JPS6355627B2 - - Google Patents

Info

Publication number
JPS6355627B2
JPS6355627B2 JP56202473A JP20247381A JPS6355627B2 JP S6355627 B2 JPS6355627 B2 JP S6355627B2 JP 56202473 A JP56202473 A JP 56202473A JP 20247381 A JP20247381 A JP 20247381A JP S6355627 B2 JPS6355627 B2 JP S6355627B2
Authority
JP
Japan
Prior art keywords
evaporator
freezing
cooling
refrigerant
refrigerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56202473A
Other languages
Japanese (ja)
Other versions
JPS58104469A (en
Inventor
Koji Ito
Kenichi Fujiwara
Hikari Sugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP20247381A priority Critical patent/JPS58104469A/en
Publication of JPS58104469A publication Critical patent/JPS58104469A/en
Publication of JPS6355627B2 publication Critical patent/JPS6355627B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 本発明は車両において車室内の冷房と冷凍冷蔵
庫内の冷却の両方を行い得る車両用冷房冷凍冷蔵
装置に関するもので、ワゴン車のようにレジヤー
カーとして多目的に使用される車両に装備される
に好適なものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vehicle cooling/freezing/refrigerating device capable of cooling both the interior of a vehicle and the refrigerator/freezer, and is applicable to a vehicle used for multiple purposes as a leisure car such as a wagon. It is suitable for being installed in

従束、車室内に配設された車両用の小型冷蔵庫
の冷却は、一般に冷房装置よりの冷風の一部を冷
蔵庫内に導いて行うようにしていた。しかしなが
ら、このようなものでは冷蔵庫を冷房装置の冷風
ダクト内にしか配設できず冷蔵庫の設置場所が限
定されてしまうという不具合があり、また冷房用
の冷風を利用して庫内の冷却を行なうため庫内の
温度を十分下げることができず、製氷することも
できなかつた。また、庫内温度は冷房状態に左右
され温度を自由に設定することができなかつた。
A small refrigerator for a vehicle installed in a passenger compartment is generally cooled by guiding a portion of cold air from an air conditioner into the refrigerator. However, this type of refrigerator has the disadvantage that the refrigerator can only be installed inside the cold air duct of the air conditioner, which limits the installation location of the refrigerator, and the inside of the refrigerator is cooled using the cold air for cooling. Therefore, the temperature inside the refrigerator could not be lowered sufficiently, and ice could not be made. Furthermore, the temperature inside the refrigerator was affected by the cooling state, and the temperature could not be set freely.

かかる欠点を是正するため本出願人は、従来の
冷房用の減圧装置及び冷房用蒸発器を有する冷房
用冷媒回路に、冷凍冷蔵庫用の減圧装置及び冷凍
冷蔵用蒸発器を有する冷凍冷蔵用冷媒回路を並列
に付加し、冷媒を前記冷房用冷媒回路と冷凍冷蔵
用冷媒回路とに交互に流すように構成した装置を
開発した。この装置の作動を簡単に説明すると、
まず冷房用冷媒回路を閉じて冷凍冷蔵用冷媒回路
を冷媒を流し、圧縮機の吸入によつて冷凍冷蔵用
蒸発器内の蒸発圧力を下げて、蒸発器表面温度を
下げ、これが所定の最低値以下に低下すると、冷
凍冷蔵用冷媒回路を流入端、流出端を閉じて冷凍
冷蔵庫用蒸発器を密閉し、同時に冷房用冷媒回路
の開いて通常の冷房運転に切りかえる。密閉され
た冷凍冷蔵用蒸発器内においては、内部に流入し
ていた液冷媒の蒸発によつて冷却が行われ、一
方、蒸発圧力及び蒸発温度自体は徐々に上昇す
る。これに伴い蒸発器表面温度が徐々に上昇する
が、これが所定の最高値を越えて上昇すると、再
び冷凍冷蔵用冷媒回路が開かれ、圧縮機により冷
凍冷蔵用蒸発器内の蒸発圧力を下げる。以下同様
の作動が繰り返えされる。
In order to rectify such drawbacks, the present applicant has developed a refrigerant circuit for freezing and refrigerating that has a pressure reducing device for refrigerator-freezers and an evaporator for freezing and refrigerating, in addition to the conventional refrigerant circuit for cooling that has a pressure reducing device for cooling and a cooling evaporator. We have developed a device in which the refrigerant is added in parallel and the refrigerant is alternately flowed through the cooling refrigerant circuit and the freezing and refrigeration refrigerant circuit. A brief explanation of how this device works is as follows:
First, the cooling refrigerant circuit is closed and the refrigerant is allowed to flow through the freezing and refrigeration refrigerant circuit, and the evaporation pressure in the freezing and refrigeration evaporator is lowered by suction from the compressor, thereby lowering the evaporator surface temperature, which reaches a predetermined minimum value. When the temperature drops below, the inlet and outlet ends of the freezer/refrigerator refrigerant circuit are closed to seal the freezer/refrigerator evaporator, and at the same time, the cooling refrigerant circuit is opened to switch to normal cooling operation. Inside the hermetically sealed evaporator for freezing and refrigerating, cooling is performed by evaporation of the liquid refrigerant that has flowed into the evaporator, while the evaporation pressure and evaporation temperature themselves gradually rise. Along with this, the evaporator surface temperature gradually rises, but when this rises beyond a predetermined maximum value, the freezing/refrigerating refrigerant circuit is opened again, and the compressor lowers the evaporation pressure in the freezing/refrigerating evaporator. The same operation is repeated thereafter.

かかる装置において重要なことは、冷凍冷蔵用
冷媒回路を閉じ、冷房用冷媒回路を開いて通常の
冷房運転を行う期間を極力長くすることである。
換言すれば冷凍冷蔵用蒸発器内に極力多くの液冷
媒を流入させ、かつその液冷媒を有効に利用する
ことにより、冷凍冷蔵用冷媒回路を閉じた後の蒸
発器表面温度の上昇を極力おそくすることであ
る。また、冷凍冷蔵用冷媒回路を開いた後、急速
に蒸発器表面温度が所定の最低値に到達すること
も重要である。
What is important in such a device is to close the refrigerant circuit for freezing and refrigeration, open the refrigerant circuit for cooling, and make the period during which normal cooling operation is performed as long as possible.
In other words, by allowing as much liquid refrigerant as possible to flow into the evaporator for freezing and refrigeration and making effective use of that liquid refrigerant, the rise in surface temperature of the evaporator after the refrigerant circuit for freezing and refrigeration is closed is minimized. It is to be. It is also important that the evaporator surface temperature quickly reach a predetermined minimum value after opening the refrigerant circuit for freezing and refrigeration.

従つて、本発明の目的は、冷凍冷蔵用冷媒回路
の閉止期間を長くし、かつ冷凍冷蔵用冷媒回路が
開いた時は敏速にその蒸発器表面温度を低下させ
得る特性の冷凍冷蔵用蒸発器を有する車両用冷房
冷凍冷蔵装置を提供することである。
Therefore, an object of the present invention is to provide an evaporator for refrigeration and refrigeration that has characteristics that extend the closing period of a refrigerant circuit for refrigeration and refrigeration, and that can quickly reduce the surface temperature of the evaporator when the refrigerant circuit for refrigeration and refrigeration is opened. An object of the present invention is to provide a vehicle cooling/freezing/refrigerating device having the following features.

本発明によれば、冷凍冷蔵用冷媒回路内に用い
る冷凍冷蔵用蒸発器を、複数個のほぼ水平な熱交
換部分を有するように蛇行状に屈曲形成された扁
平チユーブで構成し、かつ前記熱交換部分の両端
部を熱交換部分よりも高くなくて、該熱交換部分
内に液冷媒が溜るようになしたことを特徴とす
る。
According to the present invention, the evaporator for freezing and refrigeration used in the refrigerant circuit for freezing and refrigeration is constituted by a flat tube bent in a meandering manner so as to have a plurality of substantially horizontal heat exchange portions, and It is characterized in that both ends of the exchange part are not higher than the heat exchange part so that liquid refrigerant accumulates within the heat exchange part.

以下本発明の実施例を添付図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明をワゴン車用ツインクーラと組
合せて実施した場合の冷凍サイクルを示してお
り、1は冷媒の圧縮・吐出を行なう圧縮機で、図
示しない車両走行用エンジンの駆動力を電磁クラ
ツチ11を介して受けて作動するようになつてい
る。2はこの圧縮機1より吐出された高温高圧の
ガス冷媒を冷却して凝縮する凝縮器、3は凝縮器
2で凝縮した冷媒を受けて液冷媒のみ導出する受
液器である。Aは車室内前部のインパネ下部に設
置されるフロント側冷房ユニツトであり、4は液
冷媒を低温低圧の霧状に減圧膨脹させる減圧装
置、5は冷房用蒸発器である。減圧装置4は冷房
用蒸発器5の出口側に配設された感温筒4′から
の信号に応じて絞り量を可変とする膨張弁よりな
り、冷房用蒸発器5出口での冷媒過熱度が一定と
なるように冷媒流量を制御する。フロント側冷房
ユニツトAは車室内もしくは車室外の空気を冷房
フアン16で吸入し、その吸入空気を蒸発器5で
冷却した後、車室内前面の中央及び左右に設けた
吹出口(図示せず)より前席の乗員に向けて吹出
すようになつている。6は電磁弁で、上記減圧装
置4、蒸発器5を有する冷房用冷媒回路18の冷
媒の流れを制御する。12は冷房用蒸発器5を通
過した冷風の温度を感知するサーミスタからなる
温度センサである。Bは車室内の助手席後方の床
下等に設置され、車室内後席の乗員を冷房するリ
ヤ側冷房ユニツトであり、フロント側と同様の機
器4a,4a′,5a′,6a,12a,16a,1
8aを有している。フロント側とリヤ側の冷房用
冷媒回路18,18aは互いに並列に接続されて
いる。
Fig. 1 shows a refrigeration cycle when the present invention is implemented in combination with a twin cooler for a wagon. 1 is a compressor that compresses and discharges refrigerant, and the driving force of the vehicle running engine (not shown) is electromagnetic. The clutch 11 is used to operate the clutch 11. 2 is a condenser that cools and condenses the high-temperature, high-pressure gas refrigerant discharged from the compressor 1, and 3 is a liquid receiver that receives the refrigerant condensed in the condenser 2 and draws out only liquid refrigerant. A is a front side cooling unit installed at the lower part of the instrument panel at the front of the vehicle interior, 4 is a pressure reducing device that depressurizes and expands liquid refrigerant into a low-temperature, low-pressure mist, and 5 is a cooling evaporator. The pressure reducing device 4 is composed of an expansion valve that changes the amount of throttling according to a signal from a temperature-sensitive cylinder 4' disposed on the outlet side of the cooling evaporator 5, and adjusts the degree of superheating of the refrigerant at the outlet of the cooling evaporator 5. The refrigerant flow rate is controlled so that the The front side cooling unit A sucks air from inside the vehicle interior or outside the vehicle interior with a cooling fan 16, cools the intake air with an evaporator 5, and then blows the air through air outlets (not shown) provided at the center and left and right sides of the front surface of the vehicle interior. The air is now blown more towards the front seat occupants. A solenoid valve 6 controls the flow of refrigerant in the cooling refrigerant circuit 18 having the pressure reducing device 4 and the evaporator 5. A temperature sensor 12 is a thermistor that detects the temperature of the cold air that has passed through the cooling evaporator 5. B is a rear cooling unit that is installed under the floor behind the passenger seat in the vehicle interior and cools the passengers in the rear seats of the vehicle interior, and is equipped with the same equipment 4a, 4a', 5a', 6a, 12a, 16a as the front side. ,1
8a. The front side and rear side cooling refrigerant circuits 18, 18a are connected in parallel to each other.

15は両温度センサ12,12aの検出信号が
入力される電子制御装置で、フロント側の冷風温
度が設定温度以下に低下すると温度センサ12か
らの信号を受けて電磁弁6への通電を遮断して、
電磁弁6を閉弁し、またリヤ側の冷風温度が設定
温度以下に低下すると、温度センサ12aからの
信号を受けて電磁弁6aへの通電を遮断して電磁
弁6aを開弁するように構成されている。つま
り、制御装置15は2つの冷房用冷媒回路18,
18aへの冷媒の流れを独立に制御して、蒸発器
5,5aへの霜付きを防止する。更に、制御装置
15は、2つの電磁弁6,6aへの通電を同時に
遮断したときには電磁クラツチ11への通電を遮
断して圧縮機1を停止するように構成されてい
る。なお、13はフロント側冷房ユニツトAの起
動停止を行うクーラスイツチ、13aはリヤ側冷
房ユニツトBの起動停止を行うクーラスイツチ、
14は車載の電源バツテリである。
Reference numeral 15 denotes an electronic control device to which detection signals from both temperature sensors 12 and 12a are input, and when the temperature of the cold air on the front side falls below a set temperature, it receives the signal from the temperature sensor 12 and cuts off the power to the solenoid valve 6. hand,
When the solenoid valve 6 is closed and the temperature of the cold air on the rear side falls below the set temperature, the solenoid valve 6a receives a signal from the temperature sensor 12a, cuts off the power to the solenoid valve 6a, and opens the solenoid valve 6a. It is configured. In other words, the control device 15 has two cooling refrigerant circuits 18,
The flow of refrigerant to 18a is independently controlled to prevent frost formation on evaporators 5 and 5a. Further, the control device 15 is configured to cut off the power to the electromagnetic clutch 11 and stop the compressor 1 when the two electromagnetic valves 6 and 6a are simultaneously cut off. In addition, 13 is a cooler switch that starts and stops the front side cooling unit A, 13a is a cooler switch that starts and stops the rear side cooling unit B,
14 is an on-vehicle power battery.

上記2つの冷房用冷媒回路18,18aに並列
に冷凍冷蔵用冷媒回路19が接続されており、こ
の回路19の途中には、冷媒の流れる方向に順
次、定圧膨脹弁7、冷凍冷蔵用蒸発器8、逆止弁
9が接続されている。
A freezing and refrigerating refrigerant circuit 19 is connected in parallel to the two cooling refrigerant circuits 18 and 18a, and a constant pressure expansion valve 7 and a freezing and refrigerating evaporator are installed in the middle of this circuit 19 in order in the direction in which the refrigerant flows. 8. A check valve 9 is connected.

定圧膨脹弁7は低圧側の圧力が設定値以下とな
ると開き、かつ低圧側を一定圧力に制御しうるタ
イプの膨脹弁であり、本実施例では冷媒としてフ
ロンR−12が用いられ、定圧膨脹弁7の設定開弁
圧力は0.5Kg/cm2G(蒸発温度−21℃)に選定され
ている。
The constant pressure expansion valve 7 is a type of expansion valve that opens when the pressure on the low pressure side becomes less than a set value and can control the low pressure side to a constant pressure. In this embodiment, Freon R-12 is used as the refrigerant, and the constant pressure expansion The set valve opening pressure of the valve 7 is selected to be 0.5 Kg/cm 2 G (evaporation temperature -21°C).

上記の冷凍冷蔵用蒸発器8は、後述するように
冷凍用蒸発器部8aと冷蔵用蒸発器部8bとに区
分されており、前者8aは冷凍室25内に設置さ
れ、後者8bは冷蔵室26内に設置されている。
この冷蔵室26内には、送風機24、サーミスタ
からなる温度センサ23が設置されている。この
温度センサ23は冷蔵室26内で送風空気流が直
接当らないような位置(第3図参照)に設けてあ
る。Cは冷凍冷蔵庫の全体を示す。
The above-mentioned freezing and refrigerating evaporator 8 is divided into a freezing evaporator part 8a and a refrigeration evaporator part 8b, as will be described later.The former 8a is installed in the freezing compartment 25, and the latter 8b is installed in the refrigerator compartment. It is located within 26.
Inside the refrigerator compartment 26, a blower 24 and a temperature sensor 23 consisting of a thermistor are installed. This temperature sensor 23 is provided in the refrigerator compartment 26 at a position where it is not directly hit by the blown air flow (see FIG. 3). C shows the entire refrigerator-freezer.

第2図および第3図は冷凍冷蔵庫Cの具体的構
造を例示するものであり、この冷凍冷蔵庫Cは箱
体100を有している。この箱体100はポリエ
チレン又はポリプロピレン等からなる2重の樹脂
部材を用いたいわゆる2重壁構造となつており、
その2重壁間には硬質ポリウレタン等の断熱材2
2を注入して断熱性の向上を図つてある。箱体1
00にはこれを同様に2重壁構造と硬質ポリウレ
タン等の断熱材とを組合せたドア101がヒンジ
102により開閉自在に連結されている。箱体1
00の底部は段付形状に成形され、その段部上に
空気吸入用の格子103を固定する形状となつて
おり、更にこの格子103から吸入された空気が
流れる冷風通路104が形成されている。蒸発器
収納用ケース105はポリエチレン又はポリプロ
ピレンの2重壁構造となつており、箱体100の
溝部(図示せず)にさし込み固定されるようにな
つている。このケース105は略コ字状に成形さ
れており、冷凍室25を形成している。ケース1
05の前面には冷凍室25の開口部105aがあ
けられ、冷凍庫ドア106で開閉される。この冷
凍庫ドア106はヒンジにてケース105と連結
されている。なお、ケース105の前面上部は冷
蔵用蒸発器部8bの前方まで延びて格子105b
が形成されており、送風機24からの風を通過で
きる様になつている。
2 and 3 illustrate the specific structure of the refrigerator-freezer C, which has a box body 100. FIG. This box 100 has a so-called double wall structure using a double resin member made of polyethylene or polypropylene, etc.
There is a heat insulating material such as hard polyurethane between the double walls.
2 is injected to improve the heat insulation properties. Box body 1
00 is connected to a door 101 which similarly has a double wall structure and a heat insulating material such as hard polyurethane and can be opened and closed by a hinge 102. Box body 1
The bottom of 00 is formed into a stepped shape, on which an air suction grid 103 is fixed, and furthermore, a cold air passage 104 is formed through which air sucked from this grid 103 flows. . The evaporator storage case 105 has a double wall structure made of polyethylene or polypropylene, and is inserted into a groove (not shown) of the box 100 and fixed therein. This case 105 is formed into a substantially U-shape, and forms a freezer compartment 25. Case 1
05 has an opening 105a for the freezer compartment 25, which is opened and closed by a freezer door 106. This freezer door 106 is connected to the case 105 with a hinge. Note that the upper front surface of the case 105 extends to the front of the refrigerating evaporator section 8b and is covered with a lattice 105b.
is formed so that the air from the blower 24 can pass therethrough.

上記ケース105内に収容される蒸発器8は冷
凍室25を冷却する冷凍用蒸発器部8aと、冷蔵
室26への空気を冷却する冷蔵用蒸発器部8bと
からなり、これらは蛇行状に屈曲形成された一体
の偏平チユーブで構成され、その両端には冷媒入
口パイプ8cと冷媒出口パイプ8dが接合されて
いる。この蒸発器8を更に詳しく説明すると、第
4図に示すように、冷凍用蒸発器部8aは水平な
熱交換部分80a,81aを有し、この部分80
a,81a上に製氷皿107が置かれるようにな
つている。また、冷蔵用蒸発器部8bも水平な熱
交換部分80b,81bを有し、かつこれらの間
には空気を効率よく冷却するようにコルゲートフ
イン8eが設けられている。なお、コルゲートフ
イン8はその下部を熱交換部分80bにろう付け
されて固定されている。これらの熱交換部分のう
ち、製氷皿をのせる熱交換部分80a,81a及
びコルゲートフイン8eの下部をろう付けした熱
交換部分80bの両端部82a,83a,84
a,85a,82b,83bはそれぞれの熱交換
部分よりも高い位置に位置するように構成されて
いる。この構成は各熱交換部分80a,81a,
80bに送られて来た低温液冷媒が、自重により
下方に流れ落ちるのを阻止し、これらの部分80
a,81a,80bに溜るようにするためのもの
である。なお、本実施例では最上部の熱交換部分
81bには液冷媒がたまるような構成となつてい
ないが、この部分にも液冷媒がたまるようにして
もよい。
The evaporator 8 housed in the case 105 consists of a freezing evaporator part 8a that cools the freezing compartment 25 and a refrigeration evaporator part 8b that cools the air to the refrigerator compartment 26. It is composed of an integral, bent flat tube, and a refrigerant inlet pipe 8c and a refrigerant outlet pipe 8d are connected to both ends thereof. To explain this evaporator 8 in more detail, as shown in FIG.
An ice cube tray 107 is placed on the ice cubes 81a and 81a. The refrigeration evaporator section 8b also has horizontal heat exchange sections 80b and 81b, and a corrugated fin 8e is provided between these sections to efficiently cool the air. Note that the lower part of the corrugated fin 8 is brazed and fixed to the heat exchange portion 80b. Among these heat exchange parts, heat exchange parts 80a and 81a on which ice trays are placed, and both ends 82a, 83a, 84 of a heat exchange part 80b to which the lower part of the corrugated fin 8e is brazed
a, 85a, 82b, and 83b are configured to be located at a higher position than their respective heat exchange parts. This configuration includes each heat exchange portion 80a, 81a,
The low-temperature liquid refrigerant sent to the parts 80b is prevented from flowing downward due to its own weight, and these parts 80
This is to allow the liquid to accumulate in a, 81a, and 80b. In this embodiment, the liquid refrigerant does not accumulate in the uppermost heat exchange portion 81b, but the liquid refrigerant may accumulate in this portion as well.

再び第2図、第3図を参照するに、箱体100
内には送風機24が配置されている。送風機24
のケース24aは箱体100にビス等で固定され
ており、送風機のフアン24bを回転させるモー
タ24cも箱体100に固定されている。ケース
24aの側面の吸入口は冷風通路104に連通
し、吐出口は冷蔵用蒸発器部8bの空気通路(コ
ルゲートフイン8e部)に連通している。かくし
て、送風機24は冷蔵室26内の空気を格子10
3、空気通路104を通して吸入し、冷蔵用蒸発
器部8bにて冷却した後、冷蔵室26に送り出す
作用をなしている。冷凍室25は、冷凍用蒸発器
部8a内の冷媒を0.5Kg/cm2程度の低圧にするこ
とで、製氷皿107、製氷蓋108内の水等を製
氷可能とする。蒸発器8の冷媒入口パイプ8cに
つながる定圧膨脹弁7、また冷媒出口パイプ8d
につながる逆止弁9等もすべて箱体100内に収
納されている。逆止弁9は圧縮機サクシヨン側の
冷媒配管より冷凍冷蔵側冷媒回路19へ冷媒が逆
流するのを阻止する構造となつている。
Referring again to FIGS. 2 and 3, the box body 100
A blower 24 is arranged inside. Blower 24
The case 24a is fixed to the box 100 with screws or the like, and the motor 24c that rotates the fan 24b of the blower is also fixed to the box 100. The inlet on the side surface of the case 24a communicates with the cold air passage 104, and the outlet communicates with the air passage (corrugated fin 8e) of the refrigerating evaporator section 8b. Thus, the blower 24 blows the air inside the refrigerator compartment 26 through the grid 10.
3. The air is sucked in through the air passage 104, cooled in the refrigerating evaporator section 8b, and then sent out to the refrigerating compartment 26. The freezing chamber 25 makes it possible to make ice from the water, etc. in the ice making tray 107 and the ice making lid 108 by keeping the refrigerant in the freezing evaporator part 8a at a low pressure of about 0.5 kg/cm 2 . Constant pressure expansion valve 7 connected to refrigerant inlet pipe 8c of evaporator 8, and refrigerant outlet pipe 8d
All the check valves 9 and the like connected to the box body 100 are housed inside the box body 100. The check valve 9 has a structure that prevents refrigerant from flowing back from the refrigerant pipe on the compressor suction side to the refrigerant circuit 19 on the freezing and refrigerating side.

なお、箱体100は車室内の適宜位置、例えば
ワゴン車の車室前部の計器盤下部の位置、あるい
は後部座席の下部位置等に設置するとよい。
The box 100 may be installed at an appropriate position in the vehicle interior, for example, at the lower part of the instrument panel at the front of the vehicle interior of a wagon, or at the lower part of the rear seat.

一方、第1図において、冷蔵室26の冷却状態
を検出する温度センサ23と直列に温度設定用の
可変抵抗22を接続し、この直列回路を制御装置
21に接続し、温度センサ23の検出信号に応じ
て制御装置21により送風機24の作動を断続す
ることにより冷蔵室26内の温度を一定(例えば
5℃)に保つようになつている。可変抵抗22の
操作を行う温度調節つまみは車室内に設けられ、
車室内で冷蔵室26の設定温度を自由に調節でき
るようになつている。
On the other hand, in FIG. 1, a variable resistor 22 for temperature setting is connected in series with the temperature sensor 23 that detects the cooling state of the refrigerator compartment 26, and this series circuit is connected to the control device 21, and the detection signal of the temperature sensor 23 is The temperature in the refrigerator compartment 26 is kept constant (for example, 5° C.) by intermittent operation of the blower 24 by the control device 21 depending on the temperature. A temperature control knob for operating the variable resistor 22 is provided in the vehicle interior,
The set temperature of the refrigerator compartment 26 can be freely adjusted within the vehicle interior.

また、冷凍用蒸発器部8aにはその表面温度を
検出するサーミスタからなる温度センサ10が設
けられており、この温度センサ10は制御装置2
0に接続されている。そして、温度センサ10の
検出温度が高温側設定温度(本例では−10℃以
下)になると、制御装置20が出力を出しリレー
18に通電することによりリレー接点を開き電磁
弁6,6aへの通電を制御装置15の出力の有無
に関係なく強制的に遮断し、冷房用蒸発器5,5
aへの冷媒通路を遮断すると共に、電磁クラツチ
11への通電を行なう。温度センサ10の検出温
度が低温側設定温度(本例では−17℃)以下とな
るまで上記状態を保ち、低温側設定温度に達した
らリレー18の通電を停止してリレー接点を閉じ
るとともに、電磁クラツチ11への強制通電を停
止するので、通常通り冷房側の制御装置15の出
力に基づいて電磁弁6,6aと電磁クラツチ11
の作動が制御される状態に復帰する。17は冷凍
冷蔵庫Cの作動を起動・停止させる冷凍冷蔵スイ
ツチである。
Further, the freezing evaporator section 8a is provided with a temperature sensor 10 consisting of a thermistor for detecting its surface temperature, and this temperature sensor 10 is connected to the control device 2.
Connected to 0. When the temperature detected by the temperature sensor 10 reaches the set temperature on the high temperature side (-10 degrees Celsius or less in this example), the control device 20 outputs an output and energizes the relay 18, opening the relay contact and causing the solenoid valves 6 and 6a to Power supply is forcibly cut off regardless of the presence or absence of the output of the control device 15, and the cooling evaporators 5, 5
The refrigerant passage to a is cut off, and the electromagnetic clutch 11 is energized. The above state is maintained until the temperature detected by the temperature sensor 10 falls below the set temperature on the low-temperature side (-17°C in this example). When the temperature reaches the set temperature on the low-temperature side, the relay 18 is de-energized, the relay contact is closed, and the electromagnetic Since the forced energization to the clutch 11 is stopped, the solenoid valves 6 and 6a and the solenoid clutch 11 are activated as usual based on the output of the cooling side control device 15.
The operation returns to a controlled state. Reference numeral 17 denotes a freezer/refrigerator switch that starts and stops the operation of the refrigerator/freezer C.

次に、上記構成において本発明装置の作動を説
明する。
Next, the operation of the apparatus of the present invention with the above configuration will be explained.

まず夏季等で車室内の冷房が望まれる時はクー
ラスイツチ13,13aのいずれか一方または両
方を投入して制御装置15を介して電磁クラツチ
11に通電し、エンジンの回転力を圧縮機1に伝
える。これによつて圧縮機1が運転され、液冷媒
が冷房用蒸発器5で蒸発する際に空気より気化熱
を奪い、気化熱を奪われて冷却された空気が冷房
フアン16,16aによつて車室内に吹き出され
る。この際、蒸発器5,5a内の蒸発圧力は2〜
3Kg/cm2であり、従つて冷凍冷蔵用冷媒回路19
の圧縮機吸入側部に作用する圧力も同程度である
ので、定圧膨脹弁7は閉じたままで、冷媒回路1
9内に冷媒は流れない。そして、制御装置15の
出力により電磁弁6,6aの開閉が制御されるこ
とにより蒸発器5,5aの霜付きが防止される。
First, when it is desired to cool the interior of the vehicle in the summer, etc., one or both of the cooler switches 13 and 13a is turned on to energize the electromagnetic clutch 11 via the control device 15, and the rotational force of the engine is applied to the compressor 1. tell. As a result, the compressor 1 is operated, and when the liquid refrigerant evaporates in the cooling evaporator 5, it absorbs the heat of vaporization from the air, and the air that has been cooled by having the heat of vaporization removed is cooled by the cooling fans 16, 16a. It is blown out into the passenger compartment. At this time, the evaporation pressure in the evaporators 5 and 5a is 2~
3Kg/cm 2 , therefore, the refrigerant circuit 19 for freezing and refrigeration
Since the pressure acting on the suction side of the compressor is also about the same, the constant pressure expansion valve 7 remains closed and the refrigerant circuit 1
Refrigerant does not flow inside 9. The opening and closing of the electromagnetic valves 6 and 6a are controlled by the output of the control device 15, thereby preventing frost formation on the evaporators 5 and 5a.

次に、この冷房運転状態で更に冷凍冷蔵庫Cを
作用させようとする時には冷凍冷蔵スイツチ17
を投入する。このスイツチ投入時には当然冷凍用
蒸発器8aの表面温度は−10℃以上であるから、
この状態が温度センサ10により検出され、制御
装置20の出力によりリレー18の接点が開き、
電磁弁6,6aへの通電が遮断されると同時に、
電磁クラツチ11へ強制通電される。この強制通
電は冷房側蒸発器5,5aが共に冷えすぎの状態
であると、冷房側制御装置15により電磁クラツ
チ11への通電が遮断されているため、必要とな
るのである。
Next, when you want to operate the refrigerator-freezer C further in this cooling operation state, switch the refrigerator-freezer switch 17.
Insert. When this switch is turned on, the surface temperature of the freezing evaporator 8a is naturally above -10°C, so
This state is detected by the temperature sensor 10, and the contacts of the relay 18 are opened by the output of the control device 20.
At the same time as the power to the solenoid valves 6 and 6a is cut off,
The electromagnetic clutch 11 is forcibly energized. This forced energization is necessary because if the cooling side evaporators 5 and 5a are both too cold, the cooling side control device 15 cuts off the energization to the electromagnetic clutch 11.

上記のごとく電磁弁6,6aへの通電が遮断さ
れ、この両弁6,6aが閉じられると、冷房用蒸
発器5,5aへの冷媒の流れが止るため圧縮機1
の吸入圧力が急激に低下して、数秒で0.5Kg/cm2
Gに達する。このため冷凍冷蔵用冷媒回路19の
定圧膨脹弁7が開き、冷媒回路19に冷媒が流れ
るようになる。この時前記したように定圧膨脹弁
7は低圧側圧力を設定圧力(0.5Kg/cm2G)に制
御するため、冷凍冷蔵用蒸発器8内は0.5Kg/cm2
Gの圧力となり、冷媒蒸発温度は−21℃となつて
いる。数秒すると冷蔵用蒸発器8の表面温度が下
がり、−17℃まで低下すると、この状態が温度セ
ンサ10により検出され、制御装置20の出力に
よりリレー18への通電が遮断され、接点が開放
されるため、冷房用制御装置15の作動に従つて
電磁弁6,6aは開閉されるようになる。この時
冷房用蒸発器5,5aの冷却状態が温度センサ1
2,12aの設定温度より高い状態であれば、電
磁弁6,6aは開くことになり、そしてこの電磁
弁6,6aが一方または両方開くと、冷媒が再び
冷房用蒸発器5,5aに供給され、蒸発器5,5
a内圧力及び圧縮機吸入側圧力が2〜3Kg/cm2
に戻る。この圧力は冷凍冷蔵用蒸発器8内の圧力
(0.5Kg/cm2G)よりもはるかに高いが、蒸発器8
の下流に逆止弁9が配設されているので、蒸発器
5を通つた冷媒ガスが蒸発器8内に逆流して蒸発
器8内の圧力を急激に上昇させるという不具合は
生じない。一方、定圧膨脹弁7は低圧側が設定圧
力0.5Kg/cm2Gを越えると自動的に閉じるので冷
媒の供給を止める。その後、蒸発器8は内部の液
冷媒が徐々に蒸発しながら冷凍冷蔵庫C内の冷却
を続け、蒸発器8内への蒸発圧力及び温度は除々
に上昇する。冷凍冷蔵用蒸発器8の表面温度が
除々に上昇して−10℃になれば再び温度センサ1
0と制御装置20により電磁弁6,6aを閉じ、
圧縮機吸入圧力を下げる。そのため冷凍冷蔵用蒸
発器8内の圧力は再び0.5Kg/cm2Gに下げられる。
以下、同様の動作が繰り返される。ここで、電磁
弁6,6aが開いて冷房運転が行われている時に
は冷凍冷蔵用回路19は遮断している。この時、
冷凍冷蔵用回路19内に送り込まれていた低温の
液冷媒は重力により蒸発器8の熱交換部分80
a,81a,80b(第4図参照)にたまること
になる。このたまつた液冷媒の潜熱、顕熱によ
り、冷凍冷蔵用蒸発器8の表面温度が−10℃に上
昇するまでの時間が伸びる。すなわち、冷房用冷
媒回路が開いている時間が伸び、冷房運転の犠性
を軽減することができる。更に、冷凍冷蔵用蒸発
器8の熱交換部分に液冷媒がたまつているので、
電磁弁6,6aが閉じ、冷凍冷蔵用冷媒回路19
が開いた時、この液冷媒が蒸発して直ちに冷凍冷
蔵用蒸発器8を低温にすることができる。すなわ
ち冷房用冷媒回路を閉じている時間を短くするこ
とができ、冷房運転への支障をほとんどなくすこ
とができる。
As described above, when the power to the solenoid valves 6, 6a is cut off and both valves 6, 6a are closed, the flow of refrigerant to the cooling evaporators 5, 5a is stopped, so the compressor 1
The suction pressure suddenly decreased to 0.5Kg/cm 2 in a few seconds.
Reach G. Therefore, the constant pressure expansion valve 7 of the freezing/refrigerating refrigerant circuit 19 opens, and refrigerant begins to flow into the refrigerant circuit 19. At this time, as mentioned above, the constant pressure expansion valve 7 controls the low pressure side pressure to the set pressure (0.5Kg/cm 2 G), so the inside of the refrigeration evaporator 8 is 0.5Kg/cm 2
The pressure is G, and the refrigerant evaporation temperature is -21°C. After a few seconds, the surface temperature of the refrigerating evaporator 8 drops to -17°C, and this state is detected by the temperature sensor 10, and the output of the control device 20 cuts off the power to the relay 18, opening the contacts. Therefore, the solenoid valves 6 and 6a are opened and closed in accordance with the operation of the cooling control device 15. At this time, the cooling state of the cooling evaporators 5 and 5a is determined by the temperature sensor 1.
If the temperature is higher than the set temperature of the evaporators 2 and 12a, the solenoid valves 6 and 6a will open, and when one or both of the solenoid valves 6 and 6a open, the refrigerant will be supplied to the cooling evaporators 5 and 5a again. and evaporator 5,5
A internal pressure and compressor suction side pressure are 2 to 3 Kg/cm 2 G
Return to This pressure is much higher than the pressure inside the refrigeration evaporator 8 (0.5Kg/cm 2 G), but the pressure inside the evaporator 8
Since the check valve 9 is disposed downstream of the evaporator 5, the problem that the refrigerant gas that has passed through the evaporator 5 flows back into the evaporator 8 and causes the pressure inside the evaporator 8 to suddenly increase does not occur. On the other hand, the constant pressure expansion valve 7 automatically closes when the low pressure side exceeds the set pressure of 0.5 kg/cm 2 G, thereby stopping the supply of refrigerant. Thereafter, the evaporator 8 continues to cool the refrigerator-freezer C while the liquid refrigerant therein gradually evaporates, and the evaporation pressure and temperature in the evaporator 8 gradually rise. When the surface temperature of the refrigeration evaporator 8 gradually rises to -10°C, the temperature sensor 1 is activated again.
0 and the control device 20 close the solenoid valves 6 and 6a,
Reduce compressor suction pressure. Therefore, the pressure inside the refrigeration evaporator 8 is lowered to 0.5 Kg/cm 2 G again.
Thereafter, similar operations are repeated. Here, when the electromagnetic valves 6 and 6a are open and cooling operation is being performed, the freezing/refrigerating circuit 19 is cut off. At this time,
The low-temperature liquid refrigerant fed into the freezing/refrigeration circuit 19 is transferred to the heat exchange section 80 of the evaporator 8 by gravity.
a, 81a, and 80b (see FIG. 4). Due to the latent heat and sensible heat of the accumulated liquid refrigerant, the time required for the surface temperature of the freezing/refrigerating evaporator 8 to rise to -10° C. is extended. That is, the time during which the cooling refrigerant circuit is open can be extended, and the cost of cooling operation can be reduced. Furthermore, since liquid refrigerant accumulates in the heat exchange part of the evaporator 8 for freezing and refrigerating,
The solenoid valves 6 and 6a are closed, and the refrigerant circuit 19 for freezing and refrigeration is closed.
When the evaporator 8 is opened, this liquid refrigerant evaporates and the freezing and refrigerating evaporator 8 can be brought to a low temperature immediately. That is, the time during which the cooling refrigerant circuit is closed can be shortened, and hindrance to cooling operation can be almost eliminated.

上記実施例では冷凍冷蔵用蒸発器8の熱交換部
分80a,81a,80bを水平にかつ互に平行
に配置しているが、本発明はこの構造に限定され
るものではなく、適宜変更が可能である。第5図
は冷凍冷蔵蒸発器8の一変形例を示すものであ
り、本例では熱交換部分81a′,80b′をほぼ水
平ではあるが若干傾斜させており、この傾斜を与
えることにより液冷媒がこれらの部分にたまるよ
うになしたものである。この蒸発器を用いても上
記の作用効果が得られる。
In the above embodiment, the heat exchange parts 80a, 81a, 80b of the evaporator 8 for freezing and refrigerating are arranged horizontally and parallel to each other, but the present invention is not limited to this structure, and can be modified as appropriate. It is. FIG. 5 shows a modification of the freezing/refrigerating evaporator 8. In this example, the heat exchange portions 81a' and 80b' are approximately horizontal but slightly inclined, and by providing this inclination, the liquid refrigerant is made so that it accumulates in these parts. The above effects can also be obtained using this evaporator.

以上説明した如く、本発明によれば、互に並列
に配置された冷房用冷媒回路と冷凍冷蔵用冷媒回
路とに交互に冷媒を通すようになした装置におい
て、冷凍冷蔵用蒸発器の熱交換部分に液冷媒がた
まるように構成しているので、冷凍冷蔵用冷媒回
路の閉止時に前記冷凍冷蔵用蒸発器の熱交換部分
にたまつている液冷媒の顕熱、潜熱により、その
蒸発器の温度上昇を遅くし、冷房運転期間を長く
することができる。また、冷凍冷蔵用冷媒回路が
開いた時、たまつていた液冷媒が蒸発するので直
ちに冷凍冷蔵用蒸発器を低温にすることができ、
冷房運転停止期間を短くできる。かくして、車室
冷房にほとんど支障をきたすことなく、製氷可能
な冷凍冷蔵庫の冷却が可能である。
As explained above, according to the present invention, in an apparatus in which a refrigerant is passed alternately through a cooling refrigerant circuit and a freezing and refrigerating refrigerant circuit that are arranged in parallel, the heat exchanger of the freezing and refrigerating evaporator is Since the structure is such that the liquid refrigerant accumulates in the section, when the refrigerant circuit for freezing and refrigeration is closed, the sensible heat and latent heat of the liquid refrigerant accumulated in the heat exchange section of the evaporator for freezing and refrigeration cause the evaporator to It is possible to slow down the temperature rise and extend the cooling operation period. In addition, when the freezer/refrigerator refrigerant circuit opens, the accumulated liquid refrigerant evaporates, so the freezer/refrigerator evaporator can be brought to a low temperature immediately.
The period during which cooling operation is stopped can be shortened. In this way, it is possible to cool a refrigerator-freezer capable of making ice with almost no hindrance to cooling the vehicle interior.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す冷凍サイクル
図、第2図は上記実施例に用いている冷凍冷蔵庫
の斜視図、第3図は第2図の−矢視断面図、
第4図は第2図の冷凍冷蔵庫内に設けた冷凍冷蔵
用蒸発器の側面図、第5図は冷凍冷蔵用蒸発器の
変形例を示す側面図である。 1……圧縮機、2……凝縮器、4,4a……減
圧装置をなす膨脹弁、5,5a……冷房用蒸発
器、7……減圧装置をなす定圧膨脹弁、8……冷
凍冷蔵用蒸発器、80a,81a,80b……熱
交換部分、18……冷房用冷媒回路、19……冷
凍冷蔵用冷媒回路。
FIG. 1 is a refrigeration cycle diagram showing an embodiment of the present invention, FIG. 2 is a perspective view of a refrigerator-freezer used in the above embodiment, and FIG. 3 is a sectional view taken along the - arrow in FIG.
FIG. 4 is a side view of the evaporator for freezing and refrigerating provided in the refrigerator-freezer shown in FIG. 2, and FIG. 5 is a side view showing a modification of the evaporator for freezing and refrigerating. 1... Compressor, 2... Condenser, 4, 4a... Expansion valve forming a pressure reducing device, 5, 5a... Cooling evaporator, 7... Constant pressure expansion valve forming a pressure reducing device, 8... Refrigeration/refrigeration evaporator for use, 80a, 81a, 80b... heat exchange portion, 18... refrigerant circuit for cooling, 19... refrigerant circuit for freezing and refrigeration.

Claims (1)

【特許請求の範囲】[Claims] 1 車室内冷房用の減圧装置及び冷房用蒸発器を
有する冷房用冷媒回路と、冷凍冷蔵庫用の減圧装
置及び冷凍冷蔵用蒸発器を有する冷凍冷蔵用冷媒
回路とを互に並列に接続し、冷媒を前記冷房用冷
媒回路と冷凍冷蔵用冷媒回路とに交互に流すよう
に構成された車両用冷房冷凍冷蔵装置において、
前記冷凍冷蔵用蒸発器を、複数個のほぼ水平な熱
交換部分を有するように蛇行状に屈曲形成された
扁平チユーブで構成し、かつ前記熱交換部分の両
端部分を熱交換部分よりも高くなしたことを特徴
とする車両用冷房冷凍冷蔵装置。
1. A cooling refrigerant circuit having a pressure reducing device for cooling the vehicle interior and a cooling evaporator and a freezing/refrigerating refrigerant circuit having a pressure reducing device for a refrigerator/freezer and a freezing/refrigerating evaporator are connected in parallel to each other, and the refrigerant In the vehicle cooling/freezing/refrigerating device configured to alternately flow the cooling refrigerant circuit and the freezing/refrigerating refrigerant circuit,
The freezing and refrigerating evaporator is constructed of a flat tube bent in a meandering manner so as to have a plurality of substantially horizontal heat exchange portions, and both end portions of the heat exchange portion are higher than the heat exchange portion. A vehicle cooling/freezing/refrigerating device characterized by:
JP20247381A 1981-12-17 1981-12-17 Air-cooling refrigerating freezing device for car Granted JPS58104469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20247381A JPS58104469A (en) 1981-12-17 1981-12-17 Air-cooling refrigerating freezing device for car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20247381A JPS58104469A (en) 1981-12-17 1981-12-17 Air-cooling refrigerating freezing device for car

Publications (2)

Publication Number Publication Date
JPS58104469A JPS58104469A (en) 1983-06-21
JPS6355627B2 true JPS6355627B2 (en) 1988-11-02

Family

ID=16458096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20247381A Granted JPS58104469A (en) 1981-12-17 1981-12-17 Air-cooling refrigerating freezing device for car

Country Status (1)

Country Link
JP (1) JPS58104469A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197974A (en) * 1985-02-26 1986-09-02 株式会社デンソー Cold accumulation type refrigerator for car

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233751B2 (en) * 1972-06-28 1977-08-30
JPS54140254A (en) * 1978-04-24 1979-10-31 Toshiba Corp Heat exchanger
JPS5539809A (en) * 1978-09-11 1980-03-21 Hitachi Ltd Air-conditioner with refrigerator
JPS5572412A (en) * 1978-11-29 1980-05-31 Hitachi Ltd Air conditioner with refrigerator
JPS5661551A (en) * 1979-10-22 1981-05-27 Nippon Denso Co Cooling*cold storage apparatus for vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233751U (en) * 1975-08-30 1977-03-09
JPS55153557U (en) * 1979-04-19 1980-11-05
JPS5838368Y2 (en) * 1979-05-28 1983-08-30 株式会社ボッシュオートモーティブ システム Condenser for vehicle cooling system
JPS5658060U (en) * 1979-10-12 1981-05-19
JPS6223616Y2 (en) * 1980-05-27 1987-06-16

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233751B2 (en) * 1972-06-28 1977-08-30
JPS54140254A (en) * 1978-04-24 1979-10-31 Toshiba Corp Heat exchanger
JPS5539809A (en) * 1978-09-11 1980-03-21 Hitachi Ltd Air-conditioner with refrigerator
JPS5572412A (en) * 1978-11-29 1980-05-31 Hitachi Ltd Air conditioner with refrigerator
JPS5661551A (en) * 1979-10-22 1981-05-27 Nippon Denso Co Cooling*cold storage apparatus for vehicle

Also Published As

Publication number Publication date
JPS58104469A (en) 1983-06-21

Similar Documents

Publication Publication Date Title
US8074464B2 (en) Ice producing apparatus
US4483151A (en) Car air conditioner with a freezer/refrigerator
JPH1053019A (en) Air-conditioning device for vehicle
JPS6326830B2 (en)
JPH08327169A (en) Refrigerating equipment
JPS6155017B2 (en)
JPS6355627B2 (en)
JP2006082604A (en) Vehicular refrigerator
JPS629831B2 (en)
JPH0536253B2 (en)
JPS6315513B2 (en)
JPH0246873B2 (en) SHARYOYOREIBOREIZOSOCHI
JP2990441B2 (en) Thermoelectric element control device for vehicle refrigerator-freezer
JPH1026459A (en) Cargo temperature control chamber
JP2019027649A (en) refrigerator
JPS6333061B2 (en)
JPS6134059B2 (en)
JP2000337753A (en) Air conditioner
JPH10205963A (en) Refrigerator
JP2006078036A (en) Refrigeration cycle device for cooling and cold storage
JPH0230705Y2 (en)
JPH0144527B2 (en)
JP2000111180A (en) Refrigerating cycle apparatus
JPH0986135A (en) Air conditioner for vehicle
JPH0710646B2 (en) Air conditioner with refrigerator for automobiles