JPS635353B2 - - Google Patents

Info

Publication number
JPS635353B2
JPS635353B2 JP56011824A JP1182481A JPS635353B2 JP S635353 B2 JPS635353 B2 JP S635353B2 JP 56011824 A JP56011824 A JP 56011824A JP 1182481 A JP1182481 A JP 1182481A JP S635353 B2 JPS635353 B2 JP S635353B2
Authority
JP
Japan
Prior art keywords
group
boride
metals
melting point
point metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56011824A
Other languages
Japanese (ja)
Other versions
JPS57129876A (en
Inventor
Eiichiro Ishimatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP56011824A priority Critical patent/JPS57129876A/en
Publication of JPS57129876A publication Critical patent/JPS57129876A/en
Publication of JPS635353B2 publication Critical patent/JPS635353B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高硬度で耐熱性の優れた硼化物材料
に関するものである。 高融点金属の化合物の中でも硼化物は、高温に
於て硬さ低下が最も少なく耐熱性の優れた材料で
ある。この為に硼化物材料はロケツト材料、ター
ビン材料、熱機関部品材料及び切削工具材料とし
ての用途に期待されている。 従来の硼化物材料は、硼化物に鉄族又はTi、
Cr金属を結合相としたもの、更には鉄族金属に
リンを添加することにより融点を低下させ焼結性
を向上させたもの等があり、これらをホツトプレ
ス又は放電焼結によつて製造した焼結体が提案さ
れている。これらはいずれも硼化物と金属結合物
とから成る焼結体であるために高温に於ける硬さ
低下が著しく、硼化物の最大の特徴である耐熱性
が低下するという欠点があつた。 本発明は、このような欠点を改良する目的で研
究を重ねた結果完成したもので、緻密で靭性が有
り高温硬度が高く耐熱性の優れた硼化物焼結体を
提供するものである。 すなわち本発明は、4a、5a及び6a族金属の硼
化物並びに4a、5a及び6a族金属の硼化物固溶体
の中から選定した1種又は2種以上と6a族金属
の1種又は2種以上と不可避不純物とから成る混
合物を粉末冶金法により成形及び焼結して得られ
た焼結体の組成中に6a族の高融点金属がX線回
折上存在しない硼化物超硬質耐熱材料である。 このような本発明の硼化物超硬質耐熱材料を可
能にしたのは、4a、5a及び6a族金属の硼化物並
びに4a、5a及び6a族金属の硼化物固溶体等から
成る硬質物と6a族の高融点金属から成る原料粉
末を酸化防止して、機械的に充分に混合粉砕する
ことにより原料粉末粒子の表面活性化エネルギー
と粒子の内部歪を増大して焼結性を促進したこと
並びに硼化物より成る硬質物と高融点金属との反
応を行わせて焼結反応性を促進したことである。 このように焼結性を促進したことによつて、真
空中、アルゴン等の不活性ガス中又は水素ガス中
等の中性あるいは還元雰囲気に於て1500℃〜2000
℃と比較的低い温度で緻密な焼結体が可能とな
り、しかも焼結温度が低いために粒子成長もあま
り進行しなくて靭性が高く、焼結体中に6a族の
高融点金属が残存しないために高温硬度の高い耐
熱性の優れた硼化物超硬質耐熱材料が得られた。 このように硼化物と高融点金属特に6a族の高
融点金属とを混合して硼化物と高融点金属との反
応により焼結性を促進させる。このとき特に6a
族の高融点金属が20〜80体積%の範囲内で混合し
ておくと焼結性の促進に効果がある。 次に実施例に従つて、本発明の硼化物超硬質耐
熱材料を詳細に説明する。 実施例 市販の平均粒度1.5μmのTiB2と平均粒度2.0μm
のNbB2と平均粒度1.0μmのWBと平均粒度0.5μm
のWと平均粒度3.0μmのMoと一325メツシユのCr
の各粉末を使用して、表1に示した配合組成でボ
ールミルシリンダーの約1/6容積相当の原料粉末
に約1/3容積相当の6ψ超硬ボールを加えて72時間
湿式混合粉砕し、平均1.0μm以下の混合粉末を作
成した。これらの各混合粉末をSNP432の型番に
て型押し成形後5×10-3mmHgの真空中表1に示
す各温度で焼結した。
The present invention relates to a boride material with high hardness and excellent heat resistance. Among high-melting point metal compounds, boride is a material with excellent heat resistance and the least decrease in hardness at high temperatures. For this reason, boride materials are expected to be used as rocket materials, turbine materials, heat engine parts materials, and cutting tool materials. Conventional boride materials include iron group or Ti,
There are products with Cr metal as a binder phase, and products with phosphorus added to iron group metals to lower the melting point and improve sinterability. A body is proposed. Since these are all sintered bodies consisting of a boride and a metal composite, they suffer from a significant decrease in hardness at high temperatures, resulting in a decrease in heat resistance, which is the most characteristic feature of borides. The present invention was completed as a result of repeated research aimed at improving these drawbacks, and provides a boride sintered body that is dense, tough, has high high-temperature hardness, and has excellent heat resistance. That is, the present invention provides one or more selected from borides of group 4a, 5a and 6a metals and boride solid solutions of group 4a, 5a and 6a metals, and one or more group 6a metals. This is a boride ultra-hard heat-resistant material in which no high-melting point metal of group 6a is present in the composition of the sintered body obtained by molding and sintering a mixture consisting of unavoidable impurities using a powder metallurgy method as determined by X-ray diffraction. The ultra-hard heat-resistant boride material of the present invention is made possible by combining hard materials such as borides of group 4a, 5a and 6a metals and solid solutions of borides of group 4a, 5a and 6a metals, and group 6a metals. By preventing oxidation of the raw material powder made of a high-melting point metal and mechanically thoroughly mixing and pulverizing it, the surface activation energy of the raw material powder particles and the internal strain of the particles are increased to promote sinterability. The sintering reactivity was promoted by causing a reaction between a hard material consisting of a high melting point metal and a high melting point metal. By promoting sinterability in this way, it can be heated at temperatures of 1500℃ to 2000℃ in a vacuum, in an inert gas such as argon, or in a neutral or reducing atmosphere such as hydrogen gas.
A dense sintered body is possible at a relatively low temperature of ℃, and because the sintering temperature is low, particle growth does not progress much, resulting in high toughness, and no group 6a high melting point metal remains in the sintered body. Therefore, a boride superhard heat-resistant material with high high-temperature hardness and excellent heat resistance was obtained. In this way, boride and a high melting point metal, particularly a group 6a high melting point metal, are mixed to promote sinterability through the reaction between the boride and the high melting point metal. At this time, especially 6a
It is effective to promote sinterability when a high melting point metal of the group is mixed in a range of 20 to 80% by volume. Next, according to Examples, the boride ultrahard heat-resistant material of the present invention will be explained in detail. Example Commercially available TiB 2 with an average particle size of 1.5 μm and an average particle size of 2.0 μm
NbB 2 and average particle size 1.0μm WB and average particle size 0.5μm
of W, Mo of average particle size 3.0 μm and Cr of 325 mesh
Using each of the powders shown in Table 1, 6ψ carbide balls equivalent to approximately 1/3 volume were added to the raw material powder equivalent to approximately 1/6 volume of a ball mill cylinder, and wet mixing and pulverization was carried out for 72 hours. A mixed powder with an average particle size of 1.0 μm or less was created. Each of these mixed powders was pressed and molded using a model number SNP432, and then sintered at the temperatures shown in Table 1 in a vacuum of 5 x 10 -3 mmHg.

【表】 表1に示した本発明の硼化物超硬質耐熱材料の
中から代表例として試料番号Cの焼結体における
顕微鏡組織写真を図1に示し、X線回折した結果
を図2に示した。 次に本発明の硼化物超硬質耐熱材料の内から表
1に示した試料に対して比較用に市販のISOP10
及びK10超硬合金と35TiC―13TiN―13WC―
13TaC―10Mo2C―10Co―6Ni重量%組成のサー
メツト(a)及び35TiN―30WC―18TiC―12TaC―
5Co重量%組成のサーメツト(b)の各試料を
SNP432の形状に仕上げて切削試験を行つた。 切削試験は、下記に示す(A)条件での旋削と(B)条
件での旋削における耐摩耗性について行つた。 (A) 旋削での耐摩耗性切削条件 被削材 SNCM8(HS42〜44) 切削速度 100m/min 切り込み 1.0mm 送り速度 0.3mm/rev 切削時間 5min (B) 旋削での耐摩耗性切削条件 被削材 SKD―11(HRc―60〜62) 切削速度 30m/min 切り込み 0.5mm 送り速度 0.1mm/rev 切削時間 120min 以上(A)条件及び(B)条件にて切削試験した結果を
表2に示した。
[Table] Figure 1 shows a microscopic structure photograph of a sintered body of sample number C as a representative example from among the boride ultrahard heat-resistant materials of the present invention shown in Table 1, and Figure 2 shows the results of X-ray diffraction. Ta. Next, for comparison, commercially available ISOP10
and K10 cemented carbide and 35TiC―13TiN―13WC―
13TaC―10Mo 2 C―10Co―6Ni weight% cermet (a) and 35TiN―30WC―18TiC―12TaC―
Each sample of cermet (b) with 5Co weight% composition
The shape of SNP432 was finished and a cutting test was conducted. Cutting tests were conducted on wear resistance in turning under conditions (A) and (B) shown below. (A) Wear-resistant cutting conditions for turning Work material SNCM8 (HS42-44) Cutting speed 100m/min Depth of cut 1.0mm Feed rate 0.3mm/rev Cutting time 5min (B) Wear-resistant cutting conditions for turning Material: SKD-11 (HRc-60~62) Cutting speed: 30m/min Depth of cut: 0.5mm Feed rate: 0.1mm/rev Cutting time: 120min or more Table 2 shows the results of cutting tests under conditions (A) and (B). .

【表】【table】

【表】 以上表2の結果から本発明の硼化物超硬質耐熱
材料は、切削工具として使用可能であり、従来の
超硬合金及びサーメツトに比較して耐摩耗性が優
れていることが確認できた。 本発明の硼化物超硬質耐熱材料は、切削工具の
みでなく表1に示した高温硬度から高温状態で使
用する部品材料等と産業上の利用価値が多大であ
る。
[Table] From the results in Table 2 above, it can be confirmed that the boride superhard heat-resistant material of the present invention can be used as a cutting tool and has superior wear resistance compared to conventional cemented carbide and cermet. Ta. The boride ultrahard heat-resistant material of the present invention has great industrial utility value not only for cutting tools but also for component materials used in high-temperature conditions with the high-temperature hardness shown in Table 1.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は60体積%TiB2―40体積%Wの配合組成
から得られた焼結体の走査型顕微鏡による組織写
真である。図2は60体積%TiB2―40体積%Wの
配合組成から得られた焼結体のCuターゲツトに
よるX線回折線である。
FIG. 1 is a microstructure photograph taken with a scanning microscope of a sintered body obtained from a blending composition of 60 volume % TiB 2 -40 volume % W. FIG. 2 shows X-ray diffraction lines using a Cu target of a sintered body obtained from a blending composition of 60 volume % TiB 2 -40 volume % W.

Claims (1)

【特許請求の範囲】[Claims] 1 4a、5a及び6a族金属の硼化物並びに4a、5a
及び6a族金属の硼化物固溶体の中から選定した
1種又は2種以上と6a族金属の1種又は2種以
上と不可避不純物とから成る混合物を粉末冶金法
により成形及び焼結して得られた焼結体の組成中
に6a族の高融点金属がX線回折上存在しないこ
とを特徴とする硼化物超硬質耐熱材料。
1 Borides of group 4a, 5a and 6a metals and 4a, 5a
and one or more selected from among boride solid solutions of group 6a metals, one or more group 6a metals, and unavoidable impurities, obtained by molding and sintering using a powder metallurgy method. An ultra-hard heat-resistant boride material characterized by the absence of group 6a high-melting point metals in the composition of the sintered body, as determined by X-ray diffraction.
JP56011824A 1981-01-29 1981-01-29 Boride super hard heat-resistant material Granted JPS57129876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56011824A JPS57129876A (en) 1981-01-29 1981-01-29 Boride super hard heat-resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56011824A JPS57129876A (en) 1981-01-29 1981-01-29 Boride super hard heat-resistant material

Publications (2)

Publication Number Publication Date
JPS57129876A JPS57129876A (en) 1982-08-12
JPS635353B2 true JPS635353B2 (en) 1988-02-03

Family

ID=11788513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56011824A Granted JPS57129876A (en) 1981-01-29 1981-01-29 Boride super hard heat-resistant material

Country Status (1)

Country Link
JP (1) JPS57129876A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103148A (en) * 1983-11-10 1985-06-07 Toyo Kohan Co Ltd Boride-base high-strength sintered hard material

Also Published As

Publication number Publication date
JPS57129876A (en) 1982-08-12

Similar Documents

Publication Publication Date Title
US4022584A (en) Sintered cermets for tool and wear applications
CN108823478A (en) Ultra-fine high-entropy alloy Binder Phase cermet and preparation method thereof
US3999952A (en) Sintered hard alloy of multiple boride containing iron
CN101255512B (en) Boron-containing titanium carbide nitride based metal ceramic cutter material and preparation technique thereof
AU633665B2 (en) Mixed sintered metal materials based on borides, nitrides and iron binder metals
JP2622131B2 (en) Alloys for cutting tools
CN104210172B (en) A kind of hard alloy of drilling tool
JP2668955B2 (en) Double boride-based sintered body and method for producing the same
WO2002083348A9 (en) Ceramic cutting insert of polycrystalline tungsten carbide
US4605633A (en) Reaction sintered multiphase ceramic
EP0480636B1 (en) High hardness, wear resistant materials
JPH0333771B2 (en)
JPS635353B2 (en)
JPH0411506B2 (en)
JP2006111947A (en) Ultra-fine particle of cermet
JP3102167B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
JPH04144968A (en) High hardness titanium boride-based ceramics
JP2502322B2 (en) High toughness cermet
US5036028A (en) High density metal boride-based ceramic sintered body
JP3481702B2 (en) Cubic boron nitride sintered body using hard alloy as binder and method for producing the same
JPH0121857B2 (en)
JP3045199B2 (en) Manufacturing method of high hardness cemented carbide
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JPS6315981B2 (en)
JPH075384B2 (en) Cubic boron nitride based sintered body