JPS635564B2 - - Google Patents

Info

Publication number
JPS635564B2
JPS635564B2 JP58004640A JP464083A JPS635564B2 JP S635564 B2 JPS635564 B2 JP S635564B2 JP 58004640 A JP58004640 A JP 58004640A JP 464083 A JP464083 A JP 464083A JP S635564 B2 JPS635564 B2 JP S635564B2
Authority
JP
Japan
Prior art keywords
exhaust
turbine
exhaust gas
passage
opens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58004640A
Other languages
Japanese (ja)
Other versions
JPS59128920A (en
Inventor
Tadashi Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP58004640A priority Critical patent/JPS59128920A/en
Publication of JPS59128920A publication Critical patent/JPS59128920A/en
Publication of JPS635564B2 publication Critical patent/JPS635564B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/14Exhaust treating devices having provisions not otherwise provided for for modifying or adapting flow area or back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2290/00Movable parts or members in exhaust systems for other than for control purposes
    • F01N2290/02Movable parts or members in exhaust systems for other than for control purposes with continuous rotary movement
    • F01N2290/04Movable parts or members in exhaust systems for other than for control purposes with continuous rotary movement driven by exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Supercharger (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ターボ過給機を備えたエンジンの排
気装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an exhaust system for an engine equipped with a turbocharger.

(従来の技術) 従来より、エンジンの排気ガスのエネルギによ
り回転するタービンでブロアを駆動しエンジンに
過給を行うようにしたターボ過給機を備えたエン
ジンは公知であり、また、この過給圧をエンジン
の運転条件に応じた最適値に制御するようにした
技術についても種々提案されている(特開昭56―
167814号公報参照)。
(Prior Art) Engines equipped with a turbo supercharger that supercharges the engine by driving a blower using a turbine rotated by the energy of the engine's exhaust gas have been known. Various technologies have also been proposed for controlling the pressure to the optimum value depending on the engine operating conditions (Japanese Patent Application Laid-Open No. 1983-1999).
(Refer to Publication No. 167814).

しかるに、上記提案エンジンにおいては、排気
行程の初期から後期にかけての排気ガスを全部タ
ーボ過給機のタービンに導入するように構成し、
過給圧が高くなり過ぎる時にだけ、排気ガスの一
部を排気バイパスバルブを開いて逃すようにして
いるものであり、この排気バイパスバルブを閉じ
たときには、排気ガスの有するエネルギを有効に
使用する点で過給効果は大きいものであるが、排
気ガスがタービンを通過するために排圧が上昇
し、燃焼室圧力が排気行程の後期においても低下
せずポンピングロスが増大するものである。
However, the proposed engine is configured so that all the exhaust gas from the beginning to the end of the exhaust stroke is introduced into the turbine of the turbocharger.
Only when the boost pressure becomes too high, a portion of the exhaust gas is released by opening the exhaust bypass valve, and when the exhaust bypass valve is closed, the energy contained in the exhaust gas is used effectively. Although the supercharging effect is large in this respect, the exhaust pressure increases as the exhaust gas passes through the turbine, and the combustion chamber pressure does not decrease even in the latter half of the exhaust stroke, increasing pumping loss.

上記ポンピングロスは、実際にはターボ過給機
による過給効果でエンジンの出力が上昇している
ことにより顕著ではないが、このポンピングロス
を低減すればさらに効率が向上し、燃費性の改善
を図ることができる。
The above pumping loss is actually not noticeable because the engine output increases due to the supercharging effect of the turbocharger, but reducing this pumping loss will further improve efficiency and improve fuel efficiency. can be achieved.

これに対し、エンジンの排気通路として、ター
ボ過給機のタービンを介設した第1の排気通路
と、上記タービンを迂回する第2の排気通路とを
設け、排気行程の前期は第1の排気通路から排気
ガスを流し、排気行程の後期は第2の排気通路か
ら排気ガスを流すようにしたものがある。(特開
昭57―146021号公報参照)。すなわち、このもの
は、排気行程の前期は後期よりも排気ガス量が多
く排圧が高い点に着目し、この前期の高い排圧を
有効に利用して過給効率を高めながら、後期にお
ける排圧の過上昇を防止しポンピングロスを低減
しようとするものである。
On the other hand, as an exhaust passage for the engine, a first exhaust passage in which the turbine of the turbocharger is interposed, and a second exhaust passage that bypasses the turbine are provided, and in the first half of the exhaust stroke, the first exhaust passage Some exhaust gases are made to flow through a passage, and in the latter half of the exhaust stroke, exhaust gas is made to flow from a second exhaust passage. (Refer to Japanese Patent Application Laid-Open No. 146021/1983). In other words, this system focuses on the fact that the exhaust gas volume and exhaust pressure are higher in the first half of the exhaust stroke than in the second half, and effectively utilizes the high exhaust pressure in the first half to increase supercharging efficiency while increasing the exhaust pressure in the second half. The purpose is to prevent excessive rise in pressure and reduce pumping loss.

(発明が解決しようとする問題点) しかしながら、上述のように排気行程の後期に
タービンを迂回させて排気ガスを流す場合、過給
効率が幾分低下することは免れない。本発明者
は、この過給効率の低下の問題について種々検討
した結果、排気系には一般に排気ガス浄化用の触
媒装置がタービンの下流側に設けられるが、この
触媒装置が排気抵抗となり、また、この触媒装置
での酸化反応による熱で排気ガスが熱膨張するこ
とにより、タービン下流の圧力が上昇し、過給効
率がさらに低下するという問題があることを見い
出したものである。
(Problems to be Solved by the Invention) However, as described above, when the turbine is bypassed in the latter half of the exhaust stroke to allow the exhaust gas to flow, it is inevitable that the supercharging efficiency will decrease somewhat. As a result of various studies on this problem of reduced supercharging efficiency, the inventor of the present invention found that although a catalyst device for purifying exhaust gas is generally provided in the exhaust system downstream of the turbine, this catalyst device causes exhaust resistance and It was discovered that there is a problem in that the exhaust gas thermally expands due to the heat generated by the oxidation reaction in the catalyst device, which increases the pressure downstream of the turbine, further reducing the supercharging efficiency.

(問題点を解決するための手段) 本発明は、上記問題点を解決する手段として、
エンジンの燃焼室に複数の排気ポートを開口し、
この各排気ポートに開弁時期および閉弁時期が互
いに異なる排気弁を配設するとともに、各排気ポ
ートに互いに独立した排気通路を接続し、早期に
開口および閉口する排気ポートからの排気ガスを
導出する排気通路にターボ過給機のタービンを介
設する一方、この排気ポートよりも遅れて開口お
よび閉口する排気ポートからの排気ガスを導出す
る排気通路に酸化触媒を介設し、この両排気通路
が合流した下流側の集合排気通路に三元触媒を介
設したことを特徴とするエンジンの排気装置を提
供するものである。
(Means for solving the problems) The present invention, as a means for solving the above problems,
Multiple exhaust ports are opened in the combustion chamber of the engine,
Each exhaust port is equipped with an exhaust valve that opens and closes at a different timing, and each exhaust port is connected to an independent exhaust passage to direct exhaust gas from the exhaust port that opens and closes early. The turbine of the turbocharger is interposed in the exhaust passage that opens and closes later than this exhaust port, and an oxidation catalyst is interposed in the exhaust passage that leads out exhaust gas from the exhaust port that opens and closes later than this exhaust port. The present invention provides an engine exhaust system characterized in that a three-way catalyst is interposed in a downstream collective exhaust passage where the two converge.

(作 用) 上記排気装置の場合、第3図に排気行程におけ
る排気ガス量(排圧)とHC排出量の一般的な変
化が示されている如く、早期に開口し閉口する排
気ポートから導出される排気行程前期の多量の排
気ガスを利用してターボ過給機のタービンが回転
される。そして、排気行程後期には遅れて開口し
閉口する排気ポートからの排気ガスがタービンを
迂回して排出されることにより、排圧の上昇が防
止される。
(Function) In the case of the above exhaust system, as shown in Figure 3, which shows the general changes in exhaust gas amount (exhaust pressure) and HC emission amount during the exhaust stroke, the exhaust gas is drawn out from the exhaust port that opens and closes early. The turbine of the turbocharger is rotated using a large amount of exhaust gas in the first half of the exhaust stroke. In the latter half of the exhaust stroke, the exhaust gas from the exhaust port, which opens and closes with a delay, bypasses the turbine and is discharged, thereby preventing an increase in exhaust pressure.

しかして、HC排出量は排気行程後期に多くな
るが、この後期の排気ガスは酸化触媒を介設した
排気通路を流れるため、HCが効率的に浄化され
る。そして、この酸化触媒はタービンとは別の排
気通路に介設されているため、その介設によつて
タービン下流の圧力上昇を招くことはない。従つ
て、排気ガスの浄化に関しては、タービン下流の
三元触媒にはCOやNOxの浄化を主として受けも
たせ、HCの浄化については上記酸化触媒に大き
く依存せしめることにより、三元触媒の負担を軽
くすることができる。つまり、この三元触媒の触
媒量を少なくして排気抵抗を低減し、タービン下
流の圧力を低く抑えることができる。
Therefore, the amount of HC emissions increases in the latter half of the exhaust stroke, but since the exhaust gas in this latter stage flows through the exhaust passage with an oxidation catalyst interposed therebetween, HC is efficiently purified. Since this oxidation catalyst is provided in an exhaust passage separate from the turbine, its provision does not cause an increase in pressure downstream of the turbine. Therefore, in terms of exhaust gas purification, the three-way catalyst downstream of the turbine is primarily responsible for purifying CO and NOx, while the oxidation catalyst is largely dependent on the oxidation catalyst for HC purification, thereby reducing the burden on the three-way catalyst. can do. In other words, by reducing the amount of catalyst in this three-way catalyst, exhaust resistance can be reduced and pressure downstream of the turbine can be kept low.

また、上記HCの浄化においては、その酸化反
応により発熱があるが、その発熱は主として酸化
触媒で生じてこの酸化触媒を介設した排気通路で
放熱されることより、タービン下流の排気通路へ
の伝熱は少なくなり、タービン下流の触媒で同量
のHCの酸化を行なう場合よりも、このタービン
下流での排気ガスの熱膨張を小さくし、圧力を低
く抑えることができる。
In addition, in the purification of HC, heat is generated due to the oxidation reaction, but the heat is mainly generated in the oxidation catalyst and dissipated in the exhaust passage with the oxidation catalyst interposed, so it is not transmitted to the exhaust passage downstream of the turbine. Heat transfer is reduced, and the thermal expansion of the exhaust gas downstream of this turbine is lower than if the same amount of HC were oxidized by a catalyst downstream of the turbine, resulting in a lower pressure.

(発明の効果) 従つて、本発明によれば、排気行程後期にター
ボ過給機のタービンを迂回して排気ガスを流し、
過給効率の低下を容認しながらポンピングロスの
低減を図るにあたり、上記排気行程後期にタービ
ンを迂回して排気ガスを流す排気通路に酸化触媒
を介設し、タービンを介設した排気通路と酸化触
媒を介設した排気通路が合流した集合排気通路に
三元触媒を介設したことにより、タービン下流側
での触媒の介設による排気抵抗の上昇および触媒
反応熱による排気ガスの熱膨張を抑え、過給効率
の低下を最小限に抑えることができる。
(Effects of the Invention) Therefore, according to the present invention, the exhaust gas is caused to bypass the turbine of the turbocharger in the latter half of the exhaust stroke, and
In order to reduce pumping loss while accepting a decrease in supercharging efficiency, an oxidation catalyst is interposed in the exhaust passage where exhaust gas flows bypassing the turbine in the latter half of the exhaust stroke, and the oxidation catalyst is inserted between the exhaust passage through which the turbine is inserted and the By installing a three-way catalyst in the collective exhaust passage where the exhaust passages with catalysts merge, the increase in exhaust resistance due to the installation of the catalyst downstream of the turbine and the thermal expansion of exhaust gas due to catalyst reaction heat are suppressed. , the decrease in supercharging efficiency can be minimized.

(実施例) 以下、本発明の実施例を図面に基いて説明す
る。
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

第1図に示す例は4バルブエンジンの場合であ
り、エンジンのシリンダヘツド1の底面に形成さ
れる各燃焼室2,2に対し、一方の側面1aから
2つの第1および第2の吸気ポート3および4が
開口するとともに、他方の側面1bから2つの第
1および第2の排気ポート5および6がそれぞれ
開口している。
The example shown in FIG. 1 is for a 4-valve engine, and two first and second intake ports are provided from one side surface 1a for each combustion chamber 2, 2 formed on the bottom surface of the cylinder head 1 of the engine. 3 and 4 are open, and two first and second exhaust ports 5 and 6 are opened from the other side surface 1b, respectively.

上記各吸気ポート3,4および排気ポート5,
6にはそれぞれ各ポートを開閉する第1および第
2の吸気弁7,8並びに第1および第2の排気弁
9,10がそれぞれ配設されている。上記第1お
よび第2の排気弁9,10の開閉タイミングは、
第2図に示すように、一方の第1の排気ポート5
を開閉する第1の排気弁9が、他方の第2の排気
ポート6を開閉する第2の排気弁10より、その
開弁時期および閉弁時期のいずれも早くなるよう
に設定されている。
Each of the above intake ports 3, 4 and exhaust port 5,
6 is provided with first and second intake valves 7, 8 and first and second exhaust valves 9, 10, respectively, which open and close each port. The opening and closing timings of the first and second exhaust valves 9 and 10 are as follows:
As shown in FIG. 2, one first exhaust port 5
The first exhaust valve 9, which opens and closes, is set to open and close earlier than the second exhaust valve 10, which opens and closes the other second exhaust port 6.

すなわち、燃焼行程から排気行程に移行する下
死点(BDC)近傍において、第1の排気弁9が
開き、続いて所定期間経過後に第2の排気弁10
が開き、排気行程の後期において第1の排気弁9
が閉じた後に、吸気行程に移行する上死点
(TDC)近傍において、第2の排気弁10が閉じ
る。
That is, the first exhaust valve 9 opens near the bottom dead center (BDC) where the combustion stroke shifts to the exhaust stroke, and then, after a predetermined period of time, the second exhaust valve 10 opens.
opens, and the first exhaust valve 9 opens in the latter half of the exhaust stroke.
After the second exhaust valve 10 closes, the second exhaust valve 10 closes near the top dead center (TDC) where the intake stroke begins.

上記第1の排気弁9によつて早期に開口する排
気ポート5に対して第1の排気通路11が接続さ
れる一方、第2の排気弁10によつて遅く開口す
る排気ポート6に対して第2の排気通路12が接
続され、それぞれ排気ポート5,6から排出され
る排気ガスを導出するよう構成され、各気筒2,
2の各第1排気通路11,11および各第2排気
通路12,12はそれぞれ集合される。
The first exhaust passage 11 is connected to the exhaust port 5 which opens early by the first exhaust valve 9, while the exhaust port 6 opens late by the second exhaust valve 10. A second exhaust passage 12 is connected and configured to lead out exhaust gas discharged from exhaust ports 5 and 6, respectively, and each cylinder 2,
The first exhaust passages 11, 11 and the second exhaust passages 12, 12 of the two are assembled together.

上記第1の排気通路11には、ターボ過給機1
3のタービン13aが介設される一方、第2の排
気通路12には、HC浄化用の酸化触媒からなる
補助触媒装置14が介設され、両排気通路11,
12は下流側で集合排気通路15に合流し、この
集合排気通路15に三元触媒からなる主触媒装置
16が介装されている。
A turbo supercharger 1 is provided in the first exhaust passage 11.
In addition, an auxiliary catalyst device 14 consisting of an oxidation catalyst for HC purification is provided in the second exhaust passage 12, and both exhaust passages 11,
12 joins a collective exhaust passage 15 on the downstream side, and a main catalyst device 16 consisting of a three-way catalyst is interposed in this collective exhaust passage 15.

第3図には、ピストンが下死点から上死点に移
行する排気行程において、第1の排気弁9が開い
てから第2の排気弁10が閉じるまでの全体の排
気ガス量(実線)およびHC排出量(破線)を示
すものである。
FIG. 3 shows the total amount of exhaust gas (solid line) from when the first exhaust valve 9 opens until the second exhaust valve 10 closes during the exhaust stroke when the piston moves from the bottom dead center to the top dead center. and HC emissions (dashed line).

排気ガス量については、第1の排気弁9のみが
開いている排気行程前期においては、多量の排気
ガスが排出される一方、第2の排気弁10のみが
開いている排気行程後期においては、排気ガス量
はピーク値を越えて減少した値となつている。
Regarding the amount of exhaust gas, in the first half of the exhaust stroke when only the first exhaust valve 9 is open, a large amount of exhaust gas is exhausted, while in the second half of the exhaust stroke when only the second exhaust valve 10 is open, The amount of exhaust gas has decreased beyond its peak value.

一方、HC排出量については、第1の排気弁9
のみが開口している排気行程前期においては比較
的少量で、第2の排気弁10のみが開口している
排気行程後期においては多量な排出となつてい
る。
On the other hand, regarding the HC emission amount, the first exhaust valve 9
In the first half of the exhaust stroke when only the second exhaust valve 10 is open, the amount is relatively small, and in the second half of the exhaust stroke when only the second exhaust valve 10 is open, a large amount is discharged.

よつて、第1の排気通路11を流れる排気ガス
量はその開口時間に対して流量は多く、ターボ過
給機13のタービン13aを有効に回転させ、そ
の際の第1の排気通路11から排出されるHCは
比較的少量である。また、第2の排気通路12を
流れる排気ガス量は比較的少ない反面、HCの排
出量は多量であり、この排気ガスはHC浄化用の
補助触媒装置14によつてHC成分が効率的に浄
化される。さらに、全排気ガスは主触媒装置16
によつて、上記補助触媒装置14で浄化されなか
つた残りのHCとCO、NOxの浄化が行われる。
Therefore, the amount of exhaust gas flowing through the first exhaust passage 11 is large relative to its opening time, effectively rotating the turbine 13a of the turbocharger 13, and discharging the gas from the first exhaust passage 11 at that time. The amount of HC produced is relatively small. In addition, although the amount of exhaust gas flowing through the second exhaust passage 12 is relatively small, the amount of HC discharged is large, and the HC components of this exhaust gas are efficiently purified by the auxiliary catalyst device 14 for HC purification. be done. Furthermore, all the exhaust gas is
As a result, the remaining HC, CO, and NOx that were not purified by the auxiliary catalyst device 14 are purified.

上記のような実施例の構造によれば、第4図に
示すようにその指圧線図において、排気行程で第
2の排気弁10が開いて燃焼室2内の圧力が低下
し、さらに、第1の排気弁9が閉じて第2の排気
弁10のみが開くA点の後には、排気ガスはター
ボ過給機13に導入されないために、排圧の上昇
がなく実線で示すように、大気圧Poに低下し、
この部分の排気ガスを全部ターボ過給機13に導
入する破線のものに比べて、ポンピングロスが低
下し、全体としての効率が向上する。
According to the structure of the embodiment as described above, in the acupressure diagram shown in FIG. 4, the second exhaust valve 10 opens during the exhaust stroke and the pressure inside the combustion chamber 2 decreases, and After point A, when the first exhaust valve 9 closes and only the second exhaust valve 10 opens, the exhaust gas is not introduced into the turbocharger 13, so there is no increase in exhaust pressure, and the exhaust pressure increases, as shown by the solid line. Atmospheric pressure drops to Po,
Compared to the dashed line in which all the exhaust gas in this portion is introduced into the turbocharger 13, the pumping loss is reduced and the overall efficiency is improved.

しかして、排気ガス中のHCは主として補助触
媒装置14で浄化されるため、主触媒装置15は
補助触媒装置14でHCの浄化が担われる分だけ
その触媒量を減らしてタービン下流での排気抵抗
を小さくすることができる。また、補助触媒装置
14でのHCの酸化反応で生ずる熱は第2の排気
通路12の壁からの放熱により、タービン13a
の下流側へはあまり伝わらず、且つ、主触媒装置
16で酸化されるHC量は少ないためその発熱量
は少なく、結局、タービン13aの下流における
排気ガスの熱膨張が抑えられる。従つて、上記排
気抵抗が小さくなることと、熱膨張が少ないこと
によつて、タービン13aの下流における圧力の
上昇が防止され、ターボ過給機13の過給効率の
低下が抑えられる。
Therefore, since HC in the exhaust gas is mainly purified by the auxiliary catalyst device 14, the amount of catalyst in the main catalyst device 15 is reduced by the amount of HC purification performed by the auxiliary catalyst device 14, and the exhaust resistance downstream of the turbine is reduced. can be made smaller. Further, the heat generated by the oxidation reaction of HC in the auxiliary catalyst device 14 is radiated from the wall of the second exhaust passage 12, and is transferred to the turbine 13a.
Since the amount of HC oxidized in the main catalyst device 16 is small, its calorific value is small, and as a result, the thermal expansion of the exhaust gas downstream of the turbine 13a is suppressed. Therefore, due to the reduced exhaust resistance and small thermal expansion, pressure increases downstream of the turbine 13a are prevented, and a decrease in supercharging efficiency of the turbocharger 13 is suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様を例示し、第1図は概
略構成図、第2図は2つの排気弁の開閉タイミン
グを示す曲線図、第3図は排気弁の開閉に対する
排気ガス量およびHC排出量の関係を示すグラ
フ、第4図はエンジンの指圧線図である。 1……シリンダヘツド、2……燃焼室、5,6
……排気ポート、9,10……排気弁、11,1
2……排気通路、13……ターボ過給機、13a
……タービン、14……補助触媒装置(酸化触
媒)、15……集合排気通路、16……主触媒装
置(三元触媒)。
The drawings illustrate embodiments of the present invention; FIG. 1 is a schematic configuration diagram, FIG. 2 is a curve diagram showing the opening and closing timing of two exhaust valves, and FIG. 3 is a graph showing the amount of exhaust gas and HC emissions with respect to opening and closing of the exhaust valve. The graph showing the relationship between quantities, FIG. 4, is a finger pressure diagram of the engine. 1... Cylinder head, 2... Combustion chamber, 5, 6
...Exhaust port, 9,10...Exhaust valve, 11,1
2... Exhaust passage, 13... Turbo supercharger, 13a
...Turbine, 14...Auxiliary catalyst device (oxidation catalyst), 15...Common exhaust passage, 16...Main catalyst device (three-way catalyst).

Claims (1)

【特許請求の範囲】[Claims] 1 エンジンの燃焼室に複数の排気ポートを開口
し、上記各排気ポートに開弁時期および閉弁時期
が異なる複数の排気弁を配設するとともに各排気
ポートに独立した排気通路を接続し、早期に開口
および閉口する排気ポートからの排気ガスを導出
する排気通路にターボ過給機のタービンを介設
し、該タービンを介設する排気通路に排気ガスを
導出する排気ポートの開口時期および閉口時期よ
りそれぞれ遅れて開口および閉口する排気ポート
からの排気ガスを導出する排気通路に酸化触媒を
介設し、上記両排気通路が合流した下流側の集合
排気通路に三元触媒を介設したことを特徴とする
エンジンの排気装置。
1 A plurality of exhaust ports are opened in the combustion chamber of the engine, and a plurality of exhaust valves with different opening and closing timings are arranged in each exhaust port, and an independent exhaust passage is connected to each exhaust port. A turbine of a turbocharger is interposed in an exhaust passage that leads exhaust gas from an exhaust port that opens and closes, and the opening timing and closing timing of the exhaust port that leads exhaust gas to the exhaust passage that interposes the turbine. An oxidation catalyst is interposed in the exhaust passage that leads out exhaust gas from the exhaust port, which opens and closes later, respectively, and a three-way catalyst is interposed in the collective exhaust passage on the downstream side where the two exhaust passages join together. Features an engine exhaust system.
JP58004640A 1983-01-13 1983-01-13 Exhuast device for engine Granted JPS59128920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58004640A JPS59128920A (en) 1983-01-13 1983-01-13 Exhuast device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58004640A JPS59128920A (en) 1983-01-13 1983-01-13 Exhuast device for engine

Publications (2)

Publication Number Publication Date
JPS59128920A JPS59128920A (en) 1984-07-25
JPS635564B2 true JPS635564B2 (en) 1988-02-04

Family

ID=11589581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58004640A Granted JPS59128920A (en) 1983-01-13 1983-01-13 Exhuast device for engine

Country Status (1)

Country Link
JP (1) JPS59128920A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10973156B2 (en) 2014-04-30 2021-04-06 Manufacturing Resources International, Inc. Dual electronic display assembly
US11013142B2 (en) 2008-03-03 2021-05-18 Manufacturing Resources International, Inc. Electronic display with cooling

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4875455A (en) * 1987-04-28 1989-10-24 Mazda Motor Corporation Automobile exhaust gas recirculating system
EP1706616A1 (en) * 2004-01-14 2006-10-04 Lotus Cars Limited A turbocharged internal combustion engine
US8091357B2 (en) 2008-03-31 2012-01-10 Caterpillar Inc. System for recovering engine exhaust energy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146021A (en) * 1981-03-05 1982-09-09 Nissan Motor Co Ltd Engine with turbo charger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57146021A (en) * 1981-03-05 1982-09-09 Nissan Motor Co Ltd Engine with turbo charger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11013142B2 (en) 2008-03-03 2021-05-18 Manufacturing Resources International, Inc. Electronic display with cooling
US10973156B2 (en) 2014-04-30 2021-04-06 Manufacturing Resources International, Inc. Dual electronic display assembly

Also Published As

Publication number Publication date
JPS59128920A (en) 1984-07-25

Similar Documents

Publication Publication Date Title
US7509805B2 (en) Control of exhaust to a turbo of internal combustion engine
JP4147601B2 (en) Turbocharged engine
EP1097298B1 (en) Catalytic converter system for i.c. - engine with divided flow and two converters
WO2006043502A1 (en) Engine
US20210140394A1 (en) Low-pressure egr system with turbo bypass
US11560831B2 (en) Low-pressure EGR system with turbo bypass
JP2598060B2 (en) Method for controlling the working cycle of an internal combustion engine and its implementation
JP4177961B2 (en) Method of operating an internal combustion engine and internal combustion engine
JPS63309727A (en) Exhaust gas treatment device for internal combustion engine with exhaust turbosupercharger
JPS635564B2 (en)
JPH0586989A (en) Exhaust gas reflux device for engine with mechanical type supercharger
JPH077573Y2 (en) Intake air heating system for ship engine
JPH0433966B2 (en)
JP2004124744A (en) Turbocharged engine
JPH0192532A (en) Engine provided with exhaust turbocharger
JP2566232B2 (en) Valve timing controller for engine with supercharger
JPS63309725A (en) Exhaust gas treatment device for internal combustion engine with exhaust turbosupercharger
JP2994784B2 (en) Engine combustion chamber structure
JPH04175452A (en) Exhaust gas recirculation device for engine
JPH1162722A (en) Cool egr device for turbo supercharge type engine
JP2966129B2 (en) Engine combustion chamber structure
JPH065021B2 (en) Turbocharged engine
JPS6233939Y2 (en)
JPH0717787Y2 (en) Supercharged engine
JPS60178921A (en) Internal-combustion engine with exhaust purifier and supercharger