JPS6355517A - Optical scanner - Google Patents

Optical scanner

Info

Publication number
JPS6355517A
JPS6355517A JP19933486A JP19933486A JPS6355517A JP S6355517 A JPS6355517 A JP S6355517A JP 19933486 A JP19933486 A JP 19933486A JP 19933486 A JP19933486 A JP 19933486A JP S6355517 A JPS6355517 A JP S6355517A
Authority
JP
Japan
Prior art keywords
face
reflective
lens system
optical deflector
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19933486A
Other languages
Japanese (ja)
Inventor
Yoji Kubota
洋治 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP19933486A priority Critical patent/JPS6355517A/en
Publication of JPS6355517A publication Critical patent/JPS6355517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To eliminate influences due to dust, flaws, dirt, or the like on a deflecting reflective face and burning of the face by correcting the deviation of a beam spot in the subscanning direction due to the surface inclination of an optical deflector while projecting a light beam to the optical deflector as a luminous flux of approximately parallel rays. CONSTITUTION:A reflective mirror 15 whose reflective face forms a part of an ellipse is arranged between an image forming lens system 14 and a scanning image forming face 16, and one focus of this elliptic reflective face of the reflective mirror 15 is allowed to coincide with the position of a virtual image in the subscanning direction due to the image forming lens system 14, and the other is allowed to coincide with the scanning image forming face 16. The reflective mirror 15 and the image forming lens system 14 are combined to shorten the resultant focal length in the subscanning direction, and thereby, the influence of a focal length (f) is lessened and the deviation of the beam spot on the scanning image forming face 16 due to inclination, deviation, or the like of an optical deflector 12 is reduced. Since the luminous flux made incident on the reflective face of the optical deflector are parallel rays, this optical scanner is hardly affected by dirt, flaws, or the like on the reflective face and the burning phenomenon of the reflective face is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば、レーザープリンター等に適用可能な
光走査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical scanning device applicable to, for example, a laser printer.

(従来の技術) レーザー光などの光ビームを走査して情報を記録する装
置、例えばレーザープリング−では、−般に、結像レン
ズとしてfθレンズ、即ち、焦点距離fと偏向角θが像
高yに関して正確に比例関係を保つようにした結像レン
ズが用いられている。
(Prior Art) In a device that records information by scanning a light beam such as a laser beam, such as laser pulling, an fθ lens is generally used as an imaging lens, that is, the focal length f and the deflection angle θ are the same as the image height. An imaging lens is used that maintains an exact proportional relationship with respect to y.

そして、光ビームを偏向する目的で回転多面鏡等の光偏
向器が用いられ、これにより一定時間内での走査回数の
増加を図っている。
A light deflector such as a rotating polygon mirror is used to deflect the light beam, thereby increasing the number of scans within a certain period of time.

しかしながら、これらの装置では、光偏向器及びその駆
動モータの微小な加工誤差、これら光学部品の組立調整
誤差等により、fθレンズを介して走査結像されるビー
ムスポットの位置が偏移し、その結果、結像面上でのピ
ッチむらを発生させ、画像品位を著しく低下させること
になる。
However, in these devices, the position of the beam spot scanned and imaged through the fθ lens shifts due to minute processing errors in the optical deflector and its drive motor, assembly adjustment errors in these optical components, etc. As a result, pitch unevenness occurs on the imaging plane, resulting in a significant deterioration of image quality.

゛これは主に、光偏向器の反射面が回転軸に対して傾い
て加工されたり、光偏向器の駆動モータの回転軸が傾い
ていたりして所謂面倒れが発生することにより、ビーム
の反射角θに微小な誤差Δθが発生するためである。一
般に、結像面りでのビームスポットの偏移量Δyと上記
反射角の誤差Δθとの関係は次のようになる。
゛This is mainly caused by the fact that the reflective surface of the optical deflector is machined to be tilted with respect to the rotation axis, or the rotation axis of the drive motor of the optical deflector is tilted, causing so-called surface tilt. This is because a minute error Δθ occurs in the reflection angle θ. Generally, the relationship between the amount of deviation Δy of the beam spot on the imaging plane and the error Δθ of the reflection angle is as follows.

Δ)I=2・f・Δθ   ・・・・ (1)この式(
1)で推知できるように、Δθが微小であっても、光走
査装置に結像レンズとして用いられるfθレンズの焦点
距離fが長いため、ビームスポットの偏移量Δyは掻め
て大きくなる。従って、光偏向器の面倒れによる不具合
を補償する必要がある。
Δ)I=2・f・Δθ... (1) This formula (
As can be inferred from 1), even if Δθ is minute, the focal length f of the fθ lens used as an imaging lens in the optical scanning device is long, so the shift amount Δy of the beam spot becomes significantly large. Therefore, it is necessary to compensate for problems caused by tilting the surface of the optical deflector.

いま、仮に光走査装置の分解能を1インチ当たり300
  ドツトとすれば、1インチ= 15.411Imで
あるから、必要なビームスポット径は0.085mmと
なる。
Now, suppose the resolution of the optical scanning device is 300 per inch.
In the case of a dot, 1 inch = 15.411 Im, so the required beam spot diameter is 0.085 mm.

ここで、fθレンズの焦点距離rを200mm 、許容
偏移量をビームスポット径の約1/4とすれば、Δy 
=0.022となり、上記式(1)より反射系の微小誤
差Δθは、 Δθ=0.022 / (2x2QO)となり、Δθ#
11.3 (秒)が算出され、光偏向器の反射面の傾き
誤差を11秒以内に調整することが要求されることがわ
かる。しかし、機械的な工作の精度を上げてこのような
微小な誤差範囲内に調整することは極めて困難であり、
現実的ではない。
Here, if the focal length r of the fθ lens is 200 mm and the allowable deviation amount is approximately 1/4 of the beam spot diameter, then Δy
= 0.022, and from the above formula (1), the minute error Δθ of the reflection system is Δθ=0.022 / (2x2QO), and Δθ#
11.3 (seconds) is calculated, which shows that it is required to adjust the tilt error of the reflective surface of the optical deflector within 11 seconds. However, it is extremely difficult to increase the precision of mechanical work and adjust it within such a minute error range.
It's not realistic.

そこで、従来の光走査装置では一般に、レーザー光源を
含む照射手段からのほぼ平行な光ビームを第1シリンダ
ーレンズにより主走査方向にのみ収束させて光偏向器の
偏向面に同光偏向器の回転軸に直交する方向の細線を形
成させ、上記光偏向器による反射光をfθレンズでなる
結像レンズと第2シリンダーレンズによって走査結像面
に収束させるようにすると共に、光偏向器の偏向面と走
査結像面との間で共役関係が成立するように、結像レン
ズと合わせて第2シリンダーレンズのパワーを設定し、
もって、回転状態での偏向面の傾き誤差を吸収し、ビー
ムスポットの偏移を抑えるようにしている。特公昭52
−28666号公報記載のものはその一つである。
Therefore, in conventional optical scanning devices, generally, a nearly parallel light beam from an irradiation means including a laser light source is converged only in the main scanning direction by a first cylinder lens, and the deflection surface of the optical deflector is rotated. A thin line is formed in a direction perpendicular to the axis, and the light reflected by the optical deflector is converged onto a scanning imaging plane by an imaging lens consisting of an fθ lens and a second cylinder lens, and the deflection surface of the optical deflector is The power of the second cylinder lens is set together with the imaging lens so that a conjugate relationship is established between the image forming surface and the scanning imaging surface,
This absorbs the tilt error of the deflection surface in the rotating state and suppresses the deviation of the beam spot. Special Public Service 1977
The one described in Japanese Patent No.-28666 is one of them.

また、特開昭59−147316号公報εこ記載されて
いるように、主走査方向に関してfθレンズを構成し、
副走査方向にのみ収束作用を有し、偏向反射面と走査結
像面との間に共役関係が成立するようにパワーを設定し
た特殊な形状の結像レンズ系も提案されている。
Further, as described in Japanese Patent Application Laid-Open No. 59-147316, an fθ lens is configured in the main scanning direction,
An imaging lens system having a special shape has also been proposed, which has a convergence effect only in the sub-scanning direction and whose power is set so that a conjugate relationship is established between the deflection reflection surface and the scanning imaging surface.

さらに、第8図及び第9図に示されているように、使用
上の制約から走査結像面6の前に光軸を副走査方向に9
0度曲げる平面ミラー7を挿入し、あるいは、偏向反射
面と走査結像面との間に共役関係が成立するような凹の
反射ミラーを挿入したものもある。第8図、第9図にお
いて符号lは光源及び照射手段からの平行光束、2は第
1シリン(発明が解決しようとする問題点) 何れにしろ、従来の光走査装置は、偏向反射面上に、光
束が一方向にのみ収束されてなる細線が形成される必要
がある。そのため、 ■偏向反射面でのごみや傷、汚れ等のL’Sを受は易い
Furthermore, as shown in FIGS. 8 and 9, due to usage constraints, the optical axis is moved 90 degrees in the sub-scanning direction in front of the scanning imaging plane 6.
Some devices include a plane mirror 7 that bends 0 degrees, or a concave reflective mirror that establishes a conjugate relationship between the deflection reflective surface and the scanning imaging surface. In FIGS. 8 and 9, the symbol 1 is the parallel light beam from the light source and the irradiation means, and 2 is the first cylinder (problem to be solved by the invention). In order to achieve this, it is necessary to form a thin line in which the light beam is focused in only one direction. Therefore, (1) L'S such as dust, scratches, dirt, etc. are easily received by the deflection reflection surface.

■レーザー光による偏向反射面での焼きつきが発生し易
い。
■ Burn-in is likely to occur on the deflection reflection surface due to laser light.

■主走査方向に収束作用を有する第1シリンダーレンズ
、副走査方向に収束作用を有する第2シリンダーレンズ
、又はトロイダルレンズが共に正のパワーで構成されて
いるため、走査結像面上での収差補正が困難となる。
■Since the first cylinder lens that has a convergence effect in the main scanning direction, the second cylinder lens that has a convergence effect in the sub-scanning direction, or the toroidal lens are both configured with positive power, aberrations on the scanning imaging plane Correction becomes difficult.

■光軸を曲げるための平面ミラーや凹の円柱ミラーを用
いたものにおいては、このミラーそのものにより発生す
る収差及び第2シリンダーレンズにより発生する収差が
大きい。
(2) In the case of using a plane mirror or a concave cylindrical mirror for bending the optical axis, aberrations caused by the mirror itself and the second cylinder lens are large.

というような問題がある。There is a problem like this.

本発明は、かかる従来の問題点を解消するためになされ
たものであって、光偏向器に照射される光ビームをほぼ
平行光束としながら、光偏向器の所謂面倒れによる副走
査方向へのビームスポットの偏移の補正を可能にし、も
って、偏向反射面でのごみや傷、汚れ等の影響を受けず
、偏向反射面での焼きつきのない光走査装置を提供し、
また、光軸を曲げるミラーの反射面を集束性を有する楕
円の一部で構成することにより、走査結像面上での収差
補正が容易な光走査装置を提供することを目的とする。
The present invention has been made to solve such conventional problems, and while the light beam irradiated to the optical deflector is made into a substantially parallel light beam, the light beam irradiated to the optical deflector is made into a substantially parallel beam, and the light beam is prevented from moving in the sub-scanning direction due to the so-called surface tilt of the optical deflector. To provide an optical scanning device that makes it possible to correct the deviation of a beam spot, thereby being unaffected by dust, scratches, dirt, etc. on the deflection reflection surface and free from burn-in on the deflection reflection surface,
Another object of the present invention is to provide an optical scanning device in which aberrations on a scanning imaging plane can be easily corrected by forming a reflecting surface of a mirror that bends the optical axis as a part of an ellipse having focusing properties.

(問題点を解決するための手段) 本発明は、結像レンズ系と走査結像面との間に、反射面
が楕円の一部であって副走査方向にパワーを持つ反射ミ
ラーを配置し、結像レンズ系には10171作用を持た
せると共に、光偏向器の偏向面に光源の第1共役点が形
成されるように副走査方向に負のパワーのレンズ作用を
持たせ、上記反射ミラーの反射面の一方の焦点は上記光
源の第2共役点となる上記走査結像面上あり、上記反射
ミラーの楕円反射面の他方の焦点は上記光源の第1共役
点となる上記偏向面にあることを特徴とする。
(Means for Solving the Problems) The present invention disposes a reflecting mirror whose reflecting surface is a part of an ellipse and has power in the sub-scanning direction between the imaging lens system and the scanning imaging surface. , the imaging lens system is provided with a 10171 action, and a negative power lens action is provided in the sub-scanning direction so that the first conjugate point of the light source is formed on the deflection surface of the optical deflector, and the reflecting mirror is One focal point of the reflecting surface is on the scanning imaging plane, which is the second conjugate point of the light source, and the other focal point of the elliptical reflecting surface of the reflecting mirror is on the deflecting surface, which is the first conjugate point of the light source. characterized by something.

(作用) 光偏向器には所定の径のほぼ平行な光ビームが照射され
偏向される。偏向された光束は10171作用を持つ結
像レンズ系により反射ミラーを介して走査結像面に結像
される。楕円でなる上記反射ミラーの二つの焦点間には
ほぼ無収差の共役関係がなり立ち、副走査方向に良好な
結像特性が得られる。
(Operation) A substantially parallel light beam having a predetermined diameter is irradiated onto the optical deflector and is deflected. The deflected light beam is imaged on a scanning imaging plane via a reflecting mirror by an imaging lens system having a 10171 action. A substantially aberration-free conjugate relationship exists between the two focal points of the elliptical reflecting mirror, resulting in good imaging characteristics in the sub-scanning direction.

(実施例) 第1図乃至第4図において、周面に多数の偏向反射面が
形成され、かつ、回転軸を中心に駆動モータによって回
転駆動される光偏向器12の上記偏向反射面には、図示
されない光源及び照射手段を介して所定のビーム径のほ
ぼ平行光束11が照射され、この光束11を偏向するよ
うになっている。上記光束11は周知のように記録しよ
うとする情報信号に応じて変調されている。光偏向器1
2による偏向光路上には、この偏向された光束を結像さ
せるための結像レンズ系14が配置されている。結像レ
ンズ系14は、その結像面側の面がほぼ球面状に形成さ
れて10171作用を持つと共に、光源側の面が凹のシ
リンダー面に形成されて副走査方向に負のパワーのレン
ズ作用を持っている。結像レンズ系14の上記凹のシリ
ンダー面は、副走査方向に関し光偏向器12の偏向反射
面に光源の虚像を結ばせる役割を果たすものである。こ
の虚像の結像位置である上記偏向反射面を光源の第1共
役点P1とする。結像レンズ系14は、曲率■とした面
に上記凹のシリンダー面を形成することによって加工し
易い形になっている。
(Example) In FIGS. 1 to 4, the deflection reflection surface of the optical deflector 12 has a large number of deflection reflection surfaces formed on its circumferential surface and is rotationally driven by a drive motor about a rotation axis. A substantially parallel light beam 11 having a predetermined beam diameter is irradiated via a light source and irradiation means (not shown), and this light beam 11 is deflected. As is well known, the light beam 11 is modulated in accordance with the information signal to be recorded. Optical deflector 1
An imaging lens system 14 for forming an image of this deflected light beam is disposed on the optical path of the deflected light beam. The imaging lens system 14 has a surface on the imaging surface side formed in a substantially spherical shape and has a 10171 effect, and a surface on the light source side is formed as a concave cylindrical surface and has a negative power in the sub-scanning direction. It has an effect. The concave cylindrical surface of the imaging lens system 14 serves to form a virtual image of the light source on the deflection reflection surface of the optical deflector 12 in the sub-scanning direction. The deflection reflection surface, which is the imaging position of this virtual image, is defined as the first conjugate point P1 of the light source. The imaging lens system 14 has a shape that is easy to process by forming the above-mentioned concave cylindrical surface on a surface with a curvature of ■.

上記結像レンズ系14の結像面側には反射ミラー15が
配置されている。反射ミラー15は結像レンズ系14を
通った光束をほぼ直角に反射して走査結像面16上に光
束を導く。反射ミラー15は、その反射面が楕円の一部
をなしていて副走査方向にパワーを持つ柱状のミラーで
ある。第4図に示されているように、上記反射ミラー1
5の楕円反射面の一方の焦点は前記光源の第2共役点P
2となる上記走査結像面16にあり、上記楕円反射面の
他方の焦点は上記光源の第1共役点P1となる上記光偏
向器12の偏向面にある。
A reflecting mirror 15 is arranged on the imaging surface side of the imaging lens system 14. The reflecting mirror 15 reflects the light beam that has passed through the imaging lens system 14 almost at right angles and guides the light beam onto the scanning imaging plane 16 . The reflecting mirror 15 is a columnar mirror whose reflecting surface forms part of an ellipse and has power in the sub-scanning direction. As shown in FIG. 4, the reflecting mirror 1
One focal point of the elliptical reflective surface No. 5 is the second conjugate point P of the light source.
The other focal point of the elliptical reflecting surface is located on the deflection surface of the optical deflector 12, which is the first conjugate point P1 of the light source.

上記実施例によれば、結像レンズ系14と走査結像面1
6との間に反射面が楕円の一部をなす反射ミラー15を
配置し、この反射ミラー15の楕円反射面の一方の焦点
を結像レンズ系14による副走査方向の虚像の位置に一
致させ、他方の焦点を走査結像面16に一致させたため
、この反射ミラー15と結像レンズ系14との合成によ
り副走査方向の合成焦点距離が短焦点化され、これによ
り前記式(1)に示す焦点距離fの影響が少なくなり、
光偏向器12の傾きやずれ等によって発生する走査結像
面16上でのビームスポットの偏移が少なくなる。その
ため、光偏向器の加工誤差やモータ軸のぶれや傾き及び
光偏向器と駆動軸との組立調整精度等を著しく緩和する
ことが可能となり、大幅なコスト低減を図ることができ
る。また、光偏向器の反射面に入射する光束は平行光束
であるため、反射面の汚れや傷等の影響を受は難<、反
射面の焼きつき現象が緩和されて装置の品質を長時間に
わたって保つことができる。
According to the above embodiment, the imaging lens system 14 and the scanning imaging surface 1
A reflecting mirror 15 whose reflecting surface forms a part of an ellipse is arranged between the reflecting mirror 15 and the reflecting mirror 15, and one focal point of the elliptical reflecting surface of the reflecting mirror 15 is aligned with the position of the virtual image in the sub-scanning direction by the imaging lens system 14. , the other focal point is made to coincide with the scanning imaging plane 16, so that the combination of the reflecting mirror 15 and the imaging lens system 14 shortens the combined focal length in the sub-scanning direction, and as a result, the above formula (1) is satisfied. The influence of the focal length f shown is reduced,
The deviation of the beam spot on the scanning imaging plane 16 caused by the inclination or displacement of the optical deflector 12 is reduced. Therefore, it is possible to significantly reduce processing errors of the optical deflector, vibration and inclination of the motor shaft, assembly adjustment precision between the optical deflector and the drive shaft, etc., and it is possible to significantly reduce costs. In addition, since the light beam that enters the reflective surface of the optical deflector is a parallel light beam, it is less susceptible to dirt or scratches on the reflective surface, and the burn-in phenomenon of the reflective surface is alleviated, increasing the quality of the device for a long time. can be kept for a long time.

さらに、楕円反射面を有する反射ミラー15を、その楕
円反射面の一方の焦点が結像レンズ系14による虚像位
置と一致し、他方の焦点が走査結像面16と一致するよ
うに配置したため、収差補正が良好となり、走査結像面
16での収差特性のよい光走査装置を提供することがで
きる。
Furthermore, since the reflecting mirror 15 having an elliptical reflecting surface is arranged so that one focal point of the elliptical reflecting surface coincides with the virtual image position formed by the imaging lens system 14 and the other focal point coincides with the scanning imaging plane 16, Aberration correction becomes good, and an optical scanning device with good aberration characteristics at the scanning imaging plane 16 can be provided.

なお、反射ミラー15の楕円反射面の二つの焦点は、光
偏向器12の偏向面及び走査結像面16に厳密に一致し
ている必要はなく、その近傍にあれば目的を達成できる
Note that the two focal points of the elliptical reflective surface of the reflective mirror 15 do not need to exactly coincide with the deflection surface of the optical deflector 12 and the scanning imaging surface 16, but the objective can be achieved as long as they are in the vicinity.

第5図乃至第7図の実施例は、結像レンズ系14をシリ
ンダーレンズ17とfθレンズ18とによって構成した
ものである。シリンダーレンズ17は光S側の面が副走
査方向に凹のシリンダー面をなし、結像例の面が平面を
なす。このシリンダーレンズ17とfθレンズ18とに
よって前記実施例における結像レンズ系14と同様の機
能を有する結像レンズ系14が形成されている。その他
の構成及び作用効果は前記実施例と同様であるから詳細
な説明は省略する。
In the embodiments shown in FIGS. 5 to 7, the imaging lens system 14 is composed of a cylinder lens 17 and an fθ lens 18. The surface of the cylinder lens 17 on the light S side forms a cylindrical surface concave in the sub-scanning direction, and the surface of the image formation example forms a flat surface. The cylinder lens 17 and the fθ lens 18 form an imaging lens system 14 having the same function as the imaging lens system 14 in the previous embodiment. Other configurations and effects are the same as those of the previous embodiment, so detailed explanations will be omitted.

(発明の効果) 本発明によれば、rθレンズを構成しかつ偏向面に光源
の第1共役点が形成されるように副走査方向に負のパワ
ーのレンズ作用を持つ結像レンズと、楕円反射面を持つ
反射ミラーとの合成によっって副走査方向の焦点距離を
短焦点化することができるので、光偏向器の傾きや軸ず
れ等の16 Qによって発生する走査結像面上でのビー
ムスポットの偏移が少なくなる。そのため、光偏向器の
加工誤差やモータ軸のぶれや傾き及び光偏向器と駆動軸
との組立調整精度等を著しく緩和することが可能となり
、大幅なコスト低減を図ることができる。
(Effects of the Invention) According to the present invention, an imaging lens that constitutes an rθ lens and has a negative power lens action in the sub-scanning direction so that the first conjugate point of the light source is formed on the deflection surface, and an elliptical lens. By combining a reflective mirror with a reflective surface, the focal length in the sub-scanning direction can be shortened, so it is possible to shorten the focal length in the sub-scanning direction. The deviation of the beam spot is reduced. Therefore, it is possible to significantly reduce processing errors of the optical deflector, vibration and inclination of the motor shaft, assembly adjustment precision between the optical deflector and the drive shaft, etc., and it is possible to significantly reduce costs.

また、光偏向器の反射面に入射する光束は平行光束であ
るため、偏向面の汚れや傷等の影響を受は難く、偏向面
の焼きつき現象が緩和されて装置の品質を長時間にわた
って保つことができる。
In addition, since the light beam that enters the reflective surface of the optical deflector is a parallel light beam, it is less susceptible to the effects of dirt or scratches on the deflection surface, and the burn-in phenomenon of the deflection surface is alleviated, ensuring the quality of the device for a long time. can be kept.

さらに、楕円反射面を有する反射ミラーを、その楕円反
射面の一方の焦点が結像レンズ系による虚像位置と一致
し、他方の焦点が走査結像面と一致するように配置した
ため、収差補正が良好となり、走査結像面での収束特性
の向上を図ることができる。
Furthermore, since the reflective mirror with an elliptical reflective surface is arranged so that one focal point of the elliptical reflective surface coincides with the virtual image position of the imaging lens system, and the other focal point coincides with the scanning imaging plane, aberration correction is possible. This makes it possible to improve the convergence characteristics on the scanning imaging plane.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る光走査装置の一実施例を示す光学
配置の斜視図、第2図は同上平面図、第3図は同上正面
図、第4図は同上実施例の作用を説明するための正面図
、第5図は本発明に係る光走査装置の別の実施例の光学
配置を示す斜視図、第6図は同上平面図、第7図は同上
正面図、第8図は従来の光走査装置の例を示す光学配置
の平面図、第9図は同上正面図である。 11・・・平行光束、 12・・・光偏向器、14・・
・結像レンズ系、 15・・・反射ミラー、16・・・
走査結像面、 Pl・・・第1共役点、P2・・・第2
共役点。
Fig. 1 is a perspective view of an optical arrangement showing an embodiment of the optical scanning device according to the present invention, Fig. 2 is a plan view of the same, Fig. 3 is a front view of the same, and Fig. 4 explains the operation of the above embodiment. 5 is a perspective view showing the optical arrangement of another embodiment of the optical scanning device according to the present invention, FIG. 6 is a plan view of the same, FIG. 7 is a front view of the same, and FIG. A plan view of an optical arrangement showing an example of a conventional optical scanning device, and FIG. 9 is a front view of the same. 11... Parallel light beam, 12... Optical deflector, 14...
・Imaging lens system, 15...Reflecting mirror, 16...
Scanning imaging plane, Pl...first conjugate point, P2...second
Conjugate point.

Claims (1)

【特許請求の範囲】[Claims] 光源からの光ビームを所定の径のほぼ平行光束として照
射する照射手段と、この照射手段からの光束を偏向する
偏向面を備えた光偏向器と、この光偏向器により偏向さ
れた上記光束を結像させるための結像レンズ系と、この
結像レンズ系と走査結像面との間に配置され、反射面が
楕円の一部であって副走査方向にパワーを持つ反射ミラ
ーとを有してなる光走査装置であって、上記結像レンズ
系はfθレンズ作用を持つと共に、上記偏向面に上記光
源の第1共役点が形成されるように副走査方向に負のパ
ワーのレンズ作用を持ち、上記反射ミラーの楕円反射面
の一方の焦点は上記光源の第2共役点となる上記走査結
像面にあり、上記楕円反射面の他方の焦点は上記光源の
第1共役点となる上記偏向面にあることを特徴とする光
走査装置。
An irradiation means for irradiating a light beam from a light source as a substantially parallel light beam having a predetermined diameter, a light deflector having a deflection surface for deflecting the light beam from the irradiation means, and a light beam deflected by the light deflector. It has an imaging lens system for forming an image, and a reflecting mirror whose reflecting surface is a part of an ellipse and has power in the sub-scanning direction, which is disposed between the imaging lens system and a scanning imaging surface. In the optical scanning device, the imaging lens system has an fθ lens action and a negative power lens action in the sub-scanning direction so that a first conjugate point of the light source is formed on the deflection surface. one focal point of the elliptical reflective surface of the reflective mirror is on the scanning imaging plane that is the second conjugate point of the light source, and the other focal point of the elliptical reflective surface is the first conjugate point of the light source. An optical scanning device, characterized in that it is located on the deflection surface described above.
JP19933486A 1986-08-26 1986-08-26 Optical scanner Pending JPS6355517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19933486A JPS6355517A (en) 1986-08-26 1986-08-26 Optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19933486A JPS6355517A (en) 1986-08-26 1986-08-26 Optical scanner

Publications (1)

Publication Number Publication Date
JPS6355517A true JPS6355517A (en) 1988-03-10

Family

ID=16406063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19933486A Pending JPS6355517A (en) 1986-08-26 1986-08-26 Optical scanner

Country Status (1)

Country Link
JP (1) JPS6355517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648864A (en) * 1995-03-23 1997-07-15 Ricoh Company, Ltd. Optical scanner
US5982524A (en) * 1996-09-05 1999-11-09 Sharp Kabushiki Kaisha Optical scanning apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648864A (en) * 1995-03-23 1997-07-15 Ricoh Company, Ltd. Optical scanner
US5982524A (en) * 1996-09-05 1999-11-09 Sharp Kabushiki Kaisha Optical scanning apparatus

Similar Documents

Publication Publication Date Title
US4796965A (en) Optical scanning device
JPH09146026A (en) Method for compensating curvature of image surface and light beam scanning device used for the method
JP3104618B2 (en) Optical scanning device and optical lens
JP2964629B2 (en) Laser beam scanning optical device
JPS6355517A (en) Optical scanner
US5191463A (en) Scanning optical system in which a ghost image is elminated
JP2971005B2 (en) Optical scanning device
JP3192537B2 (en) Scanning optical device
JPS6380218A (en) Optical scanner
JPH0216522A (en) Optical scanner
JPH01200221A (en) Light beam scanning optical system
JPH01200220A (en) Light beam scanning optical system
JPH112769A (en) Optical scanner
JP3132047B2 (en) Light beam scanning optical system
JPH01300218A (en) Light beam scanning optical system
JPS597922A (en) Light beam printer
JP3571808B2 (en) Optical scanning optical system and laser beam printer including the same
JP2750597B2 (en) High density scanning device
JP2615850B2 (en) Light beam scanning optical system
JPS6226733Y2 (en)
JP2629870B2 (en) Surface tilt correction scanning optical system
JPH0772408A (en) Scanning optical system
JP3658439B2 (en) Scanning imaging lens and optical scanning device
JPH01234815A (en) Light beam scanning optical system
JPH01200219A (en) Light beam scanning optical system