JPS6354485A - Fluidity improver for powder - Google Patents

Fluidity improver for powder

Info

Publication number
JPS6354485A
JPS6354485A JP19838186A JP19838186A JPS6354485A JP S6354485 A JPS6354485 A JP S6354485A JP 19838186 A JP19838186 A JP 19838186A JP 19838186 A JP19838186 A JP 19838186A JP S6354485 A JPS6354485 A JP S6354485A
Authority
JP
Japan
Prior art keywords
powder
silica
fluidity
fluidity improver
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19838186A
Other languages
Japanese (ja)
Other versions
JPH078981B2 (en
Inventor
Hideki Kobayashi
秀樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DuPont Toray Specialty Materials KK
Original Assignee
Toray Silicone Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Silicone Co Ltd filed Critical Toray Silicone Co Ltd
Priority to JP19838186A priority Critical patent/JPH078981B2/en
Publication of JPS6354485A publication Critical patent/JPS6354485A/en
Publication of JPH078981B2 publication Critical patent/JPH078981B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/12Face or body powders for grooming, adorning or absorbing

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide a fluidity improver which allows the fluidity of powder to be greatly improved and retained over a long period of time, consisting of fine silica powder made hydrophobic with a specified diorganosiloxane oligomer. CONSTITUTION:1-50pts.wt. diorganosiloxane oligomer of the formula (wherein R is a monovalent hydrocarbon group; n is 1-15; Q is halogen, hydroxyl or OR<1>; and R<1> is a monovalent hydrocarbon group) is added to 100pts.wt. fine silica powder having a very low water content (e.g., fumed silica). The mixture is mixed until a homogeneous mixture is formed. The mixture is heated at 100-200 deg.C to make the powder hydrophobic, thus obtaining a fluidity improver having such characteristics that its specific surface area (BET method) is 180+ or -100m<2>; its carbon content is 5+ or -3wt%; its apparent density is 75+ or -35g/l; its compression density is 220+ or -35mg/cm<2> when 1.5g of a sample is placed under a pressure of 3.4kg/cm<2> for 4min; and its silanol titer is 1.0+ or -1.0ml; the titer being expressed by the titer of an aq. soln. of 0.1N-NaOH required for changing the pH of a dispersion from 4.0-9.0. The dispersion obtd. by dispersing 2.0g of a sample in a liquid mixture of 25ml of ethanol and 75ml of a 20wt% aq. soln. of NaCl. 0.2-0.3wt% said fluidity improver is added to powder.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、粉体の流動性向上剤に関し、詳しくは疎水化
処理されたシリカ系微粉末からなる、粉体の流動性向上
剤に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a powder fluidity improver, and more particularly to a powder fluidity improver comprising a hydrophobized silica-based fine powder.

[従来の技術J シリカ微粉末は、多くの工業分野で粉体の固化を防止し
、流動性を増大させるために、使用されてきた。例えば
、肥料、食品、医薬品、化粧品、粉末消火剤、セラミッ
クス微粉体、顔料、粉末塗料、有機樹脂粉末等の粉体に
添加され、流動性を改善するのに使用されている。
[Prior Art J Silica fine powder has been used in many industrial fields to prevent powder solidification and increase fluidity. For example, it is added to powders such as fertilizers, foods, medicines, cosmetics, powder fire extinguishers, ceramic fine powders, pigments, powder coatings, and organic resin powders, and is used to improve fluidity.

粉体状製品は、その化学成分や使用方法に関係なく、凝
集しケーキ状になる傾向がある。
Powdered products, regardless of their chemical composition or method of use, tend to clump and cake.

従って、このような製品の包装、貯蔵等の取扱いには困
難を伴う。従来、このような粉体状製品の流動性向上剤
としては、シリカ微粉末やケイM塩微粉末が知られてお
り、特に気相法で得られたフユームドシリ力が知られて
いる。
Therefore, packaging, storage, and other handling of such products are difficult. Conventionally, fine silica powder and fine silica salt powder have been known as fluidity improvers for such powdered products, and in particular, fumed silica obtained by a gas phase method is known.

シリカ微粉末、特にフユームドシリ力は、粒子の径が非
常に小さく、粒度分布が狭く、かさ密度が非常に小さい
という、流動性向上剤として有利な特徴を有している。
Fine silica powder, especially fumed silica powder, has advantageous characteristics as a fluidity improver, such as very small particle size, narrow particle size distribution, and very low bulk density.

しかしながら、親水性であるために、粉体に添加混合後
、長期間貯蔵すると、空気中の湿気を吸着して、互いに
付着し合い、粉体の流動性が低下するという欠点があっ
た。
However, because they are hydrophilic, if they are stored for a long time after being added to the powder and mixed, they adsorb moisture in the air and adhere to each other, resulting in a decrease in the fluidity of the powder.

そこで、シリカ微粉末を表面処理して疎水化し、流動性
の向上及び貯蔵中の同化を防止する試みが行なわれでき
た。例えば、(1)シリカ微粉末をジメチルジクロルシ
ランにより、渦動懸垂状態で処理する方法(米国特許第
3924029号明iIl書)、り′2Jシリカ微粉末
を環状ジオルガノポリシロキサンと塩基系の触媒により
、有機液体中でスラリー状にして処理する方法(米国特
許第3334062号明細11)、(3シリカ微粉末を
少量の水とともにヘキサメチルジシラザンなどにより、
機械的外力を作用させながら処理する方法(特開昭50
−51494号公報)などが知られている。
Therefore, attempts have been made to surface-treat silica fine powder to make it hydrophobic, thereby improving fluidity and preventing assimilation during storage. For example, (1) a method in which fine silica powder is treated with dimethyldichlorosilane in a vortex suspension state (US Pat. No. 3,924,029), a method in which fine silica powder is treated with cyclic diorganopolysiloxane and a basic catalyst (U.S. Pat. No. 3,334,062 specification 11), a method in which 3-silica fine powder is treated with a small amount of water using hexamethyldisilazane, etc.
Method of processing while applying mechanical external force (Japanese Patent Application Laid-open No. 1983
-51494) and the like are known.

[発明が解決しようとしている問題点]しかし、上記(
1)の方法は、処理剤の揮発性が高いために、高度に疎
水化処理することが困難であり、粉体の流動性向上剤と
して使用された場合、依然、高温高湿下で吸湿し、貯蔵
中に流動性が低下するという欠点があった。
[Problem to be solved by the invention] However, the above (
In method 1), it is difficult to perform a highly hydrophobic treatment due to the high volatility of the treatment agent, and when used as a powder fluidity improver, it still absorbs moisture under high temperature and high humidity conditions. However, there was a drawback that the fluidity decreased during storage.

そこで、高度な処理を行なうために、連発したジメチル
ジクロルシランの蒸気を冷却器で凝縮し、還流させて処
理する方法が知られている。しかし、この方法や上記(
2や(3の方法によると高度に疎水化処理することが可
能であるが、シリカ微粉末の有する高い構造性が失われ
て、二次凝集が激しくなり、かさ密度が増大する傾向に
ある。従って、これを粉体の流動性向上剤として使用し
た場合には、粉体の貯蔵安定性は向上するが、流動性の
向上は十分でないという欠点があった。
Therefore, in order to perform advanced treatment, a method is known in which the continuously emitted dimethyldichlorosilane vapor is condensed in a cooler and refluxed. However, this method and the above (
Although it is possible to perform highly hydrophobic treatment using methods 2 and 3, the high structural properties of fine silica powder tend to be lost, secondary aggregation becomes more intense, and the bulk density tends to increase. Therefore, when this is used as a fluidity improver for powder, the storage stability of the powder is improved, but there is a drawback that the improvement in fluidity is not sufficient.

そこで、本発明者らは、従来の粉体の流動性向上剤の持
つ欠点を解消すべく鋭意研究した結果、本発明に到達し
た。
Therefore, the present inventors conducted intensive research to eliminate the drawbacks of conventional powder fluidity improvers, and as a result, they arrived at the present invention.

本発明の目的は、粉体に添加した際に、粉体の流動性を
大幅に向上させ、かつ長期間にわたって向上した流動性
を保つことのできる粉体の流動性向上剤を提供すること
にある。
An object of the present invention is to provide a powder fluidity improver that, when added to powder, can significantly improve the fluidity of the powder and maintain the improved fluidity for a long period of time. be.

[問題点の解決手段およびその作用] 前記した本発明の目的は、 一般  式 (式中、Rは一価炭化水素基であり、nは1〜15の整
数であり、Qはハロゲン原子、水酸基またG、t −O
R1であり、R1は一価炭化水素基である)で表わされ
るジオルガノシロキサンオリゴマーにより疎水化処理さ
れ、BET法比表面積  180±100m”/9炭素
含有量       5±3  重量%見掛は密度  
    75±35 9/、51.59の試料を3.4
Kg/a+f の圧力下に4分周おいたときの 圧縮密度      200±35 1(1/a+fシ
ラノ一ル滴定量  1.0±1.0id(ここでシラノ
ール滴定量は、2.09の試料を25mのエタノールと
75altの20重量%Nacl水溶液との混合液に分
散させてなる分散液のPHを4.0から9.0に変える
のに必要な0.1N−水酸化ナトリウム水溶液の滴定伍
を意味している)を有するシリカ系微粉末の採用によっ
て達成される。
[Means for Solving the Problems and Their Effects] The object of the present invention described above is to solve the following problems: Also G, t −O
Hydrophobized with a diorganosiloxane oligomer represented by R1, R1 is a monovalent hydrocarbon group), BET method specific surface area 180±100 m''/9 carbon content 5±3 wt% apparent density
75±35 9/, 51.59 sample to 3.4
Compressed density when placed under a pressure of Kg/a+f for 4 minutes 200±35 1(1/a+f Silanol titer 1.0±1.0id (Here, the silanol titer is the sample of 2.09 Titration step of 0.1N-sodium hydroxide aqueous solution required to change the pH of the dispersion in a mixture of 25m ethanol and 75alt 20% by weight NaCl aqueous solution from 4.0 to 9.0. This is achieved by employing a silica-based fine powder having a

本発明の流動性向上剤を製造するのに使用されるシリカ
系微粉末としては、フユームドシリ力、シリカアエロゲ
ル、沈澱シリカが例示される。
Examples of the silica-based fine powder used to produce the fluidity improver of the present invention include fumed silica, silica aerogel, and precipitated silica.

粉体の流動性向上剤としての性能上、 130−400m2/9のBET法比法面表面積するも
のが好ましい。
In terms of performance as a powder fluidity improver, those having a BET specific surface area of 130 to 400 m2/9 are preferred.

シリカ微粉末は、通常0.1〜5重両%、場合によって
はそれ以上の吸着水を含有することが知れている。この
吸着水は、疎水化処理時にシリカの一次粒子から成る鎖
状体の解裂および再配列をひき起し、シリカ微粉末の有
する高度の構造性を幾分低下させる。そのためシリカ微
粉末の水分含有率は小さいことが好ましい。ましてや、
特開昭50− 51494で提案されている疎水化処理時の水の添加は
避けるべきである。
It is known that fine silica powder usually contains 0.1 to 5% by weight of adsorbed water, and in some cases more than that. This adsorbed water causes cleavage and rearrangement of chain bodies made of silica primary particles during the hydrophobization treatment, and somewhat reduces the high degree of structure possessed by the fine silica powder. Therefore, it is preferable that the moisture content of the silica fine powder is small. Much less,
Addition of water during the hydrophobization treatment proposed in JP-A-50-51494 should be avoided.

したがって、水分含有率が小さく、大きなかさ容積を有
する点で、フユームドシリ力が好ましい。
Therefore, fumed silicon is preferable because it has a low moisture content and a large bulk volume.

フユームドシリ力は、四塩化ケイ素のみから製造したも
のだけでなく、四塩化ケイ素と他の金属ハロゲン化物、
例えば三基アルミニウム、四塩化チタン等と併用して製
造したシリカ微粉末と他の金属酸化物微粉末と複合微粉
末であってもよく、それらも包含する。
Fumed silicon is not only made from silicon tetrachloride, but also silicon tetrachloride and other metal halides,
For example, it may be a composite fine powder of silica fine powder produced in combination with tri-aluminum, titanium tetrachloride, etc., and other metal oxide fine powder, and these are also included.

このようなシリカ系微粉末としては、例えば、以下の商
品名で市販されているものがある。
Examples of such fine silica powders include those commercially available under the following trade names.

日本アエロジル株式会社製の Acrosi1130.
200.300.380、TT600、MOX60、 
MOX  170:米国のキャボット社製のCabos
il  M−5、MS−7、MS−75、HS −5、
EH−5:***のワラカーケミ−社製のHDKN20、
V15、T2O,T2O、なトチアル。
Acrosi1130 manufactured by Nippon Aerosil Co., Ltd.
200.300.380, TT600, MOX60,
MOX 170: Cabos manufactured by Cabot Corporation in the United States
il M-5, MS-7, MS-75, HS-5,
EH-5: HDKN20 manufactured by Walaker Chemie in West Germany,
V15, T2O, T2O, Totial.

これらシリカ系微粉末は、一般式 (式中、Rは一価炭化水素基であり、nは1〜15の整
数であり、Qはハロゲン原子、水!!または式OR1で
あり、R1は一価炭化水素基である)で表わされるジオ
ルガノシロキサンオリゴマーによって表面処理される。
These silica-based fine powders have a general formula (wherein R is a monovalent hydrocarbon group, n is an integer of 1 to 15, Q is a halogen atom, water!! or the formula OR1, and R1 is a The surface is treated with a diorganosiloxane oligomer represented by a valent hydrocarbon group.

Rとしてはメチル基、エチル基、プロピル基、ブチル基
、フェニル基が例示される。同一分子中のRは、同じで
も異なっていてもよい。
Examples of R include a methyl group, an ethyl group, a propyl group, a butyl group, and a phenyl group. R's in the same molecule may be the same or different.

R1としてはRと同様なものが例示される。Examples of R1 include those similar to R.

nは1〜15の整数であり、nがOであると、疎水化率
が劣り、nが16以上の場合には該シロキサンオリゴマ
ー中の官能基Qの含有率が減少して、シリカ系微粉末の
疎水化が困難となる。該シロキサンオリゴマーは、ハロ
ゲン原子、水M基、または式OR1である官能基Qが、
シリカ微粉末表面のシラノール基と縮合反応し、シリカ
系微粉末表面と結合して、シリカ系微粉末を疎水化させ
る。
n is an integer from 1 to 15; when n is O, the hydrophobicity is poor; when n is 16 or more, the content of the functional group Q in the siloxane oligomer decreases, resulting in a silica-based microorganism. It becomes difficult to make the powder hydrophobic. The siloxane oligomer has a halogen atom, a water M group, or a functional group Q having the formula OR1,
It undergoes a condensation reaction with the silanol groups on the surface of the fine silica powder, bonds with the surface of the fine silica powder, and makes the fine silica powder hydrophobic.

シリカ系微粉末に対する該シロキサンオリゴマーの使用
昂は、シリカ系微粉末の有する単位表面積当りのシラノ
ール基数や、比表面積、Qの含有量などによって適宜か
わるため、特に限定されないが、通常、シリカ系微粉末
100重量部に対し、1〜50重j部の範囲である。
The degree of use of the siloxane oligomer for silica-based fine powder is not particularly limited, as it varies depending on the number of silanol groups per unit surface area, specific surface area, Q content, etc. of the silica-based fine powder, but it is usually used for silica-based fine powder. The amount is in the range of 1 to 50 parts by weight per 100 parts by weight of powder.

該シロキサンオリゴマーでシリカ系微粉末を表面処理す
るには、例えばシリカ系微粉末に、該シロキサンオリゴ
マーを加え、均一になるまで混合して、加熱するという
方法が採用される。あるいは、シリカ系微粉末を加熱下
で、混合しながら、該シロキサンオリゴマーを加えると
いう方法でも良い。
In order to surface-treat the silica-based fine powder with the siloxane oligomer, for example, a method is employed in which the siloxane oligomer is added to the silica-based fine powder, mixed until uniform, and heated. Alternatively, the siloxane oligomer may be added while mixing the silica-based fine powder under heating.

この際に、全く混合状態に置かないで、加熱を行なった
場合には、該シロキサンオリゴマーの蒸気圧が低いため
に、疎水化処理が不均一となる。一方、激しい混合状態
にした場合、シリカ系微粉末の相互接触によって、構造
性が失われ、かさ密度が増大し、その結果、粉体の流動
性向上能が低下する。従って、穏和な混合条件が好まし
い。
At this time, if heating is performed without being in a mixed state at all, the hydrophobization treatment will be non-uniform because the vapor pressure of the siloxane oligomer is low. On the other hand, when the mixture is vigorously mixed, the silica-based fine powders come into contact with each other, resulting in a loss of structure and an increase in bulk density, resulting in a decrease in the ability to improve the fluidity of the powder. Therefore, mild mixing conditions are preferred.

また、好ましい加熱温度範囲は、100〜200℃であ
る。100℃未満では、シリカ系微粉末と該シロキサン
オリゴマーの反応が完結しにくくなり、200℃を超え
る温度は不経済である。
Moreover, a preferable heating temperature range is 100 to 200°C. If the temperature is lower than 100°C, the reaction between the silica-based fine powder and the siloxane oligomer will be difficult to complete, and if the temperature exceeds 200°C, it is uneconomical.

しかして、該シロキサンオリゴマーを用いて上記好まし
い条件でシリカ系微粉末を処理した場合には、該シロキ
サンオリゴマーの沸点が高く蒸気圧が小さいため、揮発
により損失がなく、また、該シロキサンオリゴマーの反
応性の高さによって、温和な条件下において、高度に表
面改質された疎水性シリカ系微粉末となり、加えて、シ
リカ系微粉末のかさ密度が増加することがない。
Therefore, when silica-based fine powder is treated using the siloxane oligomer under the above-mentioned preferable conditions, since the siloxane oligomer has a high boiling point and a low vapor pressure, there is no loss due to volatilization, and the reaction of the siloxane oligomer is Due to its high properties, it becomes a highly surface-modified hydrophobic silica-based fine powder under mild conditions, and in addition, the bulk density of the silica-based fine powder does not increase.

本発明の粉体の流動性向上剤は、下記の特性を具備して
いる。
The powder fluidity improver of the present invention has the following properties.

BET法比法面表面積180±100m’/9炭素含有
聞       5±3  重量%見掛は密度    
  75±35 9/11.59の試料を3.4Kt1
0# の圧力下に4分間おいたときの 圧縮密度      200±35 1M−シラノール
滴定ffi  1.0±1.Od(ここでシラノール滴
定量は1.2.09の試料を25IIftのエタノール
と75ad!の20重量%Nacl水溶液との混合液に
分散させてなる分散液のPHを4,0から9.0に変え
るのに必要な0.1N水酸化ナトリウム水溶液の滴定量
を意味している) BET法比法面表面積0m’/9未満の場合は、粒子径
が大きくなるために、流動性向上能が劣り、2801T
I2/9を超えるものは表面の疎水化処理が困難となり
、やはり流動性向上能が劣る。
BET method slope surface area 180±100m'/9 Carbon content 5±3% by weight Apparent density
75±35 9/11.59 sample 3.4Kt1
Compressed density when placed under pressure of 0# for 4 minutes 200±35 1M-silanol titration ffi 1.0±1. Od (here, the silanol titer is 1.2.09 sample is dispersed in a mixture of 25IIft of ethanol and 75ad! of 20% NaCl aqueous solution, and the pH of the dispersion is changed from 4.0 to 9.0. (means the titration amount of 0.1N sodium hydroxide aqueous solution required to change the amount) If the BET ratio slope surface area is less than 0 m'/9, the particle size will become large and the ability to improve fluidity will be poor. , 2801T
If it exceeds I2/9, it becomes difficult to perform surface hydrophobization treatment, and the ability to improve fluidity is still inferior.

炭素含有量が2重囲%未満の場合は、疎水化処理が不十
分なため流動性向上能が劣り、一方、8重量%を超える
場合は、流動性向上能はそれ以上向上しないので不経済
である。
If the carbon content is less than 2% by weight, the hydrophobization treatment is insufficient and the ability to improve fluidity is poor, while if it exceeds 8% by weight, the ability to improve fluidity will not improve any further, making it uneconomical. It is.

見掛は密度が409/を未満の場合は、疎水化処理が不
十分であり、1109//:を超える場合は、シリカ系
微粉末の高い構造性が失われており、ともに流動性向上
能が劣る。
If the apparent density is less than 409//, the hydrophobization treatment is insufficient, and if it exceeds 1109//:, the high structural properties of the silica-based fine powder have been lost, both of which impair the ability to improve fluidity. is inferior.

圧縮密度も見掛は密度と同様にシリカ系微粉末の構造性
を見るための有益な方法である。
Similar to apparent density, compressed density is also a useful method for viewing the structural properties of silica-based fine powder.

見掛は密度は、シリカ系微粉末の輸送時の圧力履歴や、
測定誤差によって変動した値を与えるのに対し、圧縮密
度はそのような誤差が少なく、より正確な値を与える。
The apparent density depends on the pressure history during transportation of the silica-based fine powder,
Whereas measurement errors give values that vary, compressed density has fewer such errors and gives more accurate values.

圧縮密度の上記範囲を超えるものは、見掛は密度と同様
な理由によって、流動性向上能が劣る。
If the compressed density exceeds the above range, the ability to improve fluidity is apparently inferior for the same reason as the density.

シラノール適定量は、表面処理率の尺度であり、2dを
超える場合は、シリカ系微粉末の表面に残存するシラノ
ール基が多いため、粉体の流動性向上剤として使用され
た場合、高温高湿度の環境下で吸湿し、貯蔵中に流動性
が低下する。
The appropriate amount of silanol is a measure of the surface treatment rate, and if it exceeds 2d, there are many silanol groups remaining on the surface of the silica-based fine powder, so when used as a powder fluidity improver, high temperature and high humidity It absorbs moisture in an environment where fluidity decreases during storage.

これら特性の測定法については、実施例中でさらに説明
する。
Methods for measuring these properties are further described in the Examples.

本発明の粉体の流動性向上剤は、シリカ系微粉末が 一般  式 (式中のRlQ、nは前述どおりである)で表わされる
ジオルガノシロキサンオリゴマーによりへ度に疎水化処
理されており、大きなかさ容積を保持しているので、粉
体に添加混合されたときに粉体の流動性を大きく向上さ
せ、その粉体を長期間貯蔵しても流動性がほとんど低下
することがない。
In the powder fluidity improver of the present invention, a silica-based fine powder is subjected to a hydrophobic treatment using a diorganosiloxane oligomer represented by the general formula (wherein RlQ and n are as described above), Since it maintains a large bulk volume, it greatly improves the fluidity of the powder when it is added and mixed with the powder, and the fluidity hardly decreases even if the powder is stored for a long period of time.

本発明の粉体の流動性向上剤は、種々の粉体に適してい
る。
The powder fluidity improver of the present invention is suitable for various powders.

粉体の具体例として肥料、農薬、食品、医薬品、化粧品
、粉末消火剤、顔料、充てん剤、粉体塗料、セメント、
有機樹脂粉末がある。
Specific examples of powder include fertilizers, pesticides, foods, pharmaceuticals, cosmetics, powder fire extinguishers, pigments, fillers, powder coatings, cement,
There is organic resin powder.

これらの粉体への好ましい添加圏は、 0.2〜0.3重量%程度であり、通常0.5〜1重量
%である。
The preferred amount of addition to these powders is about 0.2 to 0.3% by weight, usually 0.5 to 1% by weight.

また、粉体への添加方法は、粉体に流動性向上剤を添加
する方法でも、流動性向上剤に粉体を添加していく方法
でも良いが、より効果的な方法は、粉体の一部を前もっ
て流動性向上剤と混合し、これに残りの粉体を加えて混
合し、所定の割合にするという方法である。
In addition, the method of adding the powder to the powder may be a method of adding the fluidity improver to the powder or a method of adding the powder to the fluidity improver, but a more effective method is to add the fluidity improver to the powder. A part of the powder is mixed with a fluidity improver in advance, and the remaining powder is added and mixed to achieve a predetermined ratio.

[実 施 例] 以下に、本発明実施例と比較例を示す。[Example] Examples of the present invention and comparative examples are shown below.

実施例および比較例中、部とあるのは重量部を意味する
In Examples and Comparative Examples, parts mean parts by weight.

炭素含有囚は試料に、150℃で窒素ガスを流して充分
に乾燥した後、燃焼法により求めた。
Carbon-containing particles were determined by the combustion method after thoroughly drying the sample by flowing nitrogen gas at 150°C.

圧縮密度は1.59の試料を5a11のシリンダー状容
器に入れ、3.4Kg/liの圧力下に4分間おいたと
きの密度により求めた。
The compressed density was determined from the density when a sample of 1.59 was placed in a 5a11 cylindrical container and placed under a pressure of 3.4 Kg/li for 4 minutes.

粉体および粉体に流動性向上剤を添加混合したものの流
動性および貯蔵後の流動性は、安息角の測定によって求
めた。
The fluidity of the powder and the fluidity improver added to the powder and the fluidity after storage were determined by measuring the angle of repose.

実施例1 ジメチルジクロロシランに寮母の水を 添加して得た加水分解物から、低沸点成分を減圧下除去
して、一般式 (nは4〜12である)で示されるジ メチルシロキサンオリゴマーを得た。
Example 1 A dimethylsiloxane oligomer represented by the general formula (n is 4 to 12) was obtained by removing low boiling point components under reduced pressure from a hydrolyzate obtained by adding dormer water to dimethyldichlorosilane. Ta.

BET法比表面積が220tn’/9であり、1重量%
の水含有率を有するフユームドシリカ10o9を5tセ
パラブルフラスコにとり、上記ジメチルシロキサンオリ
ゴマー209を滴下して、1時i混合した。ついで、こ
れを150℃に昇温し3時間混合して、疎水性フユーム
ドシリ力を得た。
BET method specific surface area is 220tn'/9, 1% by weight
Fumed silica 10o9 having a water content of 100% was placed in a 5t separable flask, and the above dimethylsiloxane oligomer 209 was added dropwise and mixed for 1 hour. Subsequently, this was heated to 150° C. and mixed for 3 hours to obtain hydrophobic fumed silica.

この疎水性フユームドシリ力の特性は、下記の通りであ
った。
The characteristics of this hydrophobic fumed silicon were as follows.

BET法比表面積  160   m2/9炭素含有量
       4.1重量%見掛は密度      6
0  9/を圧縮密度      190  1Q/a
11シラノ一ル滴定N     O,2m この疎水性フユームドシリカ0.7部 を、平均粒径100μ園であり、安息角が29°である
シリコーン樹脂粉末 100部に加え、タービュラーミキサーで10分間混合
した。
BET method specific surface area 160 m2/9 Carbon content 4.1% by weight Apparent density 6
0 9/ compressed density 190 1Q/a
11 Silanol Titration N O, 2 m 0.7 part of this hydrophobic fumed silica was added to 100 parts of silicone resin powder having an average particle size of 100 μm and an angle of repose of 29°, and mixed for 10 minutes with a turbular mixer.

この混合粉末の安息角は、15°であ った。The angle of repose of this mixed powder is 15°. It was.

また、この混合粉末を、温度25℃、 湿度70%RHの雰囲気下で1ケ月放置した後の安息角
は、15°であり、まったく変化していなかった。
Further, after this mixed powder was left for one month in an atmosphere with a temperature of 25° C. and a humidity of 70% RH, the angle of repose was 15° and did not change at all.

比較例1 実施例1と同様に、シリコーン樹脂粉1末100部に対
し、市販のジメチルジクロロシランで疎水化処理された
フユームドシリカ0.7部を添加′して混合した。
Comparative Example 1 In the same manner as in Example 1, 0.7 parts of fumed silica hydrophobized with commercially available dimethyldichlorosilane was added to 100 parts of silicone resin powder 1 and mixed.

この混合粉末の安息角は19°であっ たゆまた、この混合粉末を温度25℃、湿度70%RH
の雰囲気下で1ケ月放置した後の安息角は21°であっ
た。
The angle of repose of this mixed powder was 19°.
The angle of repose after being left for one month in an atmosphere of was 21°.

なお、上記疎水化処理シリカの特性は、下記の通りであ
った。
The properties of the hydrophobized silica were as follows.

BET法比表面積  110  が/9炭素含有ffi
       1.1重量%見掛は密度      6
0  9/を圧縮密度      220  1(+/
aIシラノール滴定m     1.Om 実施例2 メチルフェニルジエトキシシランに、 少量の水を添加して得た加水分解物から、低沸点成分を
減圧下除去して、一般式 (式中nは3〜10である)で示され るメチルフェニルシロキサンオリゴマーを得た。
BET method specific surface area 110 is /9 carbon content ffi
1.1% by weight apparent density 6
0 9/ to compressed density 220 1(+/
aI silanol titration m 1. Om Example 2 Low boiling point components were removed under reduced pressure from a hydrolyzate obtained by adding a small amount of water to methylphenyldiethoxysilane to obtain a compound represented by the general formula (in the formula, n is 3 to 10). A methylphenylsiloxane oligomer was obtained.

BET法比表面積が200が79であ り、2重量%の水含有率を有するフユームドシリカ10
09を5tセパラブルフラスコにとり、上記メチルフェ
ニルシロキサンオリゴマー259を滴下して1時間混合
した。ついでこの混合物を150℃に昇温し、反応副生
物が除去されるまで、攪拌しながら窒素ガスを流して疎
水性フユームドシリ力を得た。
Fumed silica 10 having a BET specific surface area of 200 to 79 and a water content of 2% by weight
09 was placed in a 5t separable flask, the above methylphenylsiloxane oligomer 259 was added dropwise, and the mixture was mixed for 1 hour. The mixture was then heated to 150° C. and nitrogen gas was passed through the mixture with stirring until reaction by-products were removed to obtain hydrophobic fumed silicon.

この疎水性フユームドシリ力の特性は、下記の通りであ
った。
The characteristics of this hydrophobic fumed silicon were as follows.

BET法比表面積  130   tn’/9炭素含有
ffi       8  重器%見掛は密度    
  70  9/を圧縮密度      192   
m!ll10+1シラノール滴定母    0.2ml
!この疎水性シリカ微粉末0.8部を、 平均粒径350μ−であり、安息角が 48°である高密度ポリエチレン粉末 10部に加えてタービュラーミキサーで混合し、さらに
同じ高密度ポリエチレン粉末90部を5分割して添加し
、10分間混合した。
BET method specific surface area 130 tn'/9 Carbon content ffi 8 Heavy equipment% Apparent density
70 9/ compressed density 192
m! ll10+1 silanol titration mother 0.2ml
! 0.8 parts of this hydrophobic silica fine powder was added to 10 parts of high-density polyethylene powder with an average particle size of 350 μ- and an angle of repose of 48°, and mixed in a turbular mixer, followed by 90 parts of the same high-density polyethylene powder. was added in 5 portions and mixed for 10 minutes.

この混合粉末の安息角は、30”であ った。The angle of repose of this mixed powder is 30”. It was.

また、この混合粉末を、温度25℃、 湿度70%RHの雰囲気下で1t月放置した後の安息角
は31°であり、はとんど変化していなかった。
The angle of repose of this mixed powder after being left for 1 ton in an atmosphere of 25° C. and 70% RH was 31°, which was almost unchanged.

比較例2 BET法比表面積が220が79であ り、1重間%の水含有率を有し、見掛は密度が609/
lであるフユームドシリカ2009を、実施例1と同じ
一般式 (口は4〜12である)で示されるジ メチルシロキサンオリゴマー409および水2gと混合
し、容積5tを有し、その内の1.5tは直径15〜4
0nwaを有する磁器法が充填されている磁器製ボール
ミルに装入した。ボールミルを室温および70 rpm
で2時間運転した。ついで、ボールミルの内容物を15
0℃で3時間加熱して乾燥することにより、疎水性フユ
ームドシリ力を得た。
Comparative Example 2 The BET method specific surface area is 220/79, the water content is 1% by weight, and the apparent density is 609/
1 of fumed silica 2009 is mixed with dimethylsiloxane oligomer 409 having the same general formula as in Example 1 (the number is 4 to 12) and 2 g of water to have a volume of 5 t, of which 1.5 t is Diameter 15~4
A porcelain ball mill filled with a porcelain mill having 0 nwa was charged. Ball mill at room temperature and 70 rpm
I drove for 2 hours. Next, reduce the contents of the ball mill to 15
Hydrophobic fumed silicone was obtained by heating and drying at 0° C. for 3 hours.

この疎水性フユームドシリ力の特性は、下記の通りであ
った。
The characteristics of this hydrophobic fumed silicon were as follows.

BET法比表面積  165   m’/9炭素含有吊
       4.0重量%見掛は密度     20
0  9/を圧縮密度      500  ■!;1
1011シラノール滴定!I     O,5ae実施
例2と同様に、高密度ポリエチレ ン粉末合計100部に対し、上記疎水性フユームドシリ
カ068部を添加して混合した。
BET method specific surface area 165 m'/9 Carbon content suspension 4.0% by weight Apparent density 20
0 9/ compressed density 500 ■! ;1
1011 silanol titration! IO, 5aeSimilarly to Example 2, 068 parts of the hydrophobic fumed silica was added to and mixed with a total of 100 parts of high-density polyethylene powder.

混合粉末の安息角は39°であった。The angle of repose of the mixed powder was 39°.

また、この混合粉末を温度25℃、湿度70%RHの雰
囲気下で、1t月放置した後の安息角は40°であり、
はとんど変化していなかった。
In addition, the angle of repose of this mixed powder after being left for 1 ton in an atmosphere with a temperature of 25°C and a humidity of 70% RH is 40°,
had not changed much.

実施例3     ′ ジメチルジクロルシランに少量の水を 添加して得た加水分解物から、低沸点成分を減圧上除去
して、一般式、 (式中nは2〜6である)で示される ジメチルシロキサンオリゴマーを得た。
Example 3' Low-boiling components were removed under reduced pressure from a hydrolyzate obtained by adding a small amount of water to dimethyldichlorosilane to obtain a product represented by the general formula (wherein n is 2 to 6). A dimethylsiloxane oligomer was obtained.

BET法比表面積が300m2/9であり、1.511
%の水含有率を有するフユームドシリカ100gを5t
セパラブルフラスコにとり、上記ジメチルシロキサンオ
ゴマ−209を滴下して、1時間混合した。ついでこの
混合物を200”Cに4温し、反応副生物が除去される
まで、攪拌しながら窒素ガスを流して疎水性フユームド
シリ力を得た。
BET method specific surface area is 300 m2/9, 1.511
100g of fumed silica with a water content of 5t
The above dimethylsiloxane ogomer-209 was added dropwise to a separable flask and mixed for 1 hour. The mixture was then heated to 200''C and nitrogen gas was passed through it with stirring until the reaction by-products were removed to obtain a hydrophobic fumed silica.

この疎水性フユームドシリ力の特性は、下記の通りであ
った。
The characteristics of this hydrophobic fumed silicon were as follows.

BET法比法面表面積200   m2/9炭素含有色
       4.2重信%見掛は密度      6
0  9/f圧縮密度      192   so/
ciシラノール滴定量    0.21dlこの疎水性
フユームドシリカ0.8部 を、平均粒径4μ謬であり、安息角が 69°である石英粉末10部に加えてタービュラーミキ
サーで混合し、さらに同じ石英粉末90部を5分割して
添加し、10分間混合した。
BET method ratio slope surface area 200 m2/9 Carbon content color 4.2 Shigenobu% Apparent density 6
0 9/f compressed density 192 so/
ci silanol titer: 0.21 dl 0.8 parts of this hydrophobic fumed silica was added to 10 parts of quartz powder with an average particle size of 4 μm and an angle of repose of 69°, and mixed in a turbular mixer, and then 90 parts of the same quartz powder was added. Added in 5 portions and mixed for 10 minutes.

この混合粉末の安息角は、63°であ った。The angle of repose of this mixed powder is 63°. It was.

[発明の効果] 本発明の粉体の流動性向上剤は、一般式(式中、、R,
QSnは前述どおりである)で表わされるジオルガノシ
ロキサンオリゴマーによって疎水化処理されたシリカ系
微粉末であり、 BET法比法面表面8!i180±100112/9炭
素含有1       5±3  重量%見掛は密度 
     75±35 9/11.59の試料を3.4
に宮/d の圧力下に4分間おいたときの 圧縮密度      200±351g/a/シラ/ 
−/L/ FR定!l   1゜O+1.0d(ここで
シラノール滴定母は、2.09の試料を25mのエタノ
ールと75dの20重憬%Nacl水溶液との混合液に
分散させてなる分散液のPHを4.0から9.0に変え
るのに必要な0.IN水酸化ナトリウム水溶液の滴定m
を意味している) という特性を有しているので、種々の粉体の流動性を大
幅に向上させることができ、その流動性向上剤を添加し
た粉体を長期間貯蔵しても流動性がほとんど低下するこ
とがないという特徴を有している。
[Effects of the Invention] The powder fluidity improver of the present invention has the general formula (wherein, R,
QSn is a silica-based fine powder that has been hydrophobized with a diorganosiloxane oligomer (as described above), and has a BET ratio slope surface of 8! i180±100112/9 Carbon content 1 5±3 Weight%Appearance is density
75±35 9/11.59 sample 3.4
Compressed density when placed under pressure of Ninomiya/d for 4 minutes: 200±351g/a/Sira/
-/L/ FR fixed! l 1゜O + 1.0d (here, the silanol titration mother is a dispersion obtained by dispersing a sample of 2.09 in a mixture of 25m of ethanol and a 20% NaCl aqueous solution of 75d), and the pH of the dispersion is from 4.0 to 1.0d. Titration of 0.IN sodium hydroxide aqueous solution required to change to 9.0 m
The fluidity improver can significantly improve the fluidity of various powders, and the fluidity of powders containing this fluidity improver remains unchanged even after long-term storage. It has the characteristic that it hardly decreases.

Claims (1)

【特許請求の範囲】 1 一般式 ▲数式、化学式、表等があります▼ (式中、Rは一価炭化水素基であり、nは1〜15の整
数であり、Qはハロゲン原子、水酸基または−OR^1
であり、R^1は一価炭化水素基である)で表わされる
ジオルガノシロキサンオリゴマーにより疎水化処理され
、 BET法比表面積180±100m^2/g炭素含有量
5±3重量% 見掛け密度75±35g/l 1.5gの試料を3.4Kg/cm^2 の圧力下に4分間おいたときの 圧縮密度200±35mg/cm^3 シラノール滴定量1.0±1.0ml (ここでシラノール滴定量は、2.0gの 試料を25mlのエタノールと75mlの20重量%N
acl水溶液との混合液に分散させてなる分散液のPH
を4.0から9.0に変えるのに必要な0.1N−水酸
化ナトリウム水溶液の滴定量を意味している)を有する
シリカ系微粉末であることを特徴とする、粉体の流動性
向上剤。 2 シリカ系微粉末がフュームドシリカである特許請求
の範囲第1項記載の流動性向上剤。
[Claims] 1 General formula▲ Numerical formula, chemical formula, table, etc.▼ (In the formula, R is a monovalent hydrocarbon group, n is an integer from 1 to 15, and Q is a halogen atom, a hydroxyl group, or -OR^1
Hydrophobized with a diorganosiloxane oligomer represented by ±35g/l Compressed density when a 1.5g sample is placed under a pressure of 3.4Kg/cm^2 for 4 minutes 200±35mg/cm^3 Silanol titration 1.0±1.0ml (here, silanol The titration amount is as follows: 2.0 g of sample is mixed with 25 ml of ethanol and 75 ml of 20% N by weight.
PH of the dispersion obtained by dispersing the mixture with the acl aqueous solution
The fluidity of the powder is characterized by being a silica-based fine powder having a titer of 0.1N-sodium hydroxide aqueous solution necessary to change from 4.0 to 9.0. improver. 2. The fluidity improver according to claim 1, wherein the silica-based fine powder is fumed silica.
JP19838186A 1986-08-25 1986-08-25 Powder fluidity improver Expired - Lifetime JPH078981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19838186A JPH078981B2 (en) 1986-08-25 1986-08-25 Powder fluidity improver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19838186A JPH078981B2 (en) 1986-08-25 1986-08-25 Powder fluidity improver

Publications (2)

Publication Number Publication Date
JPS6354485A true JPS6354485A (en) 1988-03-08
JPH078981B2 JPH078981B2 (en) 1995-02-01

Family

ID=16390175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19838186A Expired - Lifetime JPH078981B2 (en) 1986-08-25 1986-08-25 Powder fluidity improver

Country Status (1)

Country Link
JP (1) JPH078981B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19537292A1 (en) * 1994-10-07 1996-04-11 Toshiba Machine Co Ltd Spindle rotation angle control machining method
JPH10237348A (en) * 1997-02-26 1998-09-08 Nippon Shokubai Co Ltd Production of complex silica fine particle
JPH10338781A (en) * 1997-06-11 1998-12-22 Daicel Chem Ind Ltd Styrene-based resin composition and formed material thereof
JPH11500440A (en) * 1995-02-22 1999-01-12 ヘキスト・アクチェンゲゼルシャフト Use of aerogels in agriculture
JP2001139814A (en) * 1999-11-11 2001-05-22 Dow Corning Toray Silicone Co Ltd Silicone rubber composition and its production method
GB2357497A (en) * 1999-12-22 2001-06-27 Degussa Hydrophobic silica
JP2015537077A (en) * 2012-10-31 2015-12-24 ソルヴェイ(ソシエテ アノニム) Method for producing fluoropolymer hybrid composite

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19537292A1 (en) * 1994-10-07 1996-04-11 Toshiba Machine Co Ltd Spindle rotation angle control machining method
US5713253A (en) * 1994-10-07 1998-02-03 Toshiba Kikai Kabushiki Kaisha Rotational machining method
JPH11500440A (en) * 1995-02-22 1999-01-12 ヘキスト・アクチェンゲゼルシャフト Use of aerogels in agriculture
JPH10237348A (en) * 1997-02-26 1998-09-08 Nippon Shokubai Co Ltd Production of complex silica fine particle
JPH10338781A (en) * 1997-06-11 1998-12-22 Daicel Chem Ind Ltd Styrene-based resin composition and formed material thereof
JP2001139814A (en) * 1999-11-11 2001-05-22 Dow Corning Toray Silicone Co Ltd Silicone rubber composition and its production method
JP4528392B2 (en) * 1999-11-11 2010-08-18 東レ・ダウコーニング株式会社 Silicone rubber composition and method for producing the same
GB2357497A (en) * 1999-12-22 2001-06-27 Degussa Hydrophobic silica
US7282236B2 (en) 1999-12-22 2007-10-16 Degussa Gmbh Hydrophobic silica
JP2015537077A (en) * 2012-10-31 2015-12-24 ソルヴェイ(ソシエテ アノニム) Method for producing fluoropolymer hybrid composite

Also Published As

Publication number Publication date
JPH078981B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
JP4828032B2 (en) Hydrophobic silica powder and method for producing the same
US5342597A (en) Process for uniformly moisturizing fumed silica
EP1249475B1 (en) Surface-modified inorganic oxide powder, process for producing the same, and use thereof
JP3229174B2 (en) Surface modified metal oxide fine powder and method for producing the same
US7332144B2 (en) Hydrophobic silica fine powder and making method
JP2007535589A (en) Nanoparticle surface treatment and manufacturing method for controlling interfacial properties
JPS636062A (en) Method of modifying surface of fine silica powder
JPH04348143A (en) Silicone rubber powdery article and production thereof
US5328683A (en) Water repellent and method of preparation
GB1469954A (en) Dry light-weight cement compositions and compositions for mixing with cement to form such cement compositions
US4068024A (en) Process for preparing finely divided hydrophobic oxide particles
JP2003192895A (en) Hydrophobic silicic acid-including silicone rubber compound
EP2167588B1 (en) Process for preparing highly disperse pyrogenic silica having a high positive surface charge
JPS6354485A (en) Fluidity improver for powder
EP1812344B1 (en) Metal and oxides thereof and methods to make same
JPS58177133A (en) Hollow fine ball having organic silicon- silicate surface
JP2003171117A (en) Hydrophobic silica fine powder and method for manufacturing the same
US4164509A (en) Process for preparing finely divided hydrophobic oxide particles
AU773082B2 (en) Storage-stable aerated gel composition and a process for producing it
JPS63159214A (en) Production of silica compound oxide powder
JP2000327948A (en) Hydrophobilized powdery particles of metal compound and production thereof
US4780108A (en) Method for increasing bulk density of fillers
GB2203735A (en) Tetracosahedral siliceous particles and process for preparation thereof
JP6805538B2 (en) Silica particle dispersion and surface-treated silica particles
JPH0393605A (en) Improvement of flowability of metal oxide film powder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term