JPS6355445A - Appearance inspection system - Google Patents

Appearance inspection system

Info

Publication number
JPS6355445A
JPS6355445A JP19880586A JP19880586A JPS6355445A JP S6355445 A JPS6355445 A JP S6355445A JP 19880586 A JP19880586 A JP 19880586A JP 19880586 A JP19880586 A JP 19880586A JP S6355445 A JPS6355445 A JP S6355445A
Authority
JP
Japan
Prior art keywords
inspected
light
complementary color
defect
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19880586A
Other languages
Japanese (ja)
Other versions
JP2914967B2 (en
Inventor
Hiroaki Toyoda
豊田 洋章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61198805A priority Critical patent/JP2914967B2/en
Publication of JPS6355445A publication Critical patent/JPS6355445A/en
Application granted granted Critical
Publication of JP2914967B2 publication Critical patent/JP2914967B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To detect the defect of a solid and a non-specific shape with high accuracy by radiating spot light beams being in the relation of a complementary by radiating spot light beams being in the relation of a complementary color to each other, to a surface to be inspected. CONSTITUTION:The surface to be inspected 8 is driven by an XY table, etc., a light beam radiated from a light source 3 is allowed to pass through a selected light transmission filter 4, and a light beam having only a specific wavelength component is converged 6, and radiated to only the specific inspection range of the surface to be inspected 8. In such a case, an illuminating optical axis is constituted so as to be illuminated from an oblique direction to the surface to be inspected 8, and also, on the surface being different from the surface containing this illuminating optical axis, in a vertical direction to the surface to be inspected 8, plural illuminating equipments are placed and an illumination is executed so that light beams being in a complementary color relation each other to wavelength selected by the filter 4 are superposed to each other on the surface to be inspected 8. In such a way, the surface to be inspected 8 illuminated by the complementary color illuminating equipment is brought to an image formation on an image pickup device 1 by a focusing helicoid 5, and by detecting a reflected light component of the surface to be inspected 8 and detecting a detected defect 7, the surface to be inspected is inspected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学的に画像等を検出し、非接触にて欠陥検査
等を行う外観検査方式に係り、特に立体形状を検出する
に最適な、例えばプリント基板の半田付をチェックした
りするのに好適な照明および検出方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a visual inspection method that optically detects images and performs non-contact defect inspection, etc., and is particularly suitable for detecting three-dimensional shapes. The present invention relates to an illumination and detection method suitable for, for example, checking soldering on a printed circuit board.

〔従来の技術〕[Conventional technology]

従来のパターン欠陥検査装置は特開昭55−15707
8号公報に見られるように、被検査5面上の形状的特徴
を何らかの方法をもって検出し、その特徴部分の一致度
を演算処理を行い欠陥を検出していた。
The conventional pattern defect inspection device is disclosed in Japanese Patent Application Laid-Open No. 55-15707.
As seen in Publication No. 8, defects are detected by detecting the geometrical features on the five surfaces to be inspected using some method, and calculating the degree of coincidence of the features.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような方式では非特定形状の欠陥の検出が困難であ
り、また照明により発生する影の部分が形状の一部とし
て認識される等、立体形状の認識が困難であった。
With such a method, it is difficult to detect defects with a non-specific shape, and it is also difficult to recognize three-dimensional shapes, such as shadows caused by illumination being recognized as part of the shape.

本発明の目的は立体かつ非特定形状の欠陥を高精度に検
出する方法を提供することにある。
An object of the present invention is to provide a method for detecting defects of a three-dimensional and non-specific shape with high accuracy.

C問題点を解決するための手段〕 本発明による欠陥の検査方法は、被検査面上に互いに補
色の関係にあるスポット(部分′q1行特性)光を被検
査面に対し斜方向で、かつ被検査面に対して互いに異な
る垂直面方向より、被照明面上で互いに重なるよう(同
一面に集光するよう)に顯明する。
Means for Solving Problem C] The defect inspection method according to the present invention is characterized in that spot lights (portions 'q1 row characteristics) of mutually complementary colors are directed onto the surface to be inspected in an oblique direction to the surface to be inspected, and The lights are illuminated from different perpendicular plane directions with respect to the surface to be inspected so as to overlap each other on the surface to be illuminated (so that the light is focused on the same surface).

(作用〕 従って、その被照明面内に含有されている波長成分を検
出し、その成分の部分的な欠損の割合を演算処理するこ
とにより、被検査面の表面上の突出や欠損等の欠陥や異
物を検出することができる。
(Operation) Therefore, by detecting the wavelength component contained in the surface to be inspected and calculating the proportion of partial defects in that component, defects such as protrusions and defects on the surface of the surface to be inspected can be detected. It is possible to detect foreign matter.

〔実施例〕〔Example〕

以下本発明の詳細を図面を参照して説明する。 The details of the present invention will be explained below with reference to the drawings.

第1図は本発明を応用した、欠陥自動検査装置の全体構
成図を示す。
FIG. 1 shows an overall configuration diagram of an automatic defect inspection device to which the present invention is applied.

ここでは被検査面8は全波長成分を反射する表面でも、
特定の波長成分を選択反射もしくは選択吸収特性を有す
る表面でもよいが、この面が不規則な分布で選択反射も
しくは選択吸収特性を有する表面の場合のみ、撮像(検
像)装置1もしくは撮像(検像)レンズ5などに何らか
の処理(フィルタ、閾値調整等)を施し、撮像画像内で
の背景部が一定の−様な特性を有するものとする。本明
細書においては被検査面8は全波長を反射する表面と仮
定し以下説明する。
Here, even though the surface to be inspected 8 is a surface that reflects all wavelength components,
It may be a surface that has selective reflection or selective absorption characteristics for specific wavelength components, but only when this surface has irregular distribution and selective reflection or selective absorption characteristics, the imaging (imaging) device 1 or the imaging (detection) device 1 or the imaging (detection) Image) It is assumed that some processing (filter, threshold value adjustment, etc.) is applied to the lens 5, etc., so that the background part in the captured image has a certain --like characteristic. In this specification, the following description will be made assuming that the surface to be inspected 8 is a surface that reflects all wavelengths.

被検査面8はXYテーブル等により駆動され(撮像系が
移動しても可)、その表面を光源3より輻射された光を
選択光透過(吸収も可)フィルタ4を通し特定の波長成
分のみを有する光を光源集光レンズ6により集光し特定
の検査範囲のみを照明する。この時、この照明系の照明
光軸は被検査面8に対し斜方向より照明されるように配
し、かつ被検査面8に対し垂直方向で上記照明光軸を含
む面と異なる面(撮像光軸に対し]80°反転而は同一
面でも可)に、選択透過フィルタ4により選択された波
長と互いに補色関係(この場合完全に波長間を埋める必
要はなく、また部分的に重なり合っていてもさしつかえ
ない)にある光を、被照明面で互いに重なり合うよう、
複数の照明装置を配し照明する。
The surface to be inspected 8 is driven by an XY table or the like (it is possible to move the imaging system), and the light radiated from the light source 3 is selectively transmitted (or absorbed) through the surface through a filter 4 to selectively transmit only specific wavelength components. A light source condensing lens 6 condenses the light having . At this time, the illumination optical axis of this illumination system is arranged so that the surface to be inspected 8 is illuminated from an oblique direction, and the surface (imaging (with respect to the optical axis), the wavelengths selected by the selective transmission filter 4 may be in complementary colors to each other (in this case, it is not necessary to completely fill the wavelength gap, and the wavelengths may be partially overlapped). so that the lights on the illuminated surface overlap each other,
Arrange and illuminate multiple lighting devices.

本明細書中では、光源3、選択光透過フィルタ4および
光源集光レンズ6をまとめて補色照明装置と呼ぶことと
する。
In this specification, the light source 3, selective light transmission filter 4, and light source condensing lens 6 are collectively referred to as a complementary color illumination device.

以上の補色照明装置にて照明された被検査面8を焦点調
整用へリコイド2により焦点調整された撮像(検像)レ
ンズ5により撮像(検像)装置1上に結像し被検査面8
の反射光成分を検出して検出欠陥7を検知することによ
り被検査面を検査するものである。
The surface to be inspected 8 illuminated by the above-mentioned complementary color illumination device is imaged onto the imaging (imaging) device 1 by the imaging (imaging) lens 5 whose focus is adjusted by the helicoid 2 for focus adjustment.
The surface to be inspected is inspected by detecting the detected defect 7 by detecting the reflected light component.

第2図に、本発明に用いる照明装置の一例を示す。この
例では波長成分により赤色光(約600〇入具」二成分
、以下R光と記す)、緑色光(5000〜6000人成
分、以下G光と記す)、青色光(約5000Å以下成分
、以下B光と記す)の3成分をフィルタにより分離する
方式を用いるが、この照明装置は各照明光が補色光の関
係にあればいかように分割してもさしつかえなく、検出
機器との対応により、XYZ色系(CIE−国際照明委
員会)、Lab表色茶色系ルスター、エースター、ビー
スタ表色系)、立体色、マンセル色相等の色糸において
補色分割した光線を用いてもさしつかえない。ここで、
R補色照明装置11を用いてR補色光12を、G補色照
明装置13にてG補色光4を、B補色照明装置15にて
B補色光16を、それぞれ異なる3方向より被照明点1
7で互いに重なるように照明を行うと、被照明点17よ
りの反射光にはR光、G光、B光の全成分が均等に含ま
れることになる。この様子を示したのが第4図であり、
この部分を検出し明るさLに特定の閾値を持たせるとこ
の場合111 ?+ 11111 It I Nと検出
されることになる(閾値を越えた場合″1″′。
FIG. 2 shows an example of a lighting device used in the present invention. In this example, the wavelength components are red light (approximately 6000 Å component), green light (5000 to 6000 component, hereinafter referred to as G light), blue light (approximately 5000 Å component, hereinafter referred to as G light), A method is used in which the three components of the B light (hereinafter referred to as B light) are separated using a filter, but this lighting device can be divided into any way as long as each illumination light has a complementary color relationship, and depending on the correspondence with the detection equipment, It is also possible to use light rays divided into complementary colors in color threads such as the XYZ color system (CIE - International Commission on Illumination), Lab color system (brown color system), Aster color system, Aster color system, Bestar color system), three-dimensional color, Munsell hue, etc. here,
Using the R complementary color illumination device 11, the R complementary color light 12, the G complementary color illumination device 13, the G complementary color light 4, and the B complementary color illumination device 15, the B complementary color light 16 are applied to the illuminated point 1 from three different directions.
If the illumination is performed so as to overlap each other at step 7, the reflected light from the illuminated point 17 will equally contain all components of R light, G light, and B light. Figure 4 shows this situation.
If this part is detected and the brightness L is set to a specific threshold value, in this case it will be 111? +11111 It I N will be detected (“1” if the threshold is exceeded).

越えない場合110 T′と判定)。この場合1117
1“1” 1′″が標準(欠陥なし)と規定しているが
、異なる組合せを用いてもさしつかえない。
If it does not exceed 110 T'). In this case 1117
Although 1"1"1'" is defined as standard (no defect), different combinations may be used.

第1図および第2図のような装置を用い、被検査面を走
査し、欠陥等の異物が被検査面」−に検出した場合の原
理を第3図に示す。本装置では、補色光線21は斜方向
より照射され、検出欠陥22が存在すると、この検出欠
陥22の影の部分は照明未達部分23が出来、この部分
は被補色照明光の波長成分は存在しない。
FIG. 3 shows the principle of scanning a surface to be inspected using the apparatus shown in FIGS. 1 and 2 and detecting foreign matter such as defects on the surface to be inspected. In this device, complementary color light rays 21 are irradiated from an oblique direction, and when a detected defect 22 exists, an illumination unreached area 23 is created in the shadow of this detected defect 22, and in this area, the wavelength component of the complementary color illumination light is not present. do not.

この影の部分は、従来の形状認識アルゴリズムの場合雑
音と認識され:かっこの影の部分を形状認識□しても、
非特定形状欠陥物質の場合には影も非特定形状を有し特
定パターン認識できない。また、単色光のみで影を作り
その濃淡を二値化処理して影の有無を検出しようとする
時、方向によっては影が存在せ□ず欠陥を見逃す可能性
がある。
This shaded area is recognized as noise in conventional shape recognition algorithms: Even if the shaded area of the parentheses is recognized as a shape,
In the case of a defective material with a non-specific shape, the shadow also has a non-specific shape and a specific pattern cannot be recognized. Furthermore, when attempting to detect the presence or absence of a shadow by creating a shadow using only monochromatic light and binarizing its shading, there is a possibility that the shadow may not be present depending on the direction and a defect may be overlooked.

本発明は、互いに異なる方向より補色光を照射し複数の
影ができ、この影の部分の波長成分が他の方向と補色の
関係にあるため、他方向の照射により打ち消されない特
徴があり(単色光を複数方向より照射すると互いに影を
打ち消し合う)この影の部分に特定の波長成分が存在し
ないことを利用する。
The present invention has the characteristic that complementary color light is irradiated from different directions to create multiple shadows, and since the wavelength components of the shadows have a complementary color relationship with other directions, they are not canceled out by irradiation in other directions ( (When monochromatic light is irradiated from multiple directions, the shadows cancel each other out.) This method takes advantage of the fact that no specific wavelength component exists in the shadow area.

被検査面−ヒに欠陥が存在しない場合、前記のように第
4図に示すようIt l II  It I II  
# 1″″と検出される。被検査面に欠陥が存在した場
合は、B光による影の部分は、第5図の様にB先部分の
波長成分に欠損を生じ、この部分の明るさLが検出器の
閾値に達せずsr 011111″rtt1+rのよう
に検出され、検出情報に差異を生じる。同様にG光によ
る検出情報は第6図に示す様111 II /(071
it I IIと、R光による検出情報は第7図に示す
様″1”11111 tL OIIとなる。なお補色分
割は前記のようにこの限りではなく、背面が特定波長の
選択吸収または選択反射特性を有する場合、この波長成
分を避けた照明および検出機器を用いる方法を採用すれ
ばよい。
If there is no defect on the surface to be inspected, as shown in FIG.
#1″″ is detected. If there is a defect on the surface to be inspected, the shaded area caused by the B light will cause a loss in the wavelength component of the B tip part as shown in Figure 5, and the brightness L of this area will not reach the threshold of the detector. sr 011111″rtt1+r, which causes a difference in the detected information.Similarly, the detected information by G light is 111 II / (071
The detection information based on it I II and R light becomes "1" 11111 tL OII as shown in FIG. Note that the complementary color division is not limited to this as described above, and if the back surface has selective absorption or selective reflection characteristics of a specific wavelength, a method using illumination and detection equipment that avoids this wavelength component may be adopted.

第8図は、以上の考え方に基づいて設計された補色検出
機器の一例を示す。被検出面31の像は、撮像レンズ3
2により撮像素子33に結像される。
FIG. 8 shows an example of a complementary color detection device designed based on the above concept. The image of the detection surface 31 is captured by the imaging lens 3
2, an image is formed on the image sensor 33.

この撮像素子は、単独のフォトセンサ、ラインセンサ、
二次元イメージセンサ等、その認識内容の用途により使
いわければ良いが、採用した補色成分のみを透過するフ
ィルタをその前面に取り付けて、採用した数の信号数を
検出する必要がある。
This image sensor is a single photo sensor, a line sensor,
A two-dimensional image sensor or the like may be used depending on the purpose of the recognition content, but it is necessary to attach a filter in front of the sensor that transmits only the adopted complementary color component to detect the adopted number of signals.

この条件を満足すれば、3式の撮像装置を用いても、単
管カメラのような単一撮像装置を用いてもさしつかえな
い。本例では、RG+3のフィルタを有するイメージセ
ンサを用いる場合が最も効率よく補色光像を得ることが
できる。撮像素子より検出されたR光、G光、B光の画
像信号は、それぞれR検出回路34、G検出回路35、
B検出回路36により二値化処理される。この二値化閾
値はそれぞれR閾値設定回路37.G閾値設定回路38
、B閾値設定回路39により設定される。各信号は比較
判定回路40により比較処理され、記憶メモリ内に記録
される。本例では1lIJLtIITII I IIの
時のみパス(以下Pと記す)、他の場合はフェイル(以
下Fと記す)と判定するが、このP又はFの判定パター
ンは比較モード設定回路41により設定できる。画像メ
モリの情報は演算モード設定回路44の指示にしたがっ
て演算処理回路43により演算処理され判定回路45に
より欠陥の有無の判定を行なう。
As long as this condition is satisfied, there is no problem even if three types of imaging devices are used or a single imaging device such as a single tube camera is used. In this example, a complementary color light image can be obtained most efficiently when an image sensor having an RG+3 filter is used. Image signals of R light, G light, and B light detected by the image sensor are sent to an R detection circuit 34, a G detection circuit 35, and
The B detection circuit 36 performs binarization processing. These binarization thresholds are set by the R threshold setting circuit 37. G threshold setting circuit 38
, B threshold value setting circuit 39. Each signal is compared and processed by the comparison/judgment circuit 40 and recorded in the storage memory. In this example, a pass (hereinafter referred to as P) is determined only when 1lIJLtIITII I II, and a fail (hereinafter referred to as F) is determined in other cases, but the determination pattern for P or F can be set by the comparison mode setting circuit 41. The information in the image memory is subjected to arithmetic processing by the arithmetic processing circuit 43 according to instructions from the arithmetic mode setting circuit 44, and the determination circuit 45 determines whether or not there is a defect.

第9図に本補色検出機の記憶メモリ内の検出データの内
容を示す。本検出機は撮像素子より得られたアナログ量
を二値化処理し、その3種の二値化信号(R,G、B判
定信号)を比較機で特定パターン判定を行なう。この判
定値自体が既に欠陥を検出していることになるが、実際
は表面の荒れ等により雑音が発生する。第9図において
Pは補色判定の結果特定波長の欠けが存在しなかったこ
とを示し、Fは判定の結果特定波長の欠けが存在したこ
とを示す。この時、雑音検出部と欠陥検出部51および
53と欠陥検出部52とに分離を行なう。この分離はF
成分のXY座標の連結度を調べ前後左右連結手の長さよ
り欠陥か雑音かの判定を行なう。
FIG. 9 shows the contents of detection data in the storage memory of this complementary color detector. This detector binarizes the analog quantity obtained from the image sensor, and uses the comparator to determine a specific pattern using the three binarized signals (R, G, and B determination signals). Although this judgment value itself has already detected a defect, in reality, noise is generated due to surface roughness, etc. In FIG. 9, P indicates that there is no defect in a specific wavelength as a result of complementary color determination, and F indicates that a defect in a specific wavelength exists as a result of determination. At this time, the noise detection section, the defect detection sections 51 and 53, and the defect detection section 52 are separated. This separation is F
The degree of connectivity of the XY coordinates of the components is examined, and it is determined whether it is a defect or noise based on the length of the front, rear, left, and right connecting arms.

第9図の場合、雑音検出部51はFの周囲が全てPであ
るので本装置の演算部での連結成分はOとなる。雑音検
出部53についてはFの連結成分が51となる。本装置
はこの部分をFの座標より検出する。まず雑音検出部5
3のFの座標を見ると(x、Y)(7)値は(9,5)
(9,9)となり、この時又座標が一致し、これはFの
座標が連結成分を1つもっていることを意味する。同様
にY座標の値が一致すれば同様に連結成分“1”とカウ
ントする。つまり本装置の演算処理回路では、Fの座標
を全て取り込み(X、Yo)、(X、YP)の2つの座
標間でX1l=x11かつYO−YP=111またはY
 o =Y pかつXrl−X、=111かいずれかの
場合連結部″1”と判定することになる。
In the case of FIG. 9, the noise detection unit 51 has all the areas around F, so the connected component in the arithmetic unit of this device is O. Regarding the noise detection unit 53, the connected component of F is 51. This device detects this part from the coordinates of F. First, the noise detection section 5
Looking at the coordinates of F in 3, (x, Y) (7) the value is (9, 5)
(9, 9), and at this time the coordinates match again, which means that the coordinates of F have one connected component. Similarly, if the Y coordinate values match, the connected component is counted as "1". In other words, the arithmetic processing circuit of this device takes in all the coordinates of F (X, Yo), and calculates between the two coordinates (X, YP) X1l=x11 and YO-YP=111 or Y
If either o = Y p and Xrl-X, = 111, the connection part is determined to be "1".

((Xn=X−)n (Yo  Yp=111))U 
[(Yo=Yp) n (XnX−=lII))=n(
1)・1 +式1したがって、欠陥検出部52を演算処
理すると、まず座標成分は(5,4,)(6,4)(3
,5)(4,5)(5,5)(6,5)(3,6)(4
゜6)(3,7)(4,7)(4,8)(5,8)とな
り、式1に代入すると7 + 7 = 1.4 = n
 (1)となる。この連結成分に閾値を設けることによ
り、本装置は欠陥判定を行なう。
((Xn=X-)n (Yo Yp=111))U
[(Yo=Yp) n (XnX-=lII))=n(
1)・1 + Equation 1 Therefore, when the defect detection unit 52 is processed, the coordinate components are (5, 4,) (6, 4) (3
,5)(4,5)(5,5)(6,5)(3,6)(4
゜6) (3,7) (4,7) (4,8) (5,8), and when substituted into equation 1, 7 + 7 = 1.4 = n
(1). By setting a threshold value for this connected component, this device performs defect determination.

以上第1図ないし第9図を用いて本発明の一例を示した
が、本発明の1つの主旨は補色光の照明を与え、その成
分の欠損を検出することにあり、検出された信号の処理
方法は特に規定しない。場合によっては信号検出を行な
わず、顕微鏡のような目視装置に用いてもよく、その−
例を第10図に示す。
An example of the present invention has been shown above using FIGS. 1 to 9, but one of the main points of the present invention is to provide illumination with complementary color light and detect defects in the components, and to detect defects in the components of the detected signal. The processing method is not particularly specified. In some cases, it may be used as a visual device such as a microscope without signal detection;
An example is shown in FIG.

第10図は通常の光学顕微鏡の暗視野照明装置であり、
鏡筒61に側面より照明光62を送り込む。R系照明光
路63はR系反射鏡68により対物レンズの側面を通り
R系選択吸収フィルタ66を通し対物反射鏡71により
対物面70に斜めより照射する。他一方、B系照明光路
はB系反射鏡69により反射され、B系選択吸収フィル
タ65を通しR系間様に照射する。以上により検像を行
なえば目視では色度および色彩差として検出される。
Figure 10 shows a dark field illumination device for an ordinary optical microscope.
Illumination light 62 is sent into the lens barrel 61 from the side. The R-system illumination optical path 63 passes through the side surface of the objective lens by the R-system reflector 68, passes through the R-system selective absorption filter 66, and is irradiated obliquely onto the objective surface 70 by the objective reflector 71. On the other hand, the B-system illumination optical path is reflected by the B-system reflector 69, passes through the B-system selective absorption filter 65, and irradiates the R-system. If the image is inspected as described above, it will be visually detected as chromaticity and color difference.

〔発明の効果〕〔Effect of the invention〕

本発明の実施例によれば、立体形状でその形状の不特定
なものを補色成分による科白光を多方向より与えること
により安定かつ確実に検出でき、又、認識のアルゴリズ
ムも形状判定に比べ容易に実現できるため、廉価でかつ
高信頼性の外観検査装置ができる。
According to the embodiment of the present invention, it is possible to stably and reliably detect a three-dimensional object with an unspecified shape by applying white light using complementary color components from multiple directions, and the recognition algorithm is also easier than that for shape determination. Since it can be realized in a number of ways, it is possible to create an inexpensive and highly reliable visual inspection device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を応用した欠陥自動検査装置の全体構成
図、第2図は本発明による照明構成図、第3図は欠陥検
出の原理図、第4図、第5図、第6図および第7図は補
色光検出波長成分図を示し、第4図は全波長成分図、第
5図はB光欠損波長成分図、第6図はG光欠損波長成分
図、第7図はR光欠損波長成分図、第8図は本発明の補
色検出処理構成図、第9図は補色検出処理を行なう記憶
メモリ内の検出データの内容を示す図、第10図は本発
明の光学顕微鏡への応用例を示す。 1・・・撮像装置、2・・・焦点調整用へリコイド、3
・・・光源、4・・・フィルター、5・・・撮像レンズ
、6・・・集光レンズ、7・−・欠第1図 3・・・光源 4・・・選択光透過フィルター 5・・・撮像(vi像)レンズ′ 6・・・光源集光レンズ 7・・・検出欠陥 8・・・被検査画 第2図 第3図 23・・・照明未達部分 5000^入 第9図 51・・・雑音検出部 52・・・欠陥検出部 Cズ10.紬立辻中匍 第10図 65・・・B系選択吸収フィルター 66・・・R系選択吸収フィルター 67・・・対物レンズ 68・・・R系反射鏡 J−り1−区山一 69・・・日系反射鏡 71・・・対物反射鏡
Fig. 1 is an overall configuration diagram of an automatic defect inspection device to which the present invention is applied, Fig. 2 is an illumination configuration diagram according to the invention, Fig. 3 is a principle diagram of defect detection, and Figs. 4, 5, and 6. 7 shows a complementary color light detection wavelength component diagram, FIG. 4 is a total wavelength component diagram, FIG. 5 is a B-light defective wavelength component diagram, FIG. 6 is a G-light defective wavelength component diagram, and FIG. 7 is a R-light defective wavelength component diagram. Optical defect wavelength component diagram, Figure 8 is a diagram showing the configuration of complementary color detection processing of the present invention, Figure 9 is a diagram showing the contents of detection data in the storage memory for performing complementary color detection processing, and Figure 10 is a diagram showing the optical microscope of the present invention. Here is an example of its application. 1... Imaging device, 2... Helicoid for focus adjustment, 3
... light source, 4 ... filter, 5 ... imaging lens, 6 ... condensing lens, 7 ... missing Figure 1 3 ... light source 4 ... selective light transmission filter 5 ... - Imaging (vi image) lens' 6...Light source condensing lens 7...Detected defect 8...Inspected image Fig. 2 Fig. 3 Fig. 23...Illumination unreached area 5000^ entered Fig. 9 51 . . . Noise detection section 52 . . . Defect detection section C's 10. 10 Figure 65...B-system selective absorption filter 66...R-system selective absorption filter 67...Objective lens 68...R-system reflector J-Ri1-Kuyamaichi 69. ...Japanese reflector 71...Objective reflector

Claims (1)

【特許請求の範囲】[Claims] 1、互いに補色の関係にあるスポット光を、被検査面に
対し斜方向でかつ互いに異なる垂直面より、被照明面上
で互いに重なるよう照明することを特徴とする外観検査
方式。
1. An appearance inspection method characterized by illuminating spotlights of mutually complementary colors obliquely to the surface to be inspected and from different vertical planes so as to overlap each other on the surface to be illuminated.
JP61198805A 1986-08-27 1986-08-27 Appearance inspection method Expired - Lifetime JP2914967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61198805A JP2914967B2 (en) 1986-08-27 1986-08-27 Appearance inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61198805A JP2914967B2 (en) 1986-08-27 1986-08-27 Appearance inspection method

Publications (2)

Publication Number Publication Date
JPS6355445A true JPS6355445A (en) 1988-03-09
JP2914967B2 JP2914967B2 (en) 1999-07-05

Family

ID=16397203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61198805A Expired - Lifetime JP2914967B2 (en) 1986-08-27 1986-08-27 Appearance inspection method

Country Status (1)

Country Link
JP (1) JP2914967B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2686697A1 (en) * 1992-01-27 1993-07-30 Aerospatiale Device for detecting defects in bilayer components, especially in solar cells
EP0764845A2 (en) * 1995-09-19 1997-03-26 AUTRONIC Gesellschaft für Bildverarbeitung und Systeme mbH Apparatus for detecting defective portion on a smooth surface
US6825924B2 (en) * 1999-12-15 2004-11-30 International Business Machines Corporation Dual peak wavelength tube, illuminator for inspection, inspecting apparatus, and method thereof
JP2007286793A (en) * 2006-04-14 2007-11-01 Denso Wave Inc Information code reader
JP2007285983A (en) * 2006-04-20 2007-11-01 Honda Motor Co Ltd Method and device for detecting damage or the like of workpiece

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7391510B2 (en) * 2006-01-26 2008-06-24 Orbotech Ltd System and method for inspecting patterned devices having microscopic conductors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952735A (en) * 1982-09-20 1984-03-27 Kawasaki Steel Corp Surface flaw detecting method of hot billet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952735A (en) * 1982-09-20 1984-03-27 Kawasaki Steel Corp Surface flaw detecting method of hot billet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2686697A1 (en) * 1992-01-27 1993-07-30 Aerospatiale Device for detecting defects in bilayer components, especially in solar cells
EP0764845A2 (en) * 1995-09-19 1997-03-26 AUTRONIC Gesellschaft für Bildverarbeitung und Systeme mbH Apparatus for detecting defective portion on a smooth surface
EP0764845A3 (en) * 1995-09-19 1997-09-17 Autronic Bildverarbeitung Apparatus for detecting defective portion on a smooth surface
US6825924B2 (en) * 1999-12-15 2004-11-30 International Business Machines Corporation Dual peak wavelength tube, illuminator for inspection, inspecting apparatus, and method thereof
JP2007286793A (en) * 2006-04-14 2007-11-01 Denso Wave Inc Information code reader
JP2007285983A (en) * 2006-04-20 2007-11-01 Honda Motor Co Ltd Method and device for detecting damage or the like of workpiece

Also Published As

Publication number Publication date
JP2914967B2 (en) 1999-07-05

Similar Documents

Publication Publication Date Title
US20010012107A1 (en) Method and apparatus for inspecting a printed circuit board assembly
CN103685830B (en) Image read-out and bill handling device
JPH11185028A (en) Method for detecting artifact on surface of transmissive image medium
JP2005127989A (en) Flaw detector and flaw detecting program
KR20060053847A (en) Method for inspecting defects of glass plate and apparatus thereof
JP2011145182A (en) Inspection device of screw thread
JPH03160347A (en) Device for inspecting external appearance of solder
KR20190053881A (en) Optical inspection apparatus and optical inspection method for inspecting semiconductor components by visible light and infrared light
JP3341963B2 (en) Defect inspection equipment
JPS6355445A (en) Appearance inspection system
JPH08247736A (en) Mounted substrate inspecting device
US11037314B1 (en) Method for the non-destructive inspection of an aeronautical part and system thereof
JP2004132773A (en) System for checking gloss of fruits and vegetables
JPS6061648A (en) Pattern detector
JPH10274515A (en) Curved surface inspection method and camera unit for inspection
JPH0752158B2 (en) Mounted board inspection device
JP6733039B2 (en) Appearance inspection device, appearance inspection method
JPH0962839A (en) Inspection device for appearance of farm and merine products
JPH0587781B2 (en)
JP2570508B2 (en) Soldering inspection equipment
JPH0625713U (en) Soldering part inspection device
JP7391579B2 (en) Visual inspection system and visual inspection method
JPH07239222A (en) Surface defect detector
JPH02190750A (en) Soldering inspecting device
JPS6288946A (en) Image extracting method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term