JPS6356253B2 - - Google Patents

Info

Publication number
JPS6356253B2
JPS6356253B2 JP54105744A JP10574479A JPS6356253B2 JP S6356253 B2 JPS6356253 B2 JP S6356253B2 JP 54105744 A JP54105744 A JP 54105744A JP 10574479 A JP10574479 A JP 10574479A JP S6356253 B2 JPS6356253 B2 JP S6356253B2
Authority
JP
Japan
Prior art keywords
ipdi
mdi
prepolymer
thermoplastic
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54105744A
Other languages
Japanese (ja)
Other versions
JPS5630425A (en
Inventor
Shinji Uchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP10574479A priority Critical patent/JPS5630425A/en
Publication of JPS5630425A publication Critical patent/JPS5630425A/en
Publication of JPS6356253B2 publication Critical patent/JPS6356253B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリイソシアナート化合物(以下単に
ポリイソシアナートと略称する)と活性水素含有
化合物(ポリテトラメチレンエーテルグリコー
ル)とを反応させて成形性(作業性)と物性特に
機械的特性の優れた熱可塑性ポリウレタン樹脂の
製造法に係る。 ポリイソシアナートと活性水素含有化合物とを
反応させて得られるポリウレタン樹脂は熱可塑性
のものと熱硬化性のものとがある。 熱可塑性のものにおいては溶液状態のものと溶
媒を含まない固体状態のものとがある。溶液状態
のものの代表例としてはジメチルホルムアミド又
はメチルエチルケトン中等でイソシアナートとポ
リオールおよび低分子ジオール又は低分子ジアミ
ン等と反応させて得られる完全反応一液型があり
これらのものは人造皮革および湿式紡糸用スパン
デツクス等に使用される。熱可塑性で固体状態の
ものは、ポリイソシアナートとポリオールおよび
低分子ジオールと無溶媒、加温下で反応させ、生
成物を細かい粒状(チツプ状)にし、エンジニア
リングプラステイツクスおよびスパンデツクス等
に溶融成形して使用される。 以上のようなポリイソシアナートと活性水素含
有化合物を反応して得られるウレタン樹脂は実用
上、成形性と製品の物性とが常に問題になり物性
を良くしようとすると、成形性が低下する場合が
多い。特に分子量の比較的大きなウレタン樹脂に
おいてはこの傾向が著るしい。例えば機械特性の
良好なものを得ようとすると熱可塑性で溶液状の
ものにあつては、分子量を上げるために溶液の粘
度が必要以上に高くなつたり、また樹脂自体の溶
媒に対する溶解性が悪くなつて溶液に濁りが生じ
たりする場合が多い。熱可塑性で固体状のものに
あつては、必要以上に溶融粘度が高くなつたり、
流動性が悪くなつて成形性が著るしく低下する場
合が多い。 本発明はこのような問題をより容易に解決する
ことを目的とするものであり、ポリイソシアナー
トと活性水素含有化合物との反応により得られる
熱可塑性ウレタン樹脂において成形性と物性のよ
りバランスのとれた樹脂組成を得る方法として、
ポリイソシアナート成分の一部として、3−イソ
シアナートメチル−3,5,5−トリメチルシク
ロヘキシルイソシアナート(以後IPDIと略す)
を添加する方法を見い出し本発明に到達した。 IPDIは耐候性の良いウレタン原料として知ら
れており、又これを用いて得られるウレタン樹脂
は他のポリイソシアナートを用いたものに比べて
粘度、溶解性および流動性において成形性の良好
な挙動を示す傾向にあるが、ポリイソシアナート
成分としてIPDI単独又は主成分として用いると
熱可塑性タイプにおいては耐熱性および耐溶剤性
において十分なものは得られがたい。しかし
IPDIを他のイソシアナート成分過剰の条件で共
存させて得られるウレタン樹脂は成形性とその物
性において、おどろくべきバランスのとれたもの
が得られる。 すなわち本発明は、ポリイソシアナート化合物
とポリテトラメチレンエーテルグリコールとを反
応させ熱可塑性ポリウレタン樹脂を製造する方法
において、ポリイソシアナート化合物の一部とし
て、3−イソシアナートメチル−3,5,5−ト
リメチルシクロヘキシルイソシアナートを、反応
に使用する全ポリイソシアナート化合物に対し4
〜40重量%使用することを特徴とする熱可塑性ポ
リウレタン樹脂の製造法に存する。 以下本発明を詳細に説明する。 本発明でいうIPDIと併用するポリイソシアナ
ートとしては、有機ポリイソシアナート、すなわ
ち、4,4′−ジフエニルメタンジイソシアナート
(MDI)、ポリフエニレンポリメチレンポリイソ
シアナート、2,4−トリレンジイソシアナート
(2,4−TDI)、2,6−トリレンジイソシアナ
ート(2,6−TDI)、キシレンジイソシアナー
ト(XDI)等の芳香族ポリイソシアナート、ヘキ
サメチレンジイソシアナート(HMDI)等の脂
肪族ポリイソシアナート等が挙げられる。 本発明においては、ポリイソシアナート化合物
とポリテトラメチレンエーテルグリコールとを反
応させて、熱可塑性ポリウレタン樹脂を製造する
が、ポリテトラメチレンエーテルグリコール以外
の活性水素含有化合物を併用することもできる。
このようなポリテトラメチレンエーテルグリコー
ル以外の活性水素含有化合物としてはポリエーテ
ルポリオール、ポリエステルポリオール、又はこ
れらの混合物、二塩基酸および二塩基酸と多価ア
ルコールとの反応によつて得られる末端にカルボ
キシル基を有するポリエステル、およびポリアミ
ン類等が挙げられる。 ポリエーテルポリオールの例としては、熱可塑
性ポリウレタンにはポリプロピレンエーテルグリ
コール、ポリエチレンポリプロピレンエーテルグ
リコール、ポリペンタメチレンエーテルグリコー
ル、ポリヘキサメチレンエーテルグリコール、ポ
リ−1,6−オクタメチレンエーテルグリコー
ル、ビスフエノール−Aにプロピレンオキサイド
又はエチレンオキサイドを付加して得られる芳香
環を有するグリコール等のポリエーテルグリコー
ル等が挙げられる。 ポリエステルポリオールの代表例は二塩基酸と
多価アルコールから作られるものである。このポ
リエステルポリオールの原料として有用な二塩基
酸はそのカルボキシル基以外に活性水素を有する
官能基を有しないもので、その具体例としてはフ
タル酸、テレフタル酸、イソフタル酸、コハク
酸、グルタル酸、アジピン酸、ピメリン酸のよう
な酸が適当である。 活性水素含有化合物としての二塩基酸は前記ポ
リエステルポリオール原料が挙げられる。二塩基
カルボン酸と多価アルコールとの反応によつて得
られる末端にカルボキシル基を有するポリエステ
ルとしては前記ポリエステルポリオールを製造す
る際当量比においてカルボキシル基の方をアルコ
ールの水酸基より過剰にしたものであれば良い。 ポリアミン化合物の代表例としては、熱可塑性
ポリウレタンにはエチレンジアミン、N−メチル
エチレンジアミン、N−エチルエチレンジアミ
ン、N,N′−ジメチルエチレンジアミン、1,
3−プロパンジアミン、1,2−プロパンジアミ
ン、1,4−ブタンジアミン、1,5−ペンタン
ジアミン、1,6−ヘキサメチレンジアミン等の
アルキレンジアミンが挙げられる。 次に本発明による各種ウレタン樹脂の製法およ
びその効果について具体的に記す。(同一樹脂に
おいて、使用するIPDI以外のイソシアナートを
主イソシアナートと略称する) IPDIの添加量はあまり多量に添加すると主イ
ソシアナートのみを用いた時の成形性、例えばポ
リイソシアナートとしてMDIを用いた熱可塑性
溶液タイプにおける低粘度化および低沸点溶媒使
用が可能となり、コーテイング作業の良好なもの
が得られるが、塗膜の機械特性および耐容剤性等
が低下する。又あまり少量すぎても成形性への効
果が少い。従つてIPDIの添加量としては、ウレ
タン樹脂製造に使用する全ポリイソシアナート成
分中4〜40重量%(以下、%は特に記載のない限
り重量%を示す)の範囲である。 熱可塑性溶液タイプのプレポリマー法の場合に
あつては、例えば主イソシアナート成分として
MDIを使用する場合に、MDIとポリオールおよ
びIPDIとポリオールからそれぞれ末端にイソシ
アナート基を有するプレポリマーを製造し、これ
らをブレンドして、ジメチルホルムアミド又はメ
チルエチルケトン等の溶媒中、ジアミンで鎖延長
するか、又はどちらか一方のプレポリマーを先に
ジアミンで鎖延長し、末端アミノ基のポリウレタ
ンを合成しこれにもう一方のプレポリマーを滴下
反応させて得られる。生成したポリマーはイソシ
アナートとしてMDI単独を用いた場合に比べ、
溶解性に富み重合中、又は重合完結後生成した樹
脂が析出したり、あるいは見掛け上のゲル化も起
りにくく、流動性の良好なものが得られる。これ
を流延し脱溶媒して得られるフイルムの物性にお
いても、MDI/IPDD(重量比)≧1の条件では
MDI単独使用の場合に比べヤング率の低下も、
少く、かつ破壊強度、破壊伸度においてほとんど
差のないものが得られる。即ちIPDIはMDI系エ
ラストマーの機械特性における特徴を維持して、
溶媒に対する溶解性とポリマー溶液の流動性改善
に極めて有効である。特にポリオール成分として
結晶性の比較的高いもの例えばポリテトラメチレ
ンエーテルグリコールを用いた場合とか、分子量
の比較的小さいものを用いた時IPDIによる効果
は顕著である。 ワンシヨツト法即ち、MDI、IPDI、ポリオー
ル、低分子ジオールを同時に前記プレポリマー法
の溶媒中に添加して合成する場合もプレポリマー
法と同様な効果がある。 熱可塑性固体状のものにあつてはポリイソシア
ナート、ポリオールおよびジオールを混合し、こ
れを加熱して得られるが、この場合主イソシアナ
ートをIPDIに混合するか、IPDIだけを先にポリ
オールとジオールに混合して加熱し反応がある程
度進んだ時に主イソシアナートを加えることが好
ましい。通常、当量比即ちNCO/OH(ポリオー
ルとジオールのOH基当量の和)≒1の条件でつ
くられるがNCO/OH>1の時は不完全熱可塑タ
イプでありNCO/OH<1の時は完全熱可塑タイ
プとなる。得られた樹脂はエクストルーダーを通
してチツプ状につくられる。この場合IPDIを用
いることにより、チツプを溶融成形する際の成形
性、特に鋳型に注入した時の流動性および得られ
た成形物の透明性を上げるのに大変有利となる。 次に本発明の実施例を説明する。 実施例1〜5、比較例1〜3 MDI250部とポリテトラメチレンエーテルグリ
コール(分子量994、以後このものをPTMG1000
と略す)597部とを80℃で90分間反応させNCO含
量5.5%のプレポリマーを得た。(以後このプレポ
リマーをMDI−PTMG1000と略す)次に
IPDI222部と597部のPTMG1000をジブチルチン
ジラウレイト2.5部の存在下、100℃で8時間反応
させ、NCO含量5.6%のプレポリマーを得た(こ
のプレポリマーをIPDI−PTMG1000と略す)。上
記の方法で得たプレポリマーをIPDI−
PTMG1000/MDI−PTMG1000(重量比)を変
化させて、DMF溶媒中、含水ヒドラジンで鎖延
長する。鎖延長反応法として、DMFに含水ヒド
ラジンとブチルチンジラウレイトを溶解した溶液
中にプレポリマーを滴下反応させるが、この場合
IPDI−PTMG1000を先に滴下反応させた後、
MDI−PTMG1000を滴下反応させる方法と、
MDI−PTMG1000の一部を先に滴下反応させた
後、MDI−PTMG1000とIPDI−PTMG1000の混
合物を反応させる方法で行つた。反応条件、生成
物の溶液特性およびフイルム物性を表1に示す。
The present invention is a thermoplastic resin that has excellent moldability (workability) and physical properties, especially mechanical properties, by reacting a polyisocyanate compound (hereinafter simply referred to as polyisocyanate) with an active hydrogen-containing compound (polytetramethylene ether glycol). Relates to a method for producing plastic polyurethane resin. Polyurethane resins obtained by reacting polyisocyanates with active hydrogen-containing compounds include thermoplastic and thermosetting resins. Thermoplastic materials include those in a solution state and those in a solid state that do not contain a solvent. A typical example of a solution state is a fully reacted one-component type obtained by reacting isocyanate with a polyol and a low-molecular diol or low-molecular diamine in dimethylformamide or methyl ethyl ketone, etc. These products are used for artificial leather and wet spinning. Used for spandex, etc. Thermoplastic solid state products are reacted with polyisocyanates, polyols, and low-molecular-weight diols without a solvent under heat, and the product is made into fine particles (chips) and melt-molded into engineering plastics, spandex, etc. used. In practical use, urethane resins obtained by reacting polyisocyanates and active hydrogen-containing compounds as described above always have problems with moldability and physical properties of the product, and when trying to improve the physical properties, the moldability may deteriorate. many. This tendency is particularly noticeable in urethane resins with relatively large molecular weights. For example, when trying to obtain a thermoplastic material with good mechanical properties, the viscosity of the solution becomes higher than necessary in order to increase the molecular weight, and the solubility of the resin itself in the solvent is poor. In many cases, the solution becomes cloudy. For thermoplastic solids, the melt viscosity may become higher than necessary,
In many cases, the fluidity becomes poor and the moldability is significantly reduced. The purpose of the present invention is to more easily solve these problems, and to improve the balance between moldability and physical properties in a thermoplastic urethane resin obtained by the reaction of polyisocyanate and an active hydrogen-containing compound. As a method to obtain a resin composition,
As part of the polyisocyanate component, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate (hereinafter abbreviated as IPDI)
The present invention was achieved by discovering a method of adding . IPDI is known as a urethane raw material with good weather resistance, and the urethane resin obtained using it has better moldability in terms of viscosity, solubility, and fluidity than those using other polyisocyanates. However, if IPDI is used as the polyisocyanate component alone or as the main component, it is difficult to obtain sufficient heat resistance and solvent resistance in the thermoplastic type. but
Urethane resins obtained by coexisting IPDI with other isocyanate components in excess have surprisingly well-balanced moldability and physical properties. That is, the present invention provides a method for producing a thermoplastic polyurethane resin by reacting a polyisocyanate compound and polytetramethylene ether glycol, in which 3-isocyanatomethyl-3,5,5- Trimethylcyclohexyl isocyanate was added at 4% of the total polyisocyanate compound used in the reaction.
A method for producing a thermoplastic polyurethane resin characterized in that the amount of the thermoplastic polyurethane resin is 40% by weight. The present invention will be explained in detail below. Examples of the polyisocyanate to be used in combination with IPDI in the present invention include organic polyisocyanates, such as 4,4'-diphenylmethane diisocyanate (MDI), polyphenylenepolymethylene polyisocyanate, and 2,4-trimethane diisocyanate. Aromatic polyisocyanates such as diisocyanate (2,4-TDI), 2,6-tolylene diisocyanate (2,6-TDI), xylene diisocyanate (XDI), hexamethylene diisocyanate (HMDI) Examples include aliphatic polyisocyanates such as. In the present invention, a thermoplastic polyurethane resin is produced by reacting a polyisocyanate compound and polytetramethylene ether glycol, but active hydrogen-containing compounds other than polytetramethylene ether glycol can also be used in combination.
Active hydrogen-containing compounds other than polytetramethylene ether glycol include polyether polyols, polyester polyols, or mixtures thereof, dibasic acids, and carboxyl-terminated compounds obtained by the reaction of dibasic acids and polyhydric alcohols. Examples thereof include polyesters having groups, polyamines, and the like. Examples of polyether polyols include polypropylene ether glycol, polyethylene polypropylene ether glycol, polyhexamethylene ether glycol, polyhexamethylene ether glycol, poly-1,6-octamethylene ether glycol, and bisphenol-A for thermoplastic polyurethanes. Examples include polyether glycols such as glycols having an aromatic ring obtained by adding propylene oxide or ethylene oxide. Typical examples of polyester polyols are those made from dibasic acids and polyhydric alcohols. Dibasic acids useful as raw materials for this polyester polyol have no functional group having active hydrogen other than their carboxyl group, and specific examples include phthalic acid, terephthalic acid, isophthalic acid, succinic acid, glutaric acid, and adipine. Acids such as pimelic acid are suitable. Examples of the dibasic acid as the active hydrogen-containing compound include the aforementioned polyester polyol raw materials. The polyester having a carboxyl group at the end obtained by the reaction of a dibasic carboxylic acid and a polyhydric alcohol may be one in which the carboxyl group is in excess of the hydroxyl group of the alcohol in the equivalent ratio when producing the polyester polyol. Good. Typical examples of polyamine compounds include ethylenediamine, N-methylethylenediamine, N-ethylethylenediamine, N,N'-dimethylethylenediamine, 1,
Examples include alkylene diamines such as 3-propanediamine, 1,2-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, and 1,6-hexamethylenediamine. Next, methods for producing various urethane resins according to the present invention and their effects will be specifically described. (Isocyanates other than IPDI used in the same resin are abbreviated as the main isocyanate.) Adding too much IPDI will affect the moldability when only the main isocyanate is used, for example, if MDI is used as the polyisocyanate. This makes it possible to lower the viscosity of thermoplastic solution types and use low-boiling point solvents, resulting in good coating work, but the mechanical properties and tolerability of the coating film deteriorate. Also, if the amount is too small, the effect on moldability will be small. Therefore, the amount of IPDI added is in the range of 4 to 40% by weight (hereinafter, % means % by weight unless otherwise specified) based on the total polyisocyanate component used for producing the urethane resin. In the case of a thermoplastic solution type prepolymer method, for example, as the main isocyanate component,
When using MDI, prepolymers each having an isocyanate group at the end are produced from MDI and polyol and IPDI and polyol, and these are blended and chain-extended with diamine in a solvent such as dimethylformamide or methyl ethyl ketone. , or by first chain-extending one of the prepolymers with a diamine, synthesizing a polyurethane with terminal amino groups, and reacting the other prepolymer dropwise thereto. The produced polymer is compared to when MDI alone is used as the isocyanate.
It is highly soluble, and the resin produced during polymerization or after completion of polymerization is unlikely to precipitate or appear to gel, and thus has good fluidity. Regarding the physical properties of the film obtained by casting and removing the solvent, under the condition of MDI/IPDD (weight ratio) ≧1,
Young's modulus also decreases compared to when MDI is used alone.
It is possible to obtain products with little difference in fracture strength and fracture elongation. In other words, IPDI maintains the mechanical properties of MDI elastomers,
It is extremely effective in improving the solubility in solvents and the fluidity of polymer solutions. In particular, the effect of IPDI is remarkable when a relatively highly crystalline polyol component, such as polytetramethylene ether glycol, or a relatively small molecular weight polyol component is used. The same effects as the prepolymer method can be obtained by the one-shot method, that is, when MDI, IPDI, polyol, and low-molecular-weight diol are simultaneously added to the solvent of the prepolymer method. Thermoplastic solids can be obtained by mixing polyisocyanate, polyol, and diol and heating the mixture. In this case, the main isocyanate is mixed with IPDI, or only IPDI is mixed with polyol and diol first. It is preferable to mix and heat the mixture and add the main isocyanate when the reaction has progressed to a certain extent. Usually, it is produced under the conditions of equivalent ratio, that is, NCO/OH (sum of OH group equivalents of polyol and diol)≒1, but when NCO/OH>1, it is an incomplete thermoplastic type, and when NCO/OH<1 Completely thermoplastic type. The resulting resin is made into chips through an extruder. In this case, the use of IPDI is very advantageous in improving the moldability when melt molding the chips, especially the fluidity when poured into a mold, and the transparency of the resulting molded product. Next, embodiments of the present invention will be described. Examples 1 to 5, Comparative Examples 1 to 3 250 parts of MDI and polytetramethylene ether glycol (molecular weight 994, hereinafter referred to as PTMG1000)
A prepolymer with an NCO content of 5.5% was obtained by reacting with 597 parts of NCO at 80°C for 90 minutes. (Hereinafter, this prepolymer will be abbreviated as MDI-PTMG1000) Next
222 parts of IPDI and 597 parts of PTMG1000 were reacted in the presence of 2.5 parts of dibutyltin dilaurate at 100°C for 8 hours to obtain a prepolymer with an NCO content of 5.6% (this prepolymer was abbreviated as IPDI-PTMG1000). The prepolymer obtained by the above method was IPDI-
PTMG1000/MDI-PTMG1000 (weight ratio) is varied, and the chain is extended with hydrous hydrazine in a DMF solvent. As a chain extension reaction method, a prepolymer is added dropwise to a solution of hydrous hydrazine and butyl tin dilaurate dissolved in DMF, but in this case,
After dropping IPDI-PTMG1000 first,
A method for dropping reaction of MDI-PTMG1000,
A part of MDI-PTMG1000 was first reacted dropwise, and then a mixture of MDI-PTMG1000 and IPDI-PTMG1000 was reacted. Table 1 shows the reaction conditions, solution properties of the product, and physical properties of the film.

【表】【table】

【表】 表1よりIPDI−PTMG1000の添加により、生
成溶液樹脂の濁りがなくなり経時安定性のより良
いものが得られる。 また、比較例2から明らかなように、IPDI単
独使用の場合は、軟化温度が低く、イソプロパノ
ールに可溶であり、耐熱性及び耐溶剤性に劣るこ
とがわかる。 実施例6〜8、比較例4 MDI250部とポリテトラメチレンエーテルグリ
コール(分子量1996、以後このものをPTMG−
2000と略す)998部を85℃で5時間反応させ、
NCO含量3.2%のプレポリマーを得た。(以後こ
のプレポリマーをMDI−PTMG2000と略す)次
にIPDI222部とPTMG998部とをジブチルチンジ
ラウレイト6.1gの存在下、100℃で20時間反応さ
せ、NCO含量3.6%のプレポリマーを得た。(こ
のプレポリマーをIPDI−PTMG2000と略す)上
記の方法で得たプレポリマーを実施例1と同様な
方法で滴下反応させるが、この場合、IPDI−
PTMG2000を先に滴下反応させ、次いでMDI−
PTMG2000を滴下反応させた。その結果を表2
に示す。
[Table] From Table 1, the addition of IPDI-PTMG1000 eliminates the turbidity of the resulting solution resin, resulting in a product with better stability over time. Furthermore, as is clear from Comparative Example 2, when IPDI is used alone, it has a low softening temperature, is soluble in isopropanol, and has poor heat resistance and solvent resistance. Examples 6 to 8, Comparative Example 4 250 parts of MDI and polytetramethylene ether glycol (molecular weight 1996, hereinafter referred to as PTMG-
(abbreviated as 2000) was reacted at 85℃ for 5 hours,
A prepolymer with an NCO content of 3.2% was obtained. (Hereinafter, this prepolymer will be abbreviated as MDI-PTMG2000.) Next, 222 parts of IPDI and 998 parts of PTMG were reacted at 100° C. for 20 hours in the presence of 6.1 g of dibutyltin dilaurate to obtain a prepolymer with an NCO content of 3.6%. (This prepolymer is abbreviated as IPDI-PTMG2000) The prepolymer obtained by the above method is reacted dropwise in the same manner as in Example 1, but in this case, IPDI-PTMG2000 is used.
PTMG2000 was first dropped and reacted, then MDI-
PTMG2000 was dropped and reacted. Table 2 shows the results.
Shown below.

【表】【table】

【表】 表2より実施例1と同様にIPDI系プレポリマ
ーの添加により生成樹脂溶液のにごりおよび経時
変化の少いものが得られる。 実施例 9 IPDI20部と201部のPTMG1000を65℃で90分反
応させNCO含量1.7%になつた時、MDI80部を加
え75℃で90分反応させ、NCO含量5.5%のプレポ
リマーを得た。次にこのもの50部をDMF50部に
溶解し、これを含水ヒドラジン1.65部とジブチル
チンジラウレート0.052部を含むDMF溶液73部の
中に滴下反応させる。生成した樹脂溶液は、にご
りがなく経時安定性の良好なものであつた。
[Table] From Table 2, as in Example 1, addition of the IPDI-based prepolymer results in a resin solution with less turbidity and less change over time. Example 9 20 parts of IPDI and 201 parts of PTMG1000 were reacted at 65°C for 90 minutes, and when the NCO content reached 1.7%, 80 parts of MDI was added and reacted at 75°C for 90 minutes to obtain a prepolymer with an NCO content of 5.5%. Next, 50 parts of this product was dissolved in 50 parts of DMF, and this was dropped into 73 parts of a DMF solution containing 1.65 parts of hydrous hydrazine and 0.052 parts of dibutyltin dilaurate for reaction. The resin solution produced was free from cloudiness and had good stability over time.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリイソシアナート化合物とポリテトラメチ
レンエーテルグリコールとを反応させ熱可塑性ポ
リウレタン樹脂を製造する方法において、ポリイ
ソシアナート化合物の一部として、3−イソシア
ナートメチル−3,5,5−トリメチルシクロヘ
キシルイソシアナートを、反応に使用する全ポリ
イソシアナート化合物に対し4〜40重量%使用す
ることを特徴とする熱可塑性ポリウレタン樹脂の
製造法。
1. In a method for producing a thermoplastic polyurethane resin by reacting a polyisocyanate compound and polytetramethylene ether glycol, 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate is used as part of the polyisocyanate compound. A method for producing a thermoplastic polyurethane resin, characterized in that 4 to 40% by weight of is used based on the total polyisocyanate compound used in the reaction.
JP10574479A 1979-08-20 1979-08-20 Preparation of polyurethane resin Granted JPS5630425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10574479A JPS5630425A (en) 1979-08-20 1979-08-20 Preparation of polyurethane resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10574479A JPS5630425A (en) 1979-08-20 1979-08-20 Preparation of polyurethane resin

Publications (2)

Publication Number Publication Date
JPS5630425A JPS5630425A (en) 1981-03-27
JPS6356253B2 true JPS6356253B2 (en) 1988-11-07

Family

ID=14415763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10574479A Granted JPS5630425A (en) 1979-08-20 1979-08-20 Preparation of polyurethane resin

Country Status (1)

Country Link
JP (1) JPS5630425A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896621A (en) * 1981-12-04 1983-06-08 Mitui Toatsu Chem Inc Prepolymer and elastomer of polyurethane
DE3227017A1 (en) * 1982-07-20 1984-01-26 Bayer Ag, 5090 Leverkusen METHOD FOR PRODUCING POLYISOCYANATE BASED PLASTICS
JPS59187070A (en) * 1983-04-06 1984-10-24 Toyobo Co Ltd Adhesive resin composition
JPH076229B2 (en) * 1986-06-17 1995-01-30 日本鋼管株式会社 Pillar hardware and its fixing device
JPS6351541A (en) * 1986-08-21 1988-03-04 日立金属株式会社 Column base made of reinforced concrete
JPH02274924A (en) * 1989-04-18 1990-11-09 Daito Lease Kk Foundation block for temporary gate and construction structure of the gate
JPH0365740U (en) * 1989-10-26 1991-06-26

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56819A (en) * 1979-05-17 1981-01-07 Mitui Toatsu Chem Inc Thermosetting polyurethane resin and coating agent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56819A (en) * 1979-05-17 1981-01-07 Mitui Toatsu Chem Inc Thermosetting polyurethane resin and coating agent

Also Published As

Publication number Publication date
JPS5630425A (en) 1981-03-27

Similar Documents

Publication Publication Date Title
US3721645A (en) Polyurethanes stabilized with 1,2,3-,1,2,4-1,2,5-,and 1,3,4-triazoles
US4546167A (en) P-TMXDI Polyurethane elastomers with good compression set properties
JPH01126318A (en) Thermosetting urethane elastomer
US20080300377A1 (en) Process for the preparation of Thermoplastic Polyurethanes based on 1,5-Naphthalene-Diisocyanate
TW201307416A (en) Thermoplastic polyurethane with reduced tendency to bloom from a bio-based glycol
GB2046281A (en) Process for producing polyurethane elastomer
CA1106998A (en) Isocyanate-terminated polyurethane prepolymers and elastomers prepared therefrom
JPH058728B2 (en)
AU602886B2 (en) Polymeric polyamines
JP2003501529A (en) High raw strength reactive hot melt by pre-polymerization in main reactor
US3523101A (en) Thermoplastic polycaprolactone polyurethanes
US20060058493A1 (en) Novel chain extender useful in the manufacture of polyurethanes and the corresponding polyurethanes
JPS6356253B2 (en)
US3718624A (en) Method of curing polyurethane prepolymers with liquid extender comprising 4,4{40 -methylenebis (2-chloroaniline) and low molecular weight polytetramethylene ether glycol
US4049632A (en) Chain extending polyurethanes with a large excess of water
AU630011B2 (en) A thermoplastic polyurethane and a process for the preparation thereof
US2987504A (en) Polyurethane rubber via storable intermediates
CA2994186A1 (en) Storage stable activated prepolymer composition
TW412547B (en) Two-stage process for producing semi-rigid solid polyurethane moulded items
JP3355615B2 (en) Method for producing polyoxymethylene-polyurethane alloy
JPH0377810B2 (en)
EP1262504A1 (en) A process for making bloom-free thermoplastic polyurethane compositions
JPS6018514A (en) Elastomer-forming composition
JPS6114221A (en) Production of thermoplastic polyurethane of excellent mold resistance
JPH10218968A (en) Polyisocyanate for flexible polyurethane foam