不足の
ときに補助ヒータ14を稼動させる。
On the other hand, the hot water storage tank 13 incorporates an auxiliary heater 14 and a heat exchange coil 15, and operates the auxiliary heater 14 when the ability of the heat exchange coil 15 to heat hot water for hot water supply to an appropriate temperature is insufficient.

フアンコイル16のコイルは水用配管によつ
て、反応容器1内の前記熱交換器5の伝熱管7…
と、太陽熱を集熱する集熱器19と、貯溜容器2
の熱交換器8、熱交換コイル21とに切り換つて
連通し得る如く設けられている。
The coils of the fan coil 16 are connected to the heat exchanger tubes 7 of the heat exchanger 5 in the reaction vessel 1 through water piping.
, a heat collector 19 that collects solar heat, and a storage container 2
The heat exchanger 8 and the heat exchange coil 21 are provided so as to be able to switch and communicate with each other.

この装置によつて暖房、給湯を行う場合を次に
説明する。
A case in which heating and hot water supply are performed using this device will be described next.

日中の太陽光線量が多い時間帯では、集熱器1
9で加熱された温水を直接フアンコイル16に送
つて暖房を行わせるとともに、温水の一部を熱交
換器5の伝熱管7…に送つて、生成化合物NaI・
nNH3の分解に供する。この分解が完全に行われ
た後は、温水の一部を熱交換コイル15に送つて
貯湯タンク13の給湯用温水を加熱せしめる。
During the day when the amount of sunlight is high, the heat collector 1
The hot water heated in step 9 is sent directly to the fan coil 16 for heating, and a part of the hot water is sent to the heat transfer tubes 7 of the heat exchanger 5 to generate the generated compound NaI.
Provided for decomposition of nNH3 . After this decomposition is completed, a portion of the hot water is sent to the heat exchange coil 15 to heat the hot water for hot water supply in the hot water storage tank 13.

このように、太陽熱を暖房・給湯用の熱源に、
また熱エネルギー貯蔵のための化合物分解用の熱
源に利用するのである。
In this way, solar heat can be used as a heat source for heating and hot water supply.
It is also used as a heat source for decomposing compounds to store thermal energy.

一方、早朝、夕方や曇天の時間帯で太陽熱量が
不足するときは、集熱器19の温水を熱交換器8
と熱交換コイル21に全量送つて貯溜容器2内の
NH3液を加熱させると、NH3液は蒸発気化して
NH3ガスとなり、冷媒通路3を経て反応容器1
内に流入する。
On the other hand, when the amount of solar heat is insufficient in the early morning, evening, or cloudy hours, hot water from the heat collector 19 is transferred to the heat exchanger 8.
and sends the entire amount to the heat exchange coil 21 and the inside of the storage container 2.
When NH3 liquid is heated, it evaporates and vaporizes.
It becomes NH 3 gas, passes through the refrigerant passage 3, and enters the reaction vessel 1.
flow inside.

その結果、前述した熱化学反応が急速に行われ
て、生成熱によつて吸収剤の温度が急上昇し、こ
の吸収剤と接する伝熱管7内の水温が上昇した時
点で該伝熱管7とフアンコイル16との間に温水
の循環を行わせることにより暖房が可能となる。
As a result, the above-mentioned thermochemical reaction occurs rapidly, and the temperature of the absorbent rises rapidly due to the generated heat, and when the temperature of the water in the heat exchanger tube 7 in contact with the absorbent rises, the heat exchanger tube 7 and the fan Heating is possible by circulating hot water between the coil 16 and the coil 16.

かくして、太陽光量の少ない時間帯でもケミカ
ルヒートポンプによつて暖房運転を行い得る。
In this way, heating operation can be performed using the chemical heat pump even during times when the amount of sunlight is low.

この場合、暖房と合わせてあるいは暖房を停止
して、貯湯タンク13内の水を加熱するようにし
ても勿論差支えない。
In this case, it is of course possible to heat the water in the hot water storage tank 13 in conjunction with heating or by stopping heating.

なお、第3図々示装置は夏期の冷房運転も可能
であつて、フアンコイル16内で室内空気と熱交
換した温水を熱交換器8に送り、NH3液の蒸発
潜熱で冷却しフアンコイル16に戻すことによつ
て室内冷房が可能であり、その際、反応容器1内
で生じた生成熱は、集熱器19で取得した熱と合
わせて貯湯タンク13内の水の加熱に利用するこ
とができる。
The device shown in Figure 3 is also capable of cooling operation in the summer, and the hot water that has been heat-exchanged with the indoor air in the fan coil 16 is sent to the heat exchanger 8, where it is cooled by the latent heat of vaporization of the NH 3 liquid and cooled by the fan coil. 16, it is possible to cool the room, and in this case, the generated heat generated in the reaction vessel 1 is used together with the heat acquired by the heat collector 19 to heat the water in the hot water storage tank 13. be able to.

次に、本発明装置において要部を成している反
応容器1に関しては、種々の形態が可能であつ
て、特に吸収剤貯溜部12と気相部11とを仕切
るための撥水性多孔質の壁6は、吸収剤と冷媒ガ
スとの化合、分解に際して、吸収剤の層各部に対
し均一に冷媒ガスを送り込み、あるいは冷媒ガス
を吸収剤の層各部から均一に取り出し得る形態で
あることが望ましいことは言う迄もなく、従つ
て、冷媒ガスおよび吸収剤に対し接触面積が大き
い構造であることが必要となる。
Next, regarding the reaction vessel 1 which constitutes the main part of the apparatus of the present invention, various forms are possible, and in particular, a water-repellent porous material for partitioning the absorbent storage part 12 and the gas phase part 11 is possible. It is desirable that the wall 6 has a form that allows the refrigerant gas to be uniformly delivered to each part of the absorbent layer or to be uniformly taken out from each part of the absorbent layer when the absorbent and refrigerant gas are combined and decomposed. Needless to say, it is therefore necessary to have a structure that has a large contact area with respect to the refrigerant gas and the absorbent.

第4図以降の各図に示す反応容器1の各例は、
いずれも撥水性多孔質の前記壁6において吸収剤
の層が略々均一な厚さとなり、かつ吸収剤に対す
る接触面積が大となるよう工夫を凝らしたもので
あるが、先ず第4図示例は撥水性多孔質材からな
る先端部6aが塞がれた管6′…を反応容器1内
の吸収剤貯溜部12に多行多列をなし並列的に垂
設して、各管6′…の上端開口部6bを冷媒通路
3に臨む気相部11としてのチヤンバーに連絡し
てなる構造であつて、それ等各管6′…の壁が前
記壁6となるもので反応容器1が縦長形である場
合に有利である。
Each example of the reaction vessel 1 shown in each figure after FIG. 4 is as follows.
In both cases, the absorbent layer has a substantially uniform thickness in the water-repellent porous wall 6, and the contact area with the absorbent is large. First, the fourth illustrated example is Tubes 6' made of a water-repellent porous material with their tips 6a closed are vertically arranged in parallel in multiple rows and columns in the absorbent reservoir 12 in the reaction vessel 1, and each tube 6'... It has a structure in which the upper end opening 6b is connected to a chamber serving as a gas phase section 11 facing the refrigerant passage 3, and the wall of each tube 6' serves as the wall 6, and the reaction vessel 1 is vertically long. It is advantageous if the shape is

また、各管6′…を熱交換器5の伝熱管7…に
対し交互の平行配列となる如く設けることによつ
て、利用運転の場合に生成熱を熱源水に効率良く
与えることができるし、蓄熱運転の際に吸収剤の
各部で発生した冷媒ガスを均等に抽出することが
できて好都合である。
Furthermore, by arranging the tubes 6' in parallel to the heat transfer tubes 7 of the heat exchanger 5 in an alternating arrangement, the generated heat can be efficiently given to the heat source water during utilization operation. It is advantageous that the refrigerant gas generated in each part of the absorbent during heat storage operation can be extracted evenly.

次に、第5図に例示したものは、反応容器1に
横長構造のものを使用する場合に好適な形態であ
つて、熱交換器5は両側に設けたヘツダー9,1
0間に多段多列をなす水平状で伝熱管7…を亘設
してなり、各伝熱管7…に対して撥水性多孔質材
からなるカバー6″を同心的に被着せしめて該カ
バー6″と伝熱管7の間の空間部に吸収剤を充填
した構造となしており、シエル4内を冷媒の通路
として利用することにより、前記カバー6″が吸
収剤貯溜部12と冷媒通路3に連通する気相部1
1とを仕切るための壁6となつているものであ
る。
Next, the one illustrated in FIG. 5 is a suitable form when a horizontally elongated structure is used as the reaction vessel 1, and the heat exchanger 5 has headers 9 and 1 provided on both sides.
Heat exchanger tubes 7 are horizontally arranged in multiple stages and rows between the heat exchanger tubes 7, and a cover 6'' made of a water-repellent porous material is concentrically applied to each heat exchanger tube 7. 6'' and the heat transfer tube 7 are filled with an absorbent, and by using the inside of the shell 4 as a passage for the refrigerant, the cover 6'' is connected to the absorbent reservoir 12 and the refrigerant passage 3. Gas phase part 1 communicating with
This serves as a wall 6 to separate the two.

この例は、吸収剤自体が各伝熱管7…を取り巻
き、かつ吸収剤の周りに冷媒ガスが存在する形態
であるので、冷媒との接触が均一化されると共に
分解時の冷媒ガス抽出も平均して行われ、さらに
吸収剤と伝熱管7内流体との間の熱交換も均一に
行われるので、可逆熱化学反応および熱交換に良
特性が発揮され、横形の場合に吸収剤と冷媒との
接触がかたより易い欠点を解消できる。
In this example, the absorbent itself surrounds each heat transfer tube 7, and the refrigerant gas is present around the absorbent, so that the contact with the refrigerant is uniform and the refrigerant gas extraction during decomposition is also averaged. Furthermore, heat exchange between the absorbent and the fluid inside the heat transfer tube 7 is performed uniformly, so good characteristics are exhibited for reversible thermochemical reactions and heat exchange. This solves the problem of easy contact.

一方、第6図、第7図に示したものは、反応容
器1内に蛇行状の伝熱管7…をヘツダー9,10
間に多並列接続してなる熱交換器5と撥水性多孔
質材で蛇行状に形成した管6′の複数本をヘツダ
ー31,32間に多並列接続したガス通路とを収
納して、伝熱管7…を利用側流体の通路に利用す
ると共に、各管6′…を冷媒通路3に連絡せしめ
て冷媒ガスの通路に利用し、一方、伝熱管7…、
管6′…の周囲のシエル4内に吸収剤を充填せし
めてなる構造である。
On the other hand, in the case shown in FIG. 6 and FIG.
A heat exchanger 5 which is connected in parallel between the headers 31 and 32 and a gas passage in which a plurality of pipes 6' formed in a meandering shape made of water-repellent porous material are connected in parallel between the headers 31 and 32 are housed. The heat pipes 7... are used as passages for fluid on the user side, and the respective pipes 6' are connected to the refrigerant passages 3 and used as passages for refrigerant gas, while the heat transfer tubes 7...,
It has a structure in which an absorbent is filled in the shell 4 around the tubes 6'.

この例の場合も、利用側流体が流通される伝熱
管7…と、吸収剤と冷媒ガスの間に介在する撥水
性多孔質の壁6として利用される管6′…とは吸
収剤の堆層内に分散的に配設されているので、接
触面積は大であり、かつ均散的な接触形態となつ
ていることから、可逆熱化学反応および熱交換の
面に良特性が発揮される。
In this example as well, the heat transfer tubes 7 through which the fluid on the utilization side flows and the tubes 6' used as the water-repellent porous walls 6 interposed between the absorbent and the refrigerant gas are the absorbent deposits. Since they are distributed in a distributed manner within the layer, the contact area is large and the contact form is uniform, resulting in good properties in terms of reversible thermochemical reactions and heat exchange. .

なお、堆層している吸収剤の内部において冷媒
ガスの流通性を良くすること、さらに利用側流体
と吸収剤との間の熱伝導性を改善することが反応
容器1の熱的特性に大きい影響を与えるものであ
るから、図示例においては、吸収剤の堆層中に撥
水性を有する繊維質材からなるフロツク33(毛
くず様体)を混入せしめて、吸収剤の層中に生じ
る冷媒ガスの気泡をフロツク33の存在により円
滑に流動し得るようにしている。なお、このフロ
ツク33は、冷媒と吸収剤とが化合して生じる液
状物質内で漂遊し得る如き適当な比重を持つもの
が好適である。
It should be noted that improving the circulation of the refrigerant gas inside the layered absorbent and improving the thermal conductivity between the user fluid and the absorbent are important for the thermal characteristics of the reaction vessel 1. Therefore, in the illustrated example, flocs 33 (hair-like bodies) made of a water-repellent fibrous material are mixed into the absorbent layer to reduce the amount of refrigerant generated in the absorbent layer. The presence of the floc 33 allows gas bubbles to flow smoothly. It is preferable that the floc 33 has an appropriate specific gravity so that it can float in the liquid substance produced by the combination of the refrigerant and the absorbent.

次いで、第8図に例示したものは、第5図で説
明した例と基本的構造を同じくするものであつ
て、多段多列の伝熱管7…からなる熱交換器5に
替えてコイル状管7′…からなる熱交換器5を用
いた構造であり、このコイル状管7′…は撥水性
多孔質材の管6′…が同心的に被着されていて、
両管6′,7′の間の空隙部に吸収剤を充填させて
いる。
Next, the example shown in FIG. 8 has the same basic structure as the example explained in FIG. The structure uses a heat exchanger 5 consisting of coiled tubes 7', on which tubes 6' made of a water-repellent porous material are concentrically attached,
The gap between the two tubes 6' and 7' is filled with an absorbent.

この例の諸性能は第5図々示のものと同じであ
る。
The performance of this example is the same as that shown in FIG.

一方、第9図乃至第12図によつて例示したも
のは、吸収剤を反応容器1内の所定個所に充填し
た後は取り出し等の後処理が実質的に困難である
上記各例のものとは異り、吸収剤をカプセル化し
て能力の増減調整、保守管理の容易化に便ならし
めた構造を有している点に特徴が存する。
On the other hand, the examples illustrated in FIGS. 9 to 12 are similar to those of the above-mentioned examples in which post-processing such as taking out the absorbent after filling it into a predetermined location in the reaction vessel 1 is substantially difficult. It is different in that it has a structure that encapsulates the absorbent, making it easier to adjust the capacity and facilitate maintenance management.

この装置は、反応容器1のシエル4内に伝熱性
板体34を縦横十字状に組み付けて格子棚に形成
したものを収納して、各板体34の交差部分に利
用側流体を流通するための流通路7″…を設けて、
格子棚フインを有する熱交換器5をシエル4内に
おいて構成している。
This device stores heat conductive plates 34 assembled in a vertical and horizontal cross shape to form a lattice shelf in the shell 4 of a reaction vessel 1, and allows the utilization fluid to flow through the intersections of the plates 34. A flow path 7″... is provided,
A heat exchanger 5 having lattice fins is configured within the shell 4.

そして上記熱交換器5の各区分棚に吸収剤カプ
セル35を介挿せしめて、該カプセル35の周面
が板体34に熱伝導的に接し得るようにしたもの
である。
An absorbent capsule 35 is inserted into each compartment of the heat exchanger 5 so that the peripheral surface of the capsule 35 can contact the plate 34 in a thermally conductive manner.

上記吸収剤カプセル35は、断面十字をなし
て、熱伝導率を改善するために用いられるフイン
材36に対して撥水性多孔質材からなる筒6を
被着して、撥水性を有する繊維質材からなるフロ
ツク33が適量混在されてなる吸収剤を前記筒6
内に充填すると共に、筒6の両端部を塞ぐこ
とによりカプセルが形成される。
The absorbent capsule 35 has a cross-shaped cross section, and a cylinder 6 made of a water-repellent porous material is attached to a fin material 36 used to improve thermal conductivity, so that the absorbent capsule 35 is made of water-repellent fibrous material. The absorbent material mixed with an appropriate amount of floc 33 made of
A capsule is formed by filling the inside of the cylinder 6 and closing both ends of the cylinder 6.

そして、反応容器1のシエル4内空間に冷媒ガ
スを流通させることにより、前記筒6が冷媒と
吸収剤の間に介在される壁6となつて、吸収剤を
カプセル内に封じた状態で冷媒ガスの出・入りを
円滑に行わせると共に、吸収剤と利用側流体の間
の熱交換を効率よく行わせることが可能である。
By circulating the refrigerant gas through the inner space of the shell 4 of the reaction vessel 1, the cylinder 6 becomes the wall 6 interposed between the refrigerant and the absorbent, and the refrigerant is sealed in the absorbent inside the capsule. It is possible to allow gas to flow in and out smoothly and to efficiently exchange heat between the absorbent and the fluid on the user side.

以上述べた反応容器1の各例は、いずれにおい
ても壁6が吸収剤に対して接触面積が大となり、
かつ吸収剤が略々均一の層厚さとなる如く分散的
に配置されているので、化学、分解時の熱交換な
らびに冷媒ガス流動を効果的に行わせることが可
能である。
In each of the examples of the reaction vessel 1 described above, the wall 6 has a large contact area with the absorbent,
In addition, since the absorbent is disposed in a dispersed manner so as to have a substantially uniform layer thickness, heat exchange during chemical and decomposition processes and refrigerant gas flow can be carried out effectively.

本発明は図面の各例によつて詳述した構成およ
び作用を有するものであつて、反応容器1内に貯
溜せしめた熱化学反応物質としての吸収剤は、層
厚さが各部において略々均一となり、かつ接触面
積が大となるように分散的に配置した壁6によつ
て冷媒ガスと仕切られているので、反応時間は場
所に関係なく各部において一様となるし、反応に
よる生成熱の取り出し、分解熱の供給を効率的に
行うことができる。
The present invention has the structure and operation described in detail with reference to each example in the drawings, and the absorbent as a thermochemical reactant stored in the reaction vessel 1 has a layer thickness that is substantially uniform in each part. Since the refrigerant gas is separated from the refrigerant gas by walls 6 disposed in a distributed manner to increase the contact area, the reaction time is uniform in each part regardless of the location, and the heat generated by the reaction is reduced. Decomposition heat can be extracted and decomposed heat can be efficiently supplied.

また、前記壁6が気体の通過のみを許容する撥
水性多孔質材で形成しているので、吸収剤の層中
深く介挿させあるいは吸収剤を包み込むなどの任
意の形態を採ることが可能となつて、吸収剤に対
する接触面積を飛躍的に増大し得るばかりでな
く、吸収剤が液体、固体に関係なく冷媒ガスとの
接触を効果的に行わせ得るので、同一反応系を使
用して、該反応系を液相のみならず固相領域まで
反応を進め得る蓄熱機能が重視されてなる交番運
転形化学反応熱ヒートポンプ方式が可能である。
In addition, since the wall 6 is made of a water-repellent porous material that only allows gas to pass through, it can take any form such as being inserted deep into the absorbent layer or enclosing the absorbent. Not only can the contact area with the absorbent be dramatically increased, but also the absorbent can be effectively brought into contact with the refrigerant gas regardless of whether it is a liquid or a solid, so using the same reaction system, It is possible to use an alternating operation type chemical reaction heat pump system in which emphasis is placed on a heat storage function that allows the reaction system to proceed not only in the liquid phase but also in the solid phase region.

さらに、冷媒ガスの通路ならびに熱交換器5の
加工上の理由により生じる反応容器1内の無効ス
ペースが、任意の形状を採り得る前記壁6の使用
によつて殆ど無くなり、従つて、反応容器1の蓄
熱密度が増加し、装置の小形化がはかれる。
Furthermore, the dead space inside the reaction vessel 1, which arises due to the passage of the refrigerant gas and due to processing reasons of the heat exchanger 5, is almost eliminated by the use of said wall 6, which can take any shape, and therefore the reaction vessel 1 The heat storage density of the device is increased, and the device can be made smaller.

以上の如く、本発明は種々のすぐれた効果を奏
する熱エネルギー貯蔵装置である。
As described above, the present invention is a thermal energy storage device that exhibits various excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来の熱エネルギー貯蔵
装置における反応容器の略示構造図、第3図は本
発明装置の1実施例に係る暖冷房・給湯装置の配
管系統図、第4図乃至第6図および第8図ならび
に第9図は本発明装置の各例に係る反応容器の略
示正面図、第7図は第6図々示反応容器の側面
図、第10図は第9図々示反応容器の側面図、第
11図は同じく第9図々示反応容器におけるカプ
セル単位体の略示構造図、第12図は第11図に
おけるA―A矢視断面図である。 1…反応容器、2…貯溜容器、3…冷媒通路、
5…熱交換器、6…壁、8…熱交換器。
1 and 2 are schematic structural diagrams of a reaction vessel in a conventional thermal energy storage device, FIG. 3 is a piping system diagram of a heating/cooling/water supply device according to an embodiment of the device of the present invention, and FIGS. 6, 8, and 9 are schematic front views of reaction containers according to each example of the apparatus of the present invention, FIG. 7 is a side view of the reaction container shown in FIG. 6, and FIG. 10 is a diagram of FIG. FIG. 11 is a schematic structural diagram of a capsule unit in the reaction container shown in FIG. 9, and FIG. 12 is a sectional view taken along the line AA in FIG. 11. 1... Reaction container, 2... Storage container, 3... Refrigerant passage,
5... Heat exchanger, 6... Wall, 8... Heat exchanger.

Claims (1)

【特許請求の範囲】 1 冷媒と化合して生成熱を放出し、分解熱を吸
収して前記冷媒とに分解する性質の吸収剤を収容
する反応容器1と、前記冷媒を収容する貯溜容器
2とからなり、吸収剤と冷媒ガスとの間で行われ
る可逆熱化学反応サイクルを利用することによ
り、熱エネルギーを化学エネルギーに転換して貯
蔵する熱エネルギー貯蔵装置において、前記貯蔵
容器2には、前記冷媒と熱源側流体との間で冷媒
の凝縮熱および蒸発熱の熱交換を行わせる熱交換
器8を収設する一方、前記反応容器1の内部に
は、冷媒ガスは通過させ、吸収剤溶液は撥水作用
によつて通過させない性質をもつ撥水性多孔質材
で形成した壁6により、冷媒ガスの気相部11と
吸収剤貯溜部12とを仕切り、また該壁6を吸収
剤が略々均一の層厚さとなり、かつ該吸収剤に対
する接触面積が大となる如く分散的に配置せしめ
るとともに、前記吸収剤と利用側流体との間で、
吸収剤と冷媒との反応による生成熱または分解熱
を熱交換する熱交換器5を収設し、前記反応容器
1と前記貯溜容器2との両気相部相互を冷媒通路
3により接続して、冷媒ガスを可逆的に流動し得
る如く成したことを特徴とする熱エネルギー貯蔵
装置。 2 反応容器1内の吸収剤中に撥水性繊維質材か
らなるフロツク33を混入せしめたことを特徴と
する特許請求の範囲第1項記載の熱エネルギー貯
蔵装置。
[Scope of Claims] 1. A reaction vessel 1 containing an absorbent having a property of combining with a refrigerant to release heat of formation and absorbing decomposition heat and decomposing into the refrigerant, and a storage container 2 containing the refrigerant. In a thermal energy storage device that converts thermal energy into chemical energy and stores it by utilizing a reversible thermochemical reaction cycle performed between an absorbent and a refrigerant gas, the storage container 2 includes: A heat exchanger 8 for exchanging heat of condensation and heat of evaporation of the refrigerant between the refrigerant and the heat source side fluid is installed, while the refrigerant gas is allowed to pass through the inside of the reaction vessel 1, and an absorbent A wall 6 made of a water-repellent porous material that does not allow the solution to pass through is used to partition the refrigerant gas vapor phase 11 and the absorbent reservoir 12. The layer thickness is approximately uniform, and the absorbent is disposed in a dispersed manner so that the contact area with the absorbent is large, and between the absorbent and the user fluid,
A heat exchanger 5 for exchanging heat generated or decomposed by the reaction between the absorbent and the refrigerant is installed, and the gas phase portions of the reaction container 1 and the storage container 2 are connected to each other by a refrigerant passage 3. A thermal energy storage device characterized in that it is configured to allow reversible flow of refrigerant gas. 2. The thermal energy storage device according to claim 1, wherein a flock 33 made of a water-repellent fibrous material is mixed into the absorbent in the reaction vessel 1.
JP4374881A 1981-03-24 1981-03-24 Heat energy reservoir Granted JPS57157995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4374881A JPS57157995A (en) 1981-03-24 1981-03-24 Heat energy reservoir

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4374881A JPS57157995A (en) 1981-03-24 1981-03-24 Heat energy reservoir

Publications (2)

Publication Number Publication Date
JPS57157995A JPS57157995A (en) 1982-09-29
JPS6357719B2 true JPS6357719B2 (en) 1988-11-11

Family

ID=12672376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4374881A Granted JPS57157995A (en) 1981-03-24 1981-03-24 Heat energy reservoir

Country Status (1)

Country Link
JP (1) JPS57157995A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115990A (en) * 1982-12-21 1984-07-04 Daikin Ind Ltd Heat accumulator
JP2010230268A (en) * 2009-03-27 2010-10-14 Toyoda Gosei Co Ltd Chemical heat pump device and method of using the same
JP6988675B2 (en) * 2018-05-09 2022-01-05 株式会社豊田中央研究所 Chemical heat storage reactor
JP7147612B2 (en) * 2019-02-14 2022-10-05 株式会社豊田中央研究所 Chemical heat storage reactor and chemical heat storage device
JP7230563B2 (en) * 2019-02-14 2023-03-01 株式会社豊田中央研究所 Chemical heat storage reactor and chemical heat storage device
JP2020153614A (en) * 2019-03-20 2020-09-24 住友重機械工業株式会社 Thermal storage device, cartridge, and storage method of cartridge
JP7368094B2 (en) * 2019-03-29 2023-10-24 住友重機械工業株式会社 heat storage unit

Also Published As

Publication number Publication date
JPS57157995A (en) 1982-09-29

Similar Documents

Publication Publication Date Title
US20030037907A1 (en) Solar energy heater with heat pipe and heat exchanger
US4329407A (en) Electrochemical storage battery
RU2433360C2 (en) Chemical heat pump operating with hybrid substance
US4560533A (en) Fast reactor power plant design having heat pipe heat exchanger
US4510922A (en) Energy storage system having thermally stratified liquid
JP5531334B2 (en) Chemical heat pump container
US4638646A (en) Heat storing apparatus
JP2017218492A (en) Chemical thermal storage material and heat storage container using chemical thermal storage material
JPS6357719B2 (en)
RU2000122836A (en) RECEIVER AND METHOD FOR PREPARING A FLUID UNDER PRESSURE
JP4889528B2 (en) Chemical heat pump and heat utilization system using the same
CN109297339A (en) A kind of preparation method of full liquid type steam accumulator and its composite phase-change heat-storage material
CN211650792U (en) Portable small solar heat pipe heater
US20030121515A1 (en) Counter - thermosyphon loop heat pipe solar collector
JPH02290478A (en) Direct contact type condenser and heat cycle apparatus using the same
JPS6229825Y2 (en)
CN216244943U (en) Solar energy integration energy storage box based on phase change energy storage technology
CN217358195U (en) Chemical energy heat storage device
JPS6126784Y2 (en)
JPS6256440B2 (en)
JPS591948B2 (en) heat storage device
JPS5919906Y2 (en) Heat exchange device using hydrogen storage metal
JPH02259365A (en) Solar pond system
JP2017009224A (en) Reactor and heat storage system
CN115597417A (en) Three-phase thermochemical heat storage device based on porous hydrophobic membrane