JPS6353343A - Speed change controlling method for continuously variable transmission for vehicle - Google Patents

Speed change controlling method for continuously variable transmission for vehicle

Info

Publication number
JPS6353343A
JPS6353343A JP61193395A JP19339586A JPS6353343A JP S6353343 A JPS6353343 A JP S6353343A JP 61193395 A JP61193395 A JP 61193395A JP 19339586 A JP19339586 A JP 19339586A JP S6353343 A JPS6353343 A JP S6353343A
Authority
JP
Japan
Prior art keywords
speed
engine
gear ratio
change
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61193395A
Other languages
Japanese (ja)
Other versions
JPH0721305B2 (en
Inventor
Yoshikazu Ishikawa
義和 石川
Koji Yamaguchi
山口 弘二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP61193395A priority Critical patent/JPH0721305B2/en
Publication of JPS6353343A publication Critical patent/JPS6353343A/en
Publication of JPH0721305B2 publication Critical patent/JPH0721305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Fluid Gearings (AREA)
  • Structure Of Transmissions (AREA)
  • Control Of Transmission Device (AREA)

Abstract

PURPOSE:To prevent deterioration of the fuel consumption during deceleration by calculating the transmission gear ratio changing speed as a sum of a component corresponding to the estimated acceleration and a component corresponding to the target changing speed of the engine rotating speed and using this transmission gear ratio changing speed as a control value. CONSTITUTION:The transmission gear ratio changing speed is calculated based on the estimated acceleration calculated from the excess horsepower of an engine, the target changing speed of the engine rotating speed obtained from the indicator indicating the driver's intention for acceleration or deceleration, the vehicle speed, and the engine rotating speed. Speed change control is performed using this calculated transmission gear ratio changing speed as a control value. Therefore, the speed change delay to the large transmission gear ratio side, occurrence of malaise thereby, and generation of hunting of the engine rotating speed are prevented, and also deterioration of the fuel consumption during the speed change control to the small transmission gear ratio and occurrence of the uncomfortableness can be prevented.

Description

【発明の詳細な説明】 A0発明の目的 (1)産業上の利用分野 本発明は、車両用無段変速機の変速制御方法に関する。[Detailed description of the invention] A0 Purpose of invention (1) Industrial application fields The present invention relates to a speed change control method for a continuously variable transmission for a vehicle.

(2)従来の技術 従来、かかる制御方法では、(alエンジン回転数が目
標値となるように、(blエンジン回転数の変化速度が
目標値となるように、(Cl変速比がll:lI目標値
なるように制御を行なうのが一般的である。
(2) Conventional technology Conventionally, in such a control method, (Cl speed ratio is changed so that (al engine speed becomes a target value, (bl engine speed change rate becomes a target value) Generally, control is performed so that the target value is achieved.

(3)  発明が解決しようとする問題点ところが、上
記従来のものでは、エンジンの余裕馬力から予測される
加速度を考慮していない。
(3) Problems to be Solved by the Invention However, the above conventional system does not take into account the acceleration predicted from the spare horsepower of the engine.

このため、変速比の変化量が必要以上あるいは以下とな
る傾向があり、低速時において(a)変速比「大」側の
変速制御時に変速比変化速度が小さいことによる変速遅
れとそれによる異和感(応答性悪化)が生じたり、(b
)変速比「小」側の変速制御時にエンジン回転数の吹上
りに伴う燃費の悪化および不快感の発生があったり、(
C)変速比「大」側の変速制御時に変速比の変化速度が
小さいことに伴うエンジン回転数のハンチングが生じた
り、(d)減速時の過変速による効率低下に伴う燃費の
悪化が生じたりする。
For this reason, the amount of change in the gear ratio tends to be more than or less than necessary, and at low speeds (a) there is a shift delay due to the small gear ratio change speed during shift control on the "large" side of the gear ratio, and the resulting abnormality; feeling (deterioration of responsiveness) or (b
) When controlling the gear ratio on the "small" side, fuel consumption may deteriorate and discomfort may occur as the engine speed increases, or (
C) Hunting of the engine speed occurs due to the small change speed of the gear ratio during shift control on the "large" side of the gear ratio, and (d) deterioration of fuel efficiency due to efficiency reduction due to overshifting during deceleration. do.

本発明は、かかる事1nに鑑みてなされたものであり、
変速比変化速度を、予測加速度に対応する成分と、エン
ジン回転数の目標変化速度に対応する成分との和として
演算し、その変速比変化速度を制御値とすることにより
、上記問題点を解決した車両用無段変速機の変速制御方
法を提供することを目的とする。
The present invention has been made in view of the above,
The above problem is solved by calculating the speed ratio change speed as the sum of the component corresponding to the predicted acceleration and the component corresponding to the target speed change of engine speed, and using the speed ratio change speed as the control value. An object of the present invention is to provide a speed change control method for a continuously variable transmission for a vehicle.

B1発明の構成 +11  問題点を解決するための手段本発明方法によ
れば、エンジンの余裕馬力から演算される予測力lI速
度Qと、運転者の力U、減速意志を示す指標から得られ
るエンジン回転数の目標変化速度肉。と、車速Vと、エ
ンジン回転数Nとに基づいて、下記式から変速比変化速
度iを算出し、 ■2       v C:定数 その算出した変速比変化速度;を制御値として変速制御
するようにした。
B1 Structure of the Invention +11 Means for Solving the Problems According to the method of the present invention, the engine power obtained from the predicted power lI speed Q calculated from the spare horsepower of the engine, the driver's power U, and an index indicating the intention to decelerate. Target change speed of rotation speed. Based on the vehicle speed V and engine rotation speed N, calculate the speed ratio change speed i from the following formula, and perform speed change control using the calculated speed ratio change speed as a control value. did.

(2)作 用 変速比変化速度が、予測加速度に対応する成分と、エン
ジン回転数の目標変化速度に対応する成分との和として
演算されるので、変速比の変化速度が適正となる。
(2) Effect Since the speed ratio change speed is calculated as the sum of the component corresponding to the predicted acceleration and the component corresponding to the target speed change of the engine speed, the speed ratio change speed becomes appropriate.

(3)実施例 以下、図面により本発明の一実施例について説明すると
、先ず第1図において、自動車の油圧式無段変速機Tは
、エンジンEにより駆動される入力軸lを存する定吐出
量型油圧ポンプ2と、車輪Wを駆動する出力軸3を有し
て油圧ポンプ2と同一軸線上に配設される可変容量型油
圧モータ4とが、油圧閉口路5を構成すべく相互に接続
されて成る。すなわち、前記油圧ポンプ2の吐出口およ
び油圧モータ4の吸入口間は、高圧油路5hにより相互
に接続され、油圧モータ4の吐出口および油圧ポンプ2
の吸入口間は低圧油路5eにより相互に接続される。
(3) Example Hereinafter, an example of the present invention will be described with reference to the drawings. First, in FIG. A hydraulic pump 2 and a variable displacement hydraulic motor 4 having an output shaft 3 for driving wheels W and disposed on the same axis as the hydraulic pump 2 are connected to each other to form a closed hydraulic path 5. It consists of being done. That is, the discharge port of the hydraulic pump 2 and the suction port of the hydraulic motor 4 are connected to each other by a high-pressure oil passage 5h, and the discharge port of the hydraulic motor 4 and the suction port of the hydraulic motor 4 are
The suction ports are connected to each other by a low pressure oil passage 5e.

高圧油路5hおよび低圧油路5βには短絡路6が接続さ
れており、この短絡路6の途中にクラッチ弁7が設けら
れる。また入力軸1により駆動される補給ポンプ8の吐
出口が逆止弁9,10を介して高圧および低圧油路5h
、5pに接続され、油タンク12から汲み上げられる作
動油が不足分を補充すべく油圧閉回路5に供給される。
A short-circuit path 6 is connected to the high-pressure oil path 5h and the low-pressure oil path 5β, and a clutch valve 7 is provided in the middle of this short-circuit path 6. In addition, the discharge port of the replenishment pump 8 driven by the input shaft 1 is connected to the high pressure and low pressure oil passages 5h via check valves 9 and 10.
, 5p, and hydraulic oil pumped up from the oil tank 12 is supplied to the hydraulic closed circuit 5 to replenish the shortage.

さらに補給ポンプ8の吸入および吐出口間にはリリーフ
弁13が設けられる。
Furthermore, a relief valve 13 is provided between the suction and discharge ports of the replenishment pump 8.

クラッチ弁7は、図示しない開閉制御装置によって開閉
制御されるものであり、このクラッチ弁7の開度に応じ
て入力軸1および出力軸3間の動力伝達が制allされ
る。
The clutch valve 7 is controlled to open and close by an opening/closing control device (not shown), and power transmission between the input shaft 1 and the output shaft 3 is controlled according to the opening degree of the clutch valve 7.

変速比iの制御は、一定容量を吐出する油圧ポンプ2に
対し、油圧モータ4の容量を油圧シリンダ15によって
連続的に変化させることによって11¥られる。たとえ
ば油圧モータ4の容量を「大」側に変化させると変速比
lは[大」側に変化し、油圧モータ4の容量を「小」側
に変化させると、変速比iは「小」側に変化する。これ
により車両のエンジンEおよび車輪W間の無段変速が得
られる。
The speed ratio i is controlled by continuously changing the capacity of the hydraulic motor 4 using the hydraulic cylinder 15, while the hydraulic pump 2 discharges a constant capacity. For example, when the capacity of the hydraulic motor 4 is changed to the "large" side, the gear ratio l changes to the "large" side, and when the capacity of the hydraulic motor 4 is changed to the "small" side, the gear ratio i is changed to the "small" side. Changes to This provides continuously variable speed between the engine E and wheels W of the vehicle.

油圧モータ4は、斜板4aの傾斜角を変化させることに
より容量を変化させるものであり、斜板4aはリンク1
6を介して油圧シリンダ15に連結される。
The hydraulic motor 4 changes the capacity by changing the inclination angle of the swash plate 4a, and the swash plate 4a is connected to the link 1.
It is connected to a hydraulic cylinder 15 via 6.

油圧シリンダ15は、シリンダ体17と、該シリンダ体
17内に摺合されてシリンダ体17内をヘッド室18お
よびロッド室19に区画するピストン20と、該ピスト
ン20に一体化されるとともにシリンダ体17のロッド
室19側の端壁を油宏にかつ移動自在に貫通するピスト
ンロッド21とから成り、ピストンロッド21がリンク
16を介して油圧モータ4の斜板4Bに連結される。
The hydraulic cylinder 15 includes a cylinder body 17 , a piston 20 that is slidably fitted into the cylinder body 17 and partitions the inside of the cylinder body 17 into a head chamber 18 and a rod chamber 19 , and a piston 20 that is integrated with the piston 20 and is integrated with the cylinder body 17 . The piston rod 21 is connected to the swash plate 4B of the hydraulic motor 4 via the link 16.

かかる連結構造において、ロッド室19の容積を収縮す
る方向にピストン20が左動すると、油圧モータ4の斜
板4aは容量を「大」とする方向に傾動して変速比iが
「大」側に変化し、ヘッド室18の容積を収縮する方向
にピストン2oが右動すると、油圧モーフ4の斜板4a
は容量を「小Jとする方向に傾動して変速比iが「小」
側に変化する。
In such a connection structure, when the piston 20 moves to the left in the direction of contracting the volume of the rod chamber 19, the swash plate 4a of the hydraulic motor 4 tilts in the direction of increasing the capacity, and the gear ratio i changes to the "large" side. When the piston 2o moves to the right in the direction of contracting the volume of the head chamber 18, the swash plate 4a of the hydraulic morph 4
is tilted in the direction where the capacity is "small J" and the gear ratio i is "small".
change to the side.

油圧シリンダ15のヘッド室18には油路22が接続さ
れ、ロッド室19には油路23が接続される。油路22
および油タンク12間には、ソレノイド弁24が介装さ
れる。また油路23は油圧閉回路5の高圧油路5hに運
なる供給油路25に接続されており、該供給油路25は
、ソレノイド弁26を介して油路22の途中に接続され
る。量ソレノイド弁24.26は、マイクロコンビーー
タなどの制1111手段27によりデユーティ制?ff
1lされるものであり、そのデユーティ制?TIlによ
り油圧シリンダ15の作動速度すなわち変速比1の変化
速度lが制御される。
An oil passage 22 is connected to the head chamber 18 of the hydraulic cylinder 15, and an oil passage 23 is connected to the rod chamber 19. Oil road 22
A solenoid valve 24 is interposed between the oil tank 12 and the oil tank 12 . Further, the oil passage 23 is connected to a supply oil passage 25 leading to a high pressure oil passage 5h of the hydraulic closed circuit 5, and the supply oil passage 25 is connected to the oil passage 22 midway through a solenoid valve 26. The quantity solenoid valves 24 and 26 are duty-controlled by control means 27 such as a microconbeater. ff
Is it a duty system? The operating speed of the hydraulic cylinder 15, that is, the changing speed l of the gear ratio 1 is controlled by TIl.

制御手段27には、スロントル開度センサ2B、エンジ
ン回転数センサ29、吸気負圧センサ30、車速センサ
31および油圧モータ4の斜板角度センサ32などが接
続されており、制御手段27は、それらのセンサ28〜
32などから入力される13号に基づいて演算される変
速比変化速度;に応じてソレノイド弁24.26の作動
を制御する。
The control means 27 is connected to the throttle opening sensor 2B, the engine speed sensor 29, the intake negative pressure sensor 30, the vehicle speed sensor 31, the swash plate angle sensor 32 of the hydraulic motor 4, etc. sensor 28~
The operation of the solenoid valves 24 and 26 is controlled according to the speed ratio change speed calculated based on No. 13 inputted from 32 and the like.

ここで変速比iは、エンジン回転数をN、車速をVとし
たときには、第(1)弐で表わされる。
Here, the gear ratio i is expressed as (1) and 2, where N is the engine rotational speed and V is the vehicle speed.

1−                ・・・(1)C
’XV 第(1)式でC′は定数である。また第(1)式を時間
りで微分して変速比変化速度lを求めると第(2)式の
ようになる。
1-...(1)C
'XV In equation (1), C' is a constant. Further, when equation (1) is differentiated with respect to time to determine the gear ratio change speed l, equation (2) is obtained.

dt   C’xV       C’xV第(2)式
でエンジン回転数の変化速度肉を、エンジン回転数の目
標変化速度肉。とじ、C=1/C’ とすると、 ■2          ■ となる。すなわち変速比変化速度;は、加速度※に対応
する成分i a (−−c x  −X <IT)■2 と、エンジン回転数の目標変化速度良。に対応すす る成分1N(=Cx     xQ。)との和で与え■ られることになる。この際、9を予測加速度とすると、
その予測加速度9は、次の第(4)弐〜第(動式から得
られる。
dt C'xV C'xV Expression (2) expresses the rate of change in engine speed as the target rate of change in engine speed. When binding and C=1/C', it becomes ■2 ■. That is, the gear ratio change speed; is the component ia (--c x -X <IT) 2 corresponding to acceleration*, and the target change speed of the engine speed is good. It is given by the sum of the corresponding component 1N (=Cx xQ). In this case, if 9 is the predicted acceleration,
The predicted acceleration 9 is obtained from the following (4) second to second (dynamic equations).

すなわち、エンジンE単体の出力Peは、路面抵抗をR
μ、空気抵抗をRa、エンジンEの余裕馬力をPaとし
たときに Pe;Rμ+Ra−l−Pa       ・・・(4
)で表わされる。この第(4)式から余裕馬力PaはP
a=Pe−(Rμ+Ra)      −(5)となる
。また余裕馬力Paは、車両総重量をW、エンジン回転
記重星をΔWとしたときに、第(6)式でも表わされる
In other words, the output Pe of the engine E alone is the road resistance R
μ, air resistance as Ra, and engine E's spare horsepower as Pa; then Pe; Rμ+Ra-l-Pa...(4
). From this equation (4), the surplus horsepower Pa is P
a=Pe-(Rμ+Ra)-(5). The surplus horsepower Pa is also expressed by equation (6), where W is the vehicle gross weight and ΔW is the engine rotational speed.

g        60”      75この第(6
)弐および前記第(5)′式から(W+ΔW)X (V
XI O’ ) である。
g 60” 75 this number (6
)2 and the above equation (5)′, (W+ΔW)X (V
XIO').

したがって、予測加速度9は、エンジンEの余裕馬力P
aから演算可能であり、余裕馬力paは第(5)式から
求められる。一方、エンジン1lil!1転数の目標変
化速度向。は、運転者の加、減速の意志を示す指標たと
えば目標エンジン回転数N0および実際のエンジン回転
数Nの差ΔNをt′A算し、走行フィーリングおよび燃
料消費の観点から前記差ΔNに応した目標変化速度向。
Therefore, the predicted acceleration 9 is the surplus horsepower P of the engine E.
It can be calculated from a, and the surplus horsepower pa can be obtained from equation (5). On the other hand, the engine is 1 lil! Target change speed direction for one revolution. is an index indicating the driver's intention to accelerate or decelerate, for example, calculates the difference ΔN between the target engine speed N0 and the actual engine speed N, and calculates the difference ΔN according to the driving feeling and fuel consumption. Target change speed direction.

を予め定めたテーブルを阜備しておくことにより得られ
る。
This can be obtained by preparing a table with predetermined values.

ここで制御1手段27における制’+In手順について
説明すると、第2図において、第1ステツプS1では、
エンジン回転数Nおよび車速Vが読み込まれる。次の第
2ステツプS2では、余裕馬力Paが演算される。この
余裕馬力paの演算は、第(5)式に基づいて行なわれ
るが、エンジン車体出力Peはたとえば第3図で示すよ
うなマツプにより得られる。すなわち、第3図では、エ
ンジン回転数Nを横軸とし、添字1〜13を付して示す
複数の吸気負圧P1〜PI3をパラメータとして、縦軸
にエンジン単体出力Pcが示されており、エンジン回転
数Nと吸気負圧とでエンジン単体出力Peが定まる。
Now, to explain the control +In procedure in the control 1 means 27, in FIG. 2, in the first step S1,
Engine speed N and vehicle speed V are read. In the next second step S2, the surplus horsepower Pa is calculated. The calculation of the surplus horsepower pa is performed based on equation (5), and the engine vehicle body output Pe is obtained from a map as shown in FIG. 3, for example. That is, in FIG. 3, the engine rotation speed N is taken as the horizontal axis, and the vertical axis shows the engine output Pc using a plurality of intake negative pressures P1 to PI3 indicated with subscripts 1 to 13 as parameters, The engine output Pe is determined by the engine speed N and the intake negative pressure.

これによりエンジンEの余裕馬力paが求められ、その
結果、第3ステツプS3で第(7)武力)ら予測加速度
守が得られる。そこで次の第4ステツプS4では、変速
比変化速度iの予測加速度成分;1が演算される。
As a result, the surplus horsepower pa of the engine E is obtained, and as a result, the predicted acceleration value is obtained from step (7) in the third step S3. Therefore, in the next fourth step S4, the predicted acceleration component of the gear ratio change speed i is calculated.

第5ステ、ブS5では、エンジン回転数の目標変化速度
向。が求められる。すなわち、第4図で示すように目標
エンジン回転数N0と、実際のエンジン回転数Nとの差
ΔNに対応した目標変速速度向。が予め求められており
、差ΔNに応じた目標変化j十変肉。が算出される。こ
れに基づいて第6ステツプS6では、変速比変化速度i
のエンジン回転数目標変速速度向。に対応する成分j 
Hが演算される。
In the fifth step, step S5, the target change speed direction of the engine rotational speed is determined. is required. That is, as shown in FIG. 4, the target speed change direction corresponds to the difference ΔN between the target engine speed N0 and the actual engine speed N. is determined in advance, and the target change j is determined according to the difference ΔN. is calculated. Based on this, in the sixth step S6, the gear ratio change speed i
engine rotational speed target shift speed direction. component j corresponding to
H is calculated.

その後、第7ステツプS7で第(3)式に基づいて変速
比変化速度iが演算され、その演算値を制御■値として
、ソレノイド弁24.26の制?ff1lが行なわれる
Thereafter, in the seventh step S7, the gear ratio change speed i is calculated based on equation (3), and the calculated value is used as the control value to control the solenoid valves 24 and 26. ff1l is performed.

ところで、第2図の第2ステツプS2において余裕馬力
を求める際に、第3図で得られたエンジン単体出力Pe
は、ミッション効率とは無関係に定めたものであり、正
確なエンジン出力を求めるにはミソソヨン効率で補正す
る必要がある。このミッション効率は、エンジン単体出
力Peとエンジン回転数Nとで定まるものであるが、よ
り正確にするにはさらに変速位置により補正する必要が
ある。すなわち、ミッション効率η4は、エンジン車体
出力Peとエンジン回転数Nとで定まるミッション効率
ηmと変速比iで定まる変速比係数にηとの積(ηイー
ηmXKμ)で得られるものであり、ミッション効率η
mは第5図で与えられ、変速比係数にηは第6図で与え
られる。
By the way, when calculating the surplus horsepower in the second step S2 of FIG. 2, the engine single output Pe obtained in FIG.
is determined regardless of mission efficiency, and must be corrected by miso-soyon efficiency to obtain accurate engine output. This mission efficiency is determined by the engine output Pe and the engine rotational speed N, but to make it more accurate, it is necessary to further correct it by the shift position. In other words, the mission efficiency η4 is obtained by multiplying the mission efficiency ηm determined by the engine body output Pe and the engine rotational speed N and the gear ratio coefficient determined by the gear ratio i with η (ηEηmXKμ), and the mission efficiency η
m is given in FIG. 5, and the gear ratio coefficient η is given in FIG.

第5図では、エンジン回転数Nを横軸とし、添字1〜1
3を付して示す複数のエンジン単体出力Pe1〜Pe1
Jをパラメータとして(イ軸にミッション効率ηmが示
されており、第6図では変速比iを)黄軸として縦軸に
変速比係数にηが示されている。この第5図および第6
図で示すマツプは予め卓備されている。
In Fig. 5, the horizontal axis is the engine speed N, and subscripts 1 to 1
A plurality of engine single outputs Pe1 to Pe1 shown with 3
With J as a parameter (mission efficiency ηm is shown on the i-axis, and gear ratio i in FIG. 6), the yellow axis shows the gear ratio coefficient η on the vertical axis. This figure 5 and 6
The map shown in the figure is provided in advance.

そこで、第2図のフローチャートにおける第2ステツプ
S2の演算時には、第7図で示すようなサブルーチンに
より、エンジン単体出力Peの補正が行なわれる。すな
わち第1ステツプI!1で、前述の第3図でエンジン単
体出力Peを求め、第2ステツプ7!2で第5凹で示す
マツプによりミッション効率ηmを求める。次の第3ス
テツプe3では、斜板角度センサ32により得られる変
速比iを読み込み、第4ステツプp4では第6図で示す
マツプにより変速比係数にηを算出する。その後、第5
ステツプe5でミッション効率η、を演算し、このミッ
ション効率η、により第6ステツプβ6でエンジン出力
Peの補正を行なう。したがって、より正確なエンジン
出力に基づいて余裕馬力Paおよび予測加速度9がより
正確に求められることになる。
Therefore, during the calculation at the second step S2 in the flowchart of FIG. 2, the engine output Pe is corrected by a subroutine as shown in FIG. That is, the first step I! In step 1, the engine output Pe is determined using the above-mentioned FIG. 3, and in the second step 7!2, the mission efficiency ηm is determined using the map shown by the fifth concave. In the next third step e3, the gear ratio i obtained by the swash plate angle sensor 32 is read, and in the fourth step p4, the gear ratio coefficient η is calculated using the map shown in FIG. Then the fifth
In step e5, the mission efficiency η is calculated, and in a sixth step β6, the engine output Pe is corrected based on the mission efficiency η. Therefore, the surplus horsepower Pa and the predicted acceleration 9 can be determined more accurately based on more accurate engine output.

また、第(5)式で求めた余裕、5力Paに基づいて第
(7)式で得られる予測加速度Ωが平坦路基卓であった
とすると、変速比変化速度;の予測加速度成分i、は路
面条件によりずれる場合があり、エンジン回転数Nが予
定値より上昇あるいは下降して運転性能上好ましくない
ことが起こり得る。そこで、前回の予測加速度91−1
と、その結果−V、、との差により走行抵抗が予測レベ
ルより大であるか小であるかを判断し、その差(y、、
−+−Q、、)に対応して予測加速度成分1□を補正す
る。
Furthermore, if the predicted acceleration Ω obtained from Equation (7) based on the margin obtained from Equation (5) and the five forces Pa is a flat road base, then the predicted acceleration component i of the gear ratio change speed is The deviation may occur depending on the road surface conditions, and the engine speed N may rise or fall from the expected value, which may be unfavorable in terms of driving performance. Therefore, the previous predicted acceleration 91-1
It is determined whether the running resistance is larger or smaller than the predicted level based on the difference between
-+-Q, , ), the predicted acceleration component 1□ is corrected.

すなわち、前回の予測加速度9゜−1は第(7)式で得
られ、結果97は、前回の車速V、−1から現在の車速
■。を減算したものを時間ΔLで除すことにより得られ
るものである。
That is, the previous predicted acceleration of 9°-1 is obtained by equation (7), and the result 97 is the current vehicle speed (■) from the previous vehicle speed V,-1. It is obtained by subtracting the value and dividing it by the time ΔL.

V、、−V。V,,-V.

■i = Δ t これにより、補正値Δ9は ΔΩ−(※a−1−※、)Xk(k:補正係数)で得ら
れ、この補正値ΔΩにより予測加速度成分;、の補正を
行なう。
■i=Δt As a result, the correction value Δ9 is obtained as ΔΩ−(*a−1−*,)Xk (k: correction coefficient), and the predicted acceleration component is corrected using this correction value ΔΩ.

そこで、第2図で示すフローチャートの第4ステツプS
4で、予測加速度成分11の演算が行なねれる際に、第
8図で示すようなサブルーチンにより予測加速度成分1
.の補正が行なわれる。
Therefore, in the fourth step S of the flowchart shown in FIG.
4, when the predicted acceleration component 11 cannot be calculated, the predicted acceleration component 1 is calculated by a subroutine as shown in FIG.
.. Corrections are made.

第1ステップmlでは、エンジン回転数Ne、現在の車
速■7、前回の車速V、−1が読み込まれ、第2ステッ
プm’2では91の演算が行なわれ、第3ステップm3
ではΔv= (Q、−+−Q、、)が演算され、その結
果に基づいて第4ステップm4で予測加速度成分i3は
、 ’H,−−Cx −x (Ω+Δ9) ■2 として補正される。
In the first step ml, the engine rotation speed Ne, the current vehicle speed ■7, and the previous vehicle speed V, -1 are read, the calculation of 91 is performed in the second step m'2, and the third step m3
Then, Δv= (Q, −+−Q, , ) is calculated, and based on the result, the predicted acceleration component i3 is corrected as 'H, −−Cx −x (Ω+Δ9) ■2 in the fourth step m4. .

さらに、第4同で得たエンジン回転数の目標変化速度向
。が平坦路面基準であったとすると、坂道走行時や風の
強いときには、目標変化速度向。
Furthermore, the target change speed direction of the engine speed obtained in the fourth example. Assuming that is based on a flat road surface, when driving on a slope or when the wind is strong, the target speed change direction.

がずれる傾向となる。そこで、前回の予測目標変化速度
内。7−1と、その結果肉。7との差により走行抵抗が
予測レベルより大であるか小であるかを判断し、その差
(肉。n−1pJ。。)に対応してエンジン回転数目標
変化速度成分j Nを補正する。
tends to shift. Therefore, the rate of change is within the previous predicted target rate of change. 7-1 and the resulting meat. 7, it is determined whether the running resistance is larger or smaller than the predicted level, and the engine rotational speed target change speed component j N is corrected in accordance with the difference (meat. n-1 pJ...). .

すなわち、前回の予測目標変化速度内。、、−1は、第
4図のマツプから得られ、結果澹。1は前回のエンジン
回転数Nfi−1から現在のエンジン回転数N、を減算
したものを時間Δtで除すことにより得られるものであ
る。。
That is, within the previous predicted target rate of change. , , -1 is obtained from the map shown in FIG. 4, and the result is . 1 is obtained by subtracting the current engine speed N from the previous engine speed Nfi-1 and dividing it by time Δt. .

N、−、−N、1 肉・^=□ Δt これにより補正値へ由 へ肉−(由、、−1−勺。) で得られ、この補正値6勺によりエンジン回転数目標変
化速度成分i9の補正を行なう。
N, -, -N, 1 = □ □ □ Δt This gives the correction value as follows: (Yi,, -1 - 勺.) This correction value 6 = engine speed target change speed component Perform i9 correction.

そこで、第2図で示すフローチャートの第6ステノプS
6でエンジン回転数目標変化速度成分18の演算を行な
う際に、第9図で示すようなサブルーチンによりエンジ
ン回転数目標変化速度成分iHの補正が行なわれる。
Therefore, the sixth step S in the flowchart shown in FIG.
When calculating the engine speed target change rate component 18 in step 6, the engine speed target change rate component iH is corrected by a subroutine as shown in FIG.

第1ステツプqlでは、前回のエンジン回転数Nh−1
、現在のエンジン回転数N0および車速■が読み込まれ
、第2ステツプq2では由。の演算が行なわれる。さら
に第3ステツプq3ではΔ肉=(肉N−I  Q。)が
演算され、その結果に基づいて第4ステツプq4でエン
ジン回転数目標変化速度j Nは 1N=CX −x (自+Δ肉) ■ として補正される。
In the first step ql, the previous engine speed Nh-1
, the current engine speed N0 and vehicle speed ■ are read, and in the second step q2. calculations are performed. Furthermore, in the third step q3, Δmeat = (meat N - I Q.) is calculated, and based on the result, in the fourth step q4, the engine rotational speed target change rate jN is 1N = CX - x (self + Δmeat) ■ Corrected as.

次にこの実施例の作用について説明すると、変速比変化
速度iを予測加速度成分1つと、エンジン回転数目標変
化速度成分j Nとの和として算出し、その変速比変化
速度iを制御値として制御するので、変速比の変化量が
適正に制御されることになる。たとえば1(。が一定の
ときの18は第1O図の曲線Aで示され、9が一定のと
きの11は第10図の曲線Bで示され、iは曲線Cで示
される。
Next, to explain the operation of this embodiment, the gear ratio change speed i is calculated as the sum of one predicted acceleration component and the engine rotational speed target change speed component jN, and the gear ratio change speed i is controlled as a control value. Therefore, the amount of change in the gear ratio can be appropriately controlled. For example, 18 when 1(.) is constant is shown by curve A in FIG. 1O, 11 is shown by curve B in FIG. 10 when 9 is constant, and i is shown by curve C in FIG.

この第10図から明らかなように、予測加速度成分11
を考慮していない従来のものに比べると、低速時におい
て変速比「大」側の変速比変化速度iが小さ過ぎること
はな(、したがって変速遅れおよびそれに伴う異和感が
生じたり、エンジン回転数のハンチングが生じたりする
ことはない。また変速比「小」側の変速制御時にエンジ
ン回転数の吹上りが生じることがなく、燃費の悪化およ
び不快感の発生を回避することができるとともに、減速
時に過変速による効率低下が生じることもない。
As is clear from FIG. 10, the predicted acceleration component 11
Compared to conventional systems that do not take into account There is no hunting in the engine speed.Furthermore, there is no increase in the engine speed when controlling the gear ratio on the "small" side, making it possible to avoid deterioration of fuel efficiency and discomfort. There is no reduction in efficiency due to overshifting during deceleration.

しかも、予測加速度成分i、の算出時に用いるエンジン
単体出力Peは、ミッション効率η8で補正されるので
、より正確なエンジン単体出力Peを用いて予測加速度
成分11を演算することができ、制御精度が向上する。
Moreover, since the engine single output Pe used when calculating the predicted acceleration component i is corrected by the mission efficiency η8, the predicted acceleration component 11 can be calculated using a more accurate engine single output Pe, improving control accuracy. improves.

また予測加速度9は、前回の予測値※□1とその結果9
゜との差によって補正されるので、路面条件に応じた予
測加速度成分11を求めることができ、エンジン回転1
&Nが予定値からずれることを回避して優れた運転性能
かられる。
Also, predicted acceleration 9 is the previous predicted value *□1 and its result 9
Since it is corrected by the difference between
Excellent driving performance can be achieved by avoiding deviation of &N from the planned value.

さらにエンジン回転数目標変化速度肉。は、前回の目標
値向。1−8とその結果向、との差によって補正される
ので、走行条件に拘らず、目標エンジン回転数N0に近
付(変化速度向。が予め設定したパターンからずれるこ
とを回避して、目標エンジン回転数N0に到達させるこ
とができる。
Furthermore, the engine speed target change speed meat. is the previous target value direction. Since the correction is made based on the difference between 1-8 and the resulting direction, regardless of the driving conditions, it is possible to approach the target engine speed N0 (change speed direction) and avoid deviation from the preset pattern. It is possible to reach the engine rotation speed N0.

C0発明の効果 以上のように本発明方法では、エンジンの余裕馬力から
演算される予測加速度※と、運転者の加。
C0 Effects of the Invention As described above, the method of the present invention uses the predicted acceleration* calculated from the engine's spare horsepower and the driver's input.

減速意志を示す指標から得られるエンジン回転数の目標
変化速度■0と、車速Vと、エンジン回転数Nとに基づ
いて、下記式から変速比変化速度;を算出し、 VZ        V C:定数 その算出した変速比変化速度1を制’<1’J値として
変速制御するようにしたので、低速時における変速比「
犬」側への変速遅れおよびそれに伴う異和感の発生と、
エンジン回転数のハンチング発生とを防止し、しかも変
速比「小」側への変速制御時の燃費の悪化および不快感
の発生を防止し、さらに減速時の燃費の悪化をも防止す
ることができる。
Based on the target rate of change in the engine speed ■0 obtained from the index indicating the intention to decelerate, the vehicle speed V, and the engine speed N, calculate the speed ratio change rate; from the following formula, where VZ V C is a constant. Since the calculated gear ratio change speed 1 is used as the control value of '<1'J, the gear change is controlled, so the gear ratio at low speed is
Delay in gear shifting to the “dog” side and the resulting discomfort,
It is possible to prevent the occurrence of hunting in the engine speed, and also to prevent the deterioration of fuel efficiency and the occurrence of discomfort when changing the gear ratio to the "small" side, and also to prevent the deterioration of fuel efficiency during deceleration. .

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すもので、第1図は無段変
速機の構成を示す回路図、第2図は制御手順を示すフロ
ーチャート、第3図はエンジン出力を求めるためのマツ
プを示す図、第4図はエンジン回転数目標変化速度を求
めるためのマツプを示す図、第5図はミッション効率を
求めるためのマツプを示す図、第6図は変速係数を求め
るためのマツプを示す図、第7図はエンジン出力を補正
するためのサブルーチンのフローチャート、第8図は予
測加速度を補正するためのサブルーチンのフローチャー
ト、第9図はエンジン回転数目標変化速度を補正するた
めのサブルーチンのフローチャート、第10図は変速比
変化速度の一例を示すグラフである。 T:無段変速機
The drawings show one embodiment of the present invention; Fig. 1 is a circuit diagram showing the configuration of a continuously variable transmission, Fig. 2 is a flowchart showing the control procedure, and Fig. 3 is a map for determining the engine output. Figure 4 is a map for determining the engine speed target rate of change, Figure 5 is a map for determining mission efficiency, and Figure 6 is a map for determining the gear change coefficient. Fig. 7 is a flowchart of a subroutine for correcting engine output, Fig. 8 is a flowchart of a subroutine for correcting predicted acceleration, and Fig. 9 is a flowchart of a subroutine for correcting target rate of change in engine speed. , FIG. 10 is a graph showing an example of the change speed of the gear ratio. T: Continuously variable transmission

Claims (1)

【特許請求の範囲】 エンジンの余裕馬力から演算される予測加速度■と、運
転者の加、減速意志を示す指標から得られるエンジン回
転数の目標変化速度■_0と、車速Vと、エンジン回転
数Nとに基づいて、下記式から変速比変化速度■を算出
し、 ■=−C×(N/V^2)×■+C×(1/V)×■_
0C:定数 その算出した変速比変化速度■を制御値として変速制御
するようにしたことを特徴とする車両用無段変速機の変
速制御方法。
[Claims] The predicted acceleration ■ calculated from the spare horsepower of the engine, the target rate of change in engine speed ■_0 obtained from the index indicating the driver's intention to accelerate or decelerate, the vehicle speed V, and the engine speed Based on N, calculate the gear ratio change speed ■ from the following formula, ■=-C×(N/V^2)×■+C×(1/V)×■_
0C: Constant A method for controlling a continuously variable transmission for a vehicle, characterized in that the calculated speed ratio change speed ■ is used as a control value to control the speed change.
JP61193395A 1986-08-19 1986-08-19 Shift control device for continuously variable transmission for vehicle Expired - Fee Related JPH0721305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61193395A JPH0721305B2 (en) 1986-08-19 1986-08-19 Shift control device for continuously variable transmission for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61193395A JPH0721305B2 (en) 1986-08-19 1986-08-19 Shift control device for continuously variable transmission for vehicle

Publications (2)

Publication Number Publication Date
JPS6353343A true JPS6353343A (en) 1988-03-07
JPH0721305B2 JPH0721305B2 (en) 1995-03-08

Family

ID=16307229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61193395A Expired - Fee Related JPH0721305B2 (en) 1986-08-19 1986-08-19 Shift control device for continuously variable transmission for vehicle

Country Status (1)

Country Link
JP (1) JPH0721305B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310447A1 (en) * 1987-10-02 1989-04-05 Honda Giken Kogyo Kabushiki Kaisha Method of speed reduction ratio control in continuously variable speed transmission
US4956972A (en) * 1987-12-18 1990-09-18 Honda Giken Kogyo Kabushiki Kaisha Method of controlling speed reduction ratio for a continuously variable speed transmission
JPH03129160A (en) * 1989-10-16 1991-06-03 Honda Motor Co Ltd Speed change control method of automatic transmission
US5025685A (en) * 1988-07-29 1991-06-25 Honda Giken Kogyo Kabushiki Kaisha Controlling device for non-stage transmission for vehicles
US5040114A (en) * 1988-07-20 1991-08-13 Honda Giken Kogyo Kabushiki Kaisha Method of controlling continuously variable transmission in combination with engine throttle control
US5166877A (en) * 1987-10-02 1992-11-24 Honda Giken Kogyo Kabushiki Kaisha Method of speed reduction ratio control in continuously variable speed transmission
US5214983A (en) * 1988-07-29 1993-06-01 Honda Giken Kogyo Kabushiki Kaisha Controlling device for non-stage transmission for vehicle with fault detection
US5218540A (en) * 1989-03-22 1993-06-08 Honda Giken Kogyo Kabushiki Kaisha Method of controlling continuously variable transmission in combination with engine throttle control
US5325670A (en) * 1989-02-10 1994-07-05 Honda Giken Kogyo Kabushiki Kaisha Clutch control device for transmission
US5417623A (en) * 1992-01-21 1995-05-23 Honda Giken Kogyo Kabushiki Kaisha Method of controlling continuously variable transmission for motor vehicle for acceleration and deceleration skip control
CN104315138A (en) * 2014-08-27 2015-01-28 安徽江淮汽车股份有限公司 Control method for shifting actuator of double-clutch automatic transmission

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3638036B2 (en) * 1995-05-23 2005-04-13 株式会社小松製作所 Hydraulic motor capacity control device for hydraulic drive vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659006A (en) * 1979-10-19 1981-05-22 Hitachi Constr Mach Co Ltd Controlling method of hydraulic circuit for controlling pump
JPS5944536A (en) * 1982-09-03 1984-03-13 Mitsuo Sakamoto Continuous roof ventilator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659006A (en) * 1979-10-19 1981-05-22 Hitachi Constr Mach Co Ltd Controlling method of hydraulic circuit for controlling pump
JPS5944536A (en) * 1982-09-03 1984-03-13 Mitsuo Sakamoto Continuous roof ventilator

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310447A1 (en) * 1987-10-02 1989-04-05 Honda Giken Kogyo Kabushiki Kaisha Method of speed reduction ratio control in continuously variable speed transmission
US5166877A (en) * 1987-10-02 1992-11-24 Honda Giken Kogyo Kabushiki Kaisha Method of speed reduction ratio control in continuously variable speed transmission
US4956972A (en) * 1987-12-18 1990-09-18 Honda Giken Kogyo Kabushiki Kaisha Method of controlling speed reduction ratio for a continuously variable speed transmission
US5040114A (en) * 1988-07-20 1991-08-13 Honda Giken Kogyo Kabushiki Kaisha Method of controlling continuously variable transmission in combination with engine throttle control
US5214983A (en) * 1988-07-29 1993-06-01 Honda Giken Kogyo Kabushiki Kaisha Controlling device for non-stage transmission for vehicle with fault detection
US5025685A (en) * 1988-07-29 1991-06-25 Honda Giken Kogyo Kabushiki Kaisha Controlling device for non-stage transmission for vehicles
US5282400A (en) * 1988-07-29 1994-02-01 Honda Giken Kogyo Kabushiki Kaisha Controlling device for non-stage transmission for vehicle
US5325670A (en) * 1989-02-10 1994-07-05 Honda Giken Kogyo Kabushiki Kaisha Clutch control device for transmission
US5218540A (en) * 1989-03-22 1993-06-08 Honda Giken Kogyo Kabushiki Kaisha Method of controlling continuously variable transmission in combination with engine throttle control
JPH03129160A (en) * 1989-10-16 1991-06-03 Honda Motor Co Ltd Speed change control method of automatic transmission
US5417623A (en) * 1992-01-21 1995-05-23 Honda Giken Kogyo Kabushiki Kaisha Method of controlling continuously variable transmission for motor vehicle for acceleration and deceleration skip control
CN104315138A (en) * 2014-08-27 2015-01-28 安徽江淮汽车股份有限公司 Control method for shifting actuator of double-clutch automatic transmission
CN104315138B (en) * 2014-08-27 2016-06-08 安徽江淮汽车股份有限公司 A kind of control method of dual-clutch transmission gear shifting actuating mechanism

Also Published As

Publication number Publication date
JPH0721305B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
US5944492A (en) Hydraulic pump control system
US8162618B2 (en) Method and device for controlling pump torque for hydraulic construction machine
JP2568923B2 (en) Control method for continuously variable transmission
US6434466B1 (en) System and method for determining engine torque for controlling a powertrain
US6701246B2 (en) Engine torque determination for powertrain with torque converter
JPS6353343A (en) Speed change controlling method for continuously variable transmission for vehicle
EP0037838B1 (en) Method of controlling internal combustion engine and hydraulic pump system
EP0510590B1 (en) Control device for an internal combustion engine and a continuously variable transmission
US6442934B1 (en) Hydraulic controller for variable capacity hydraulic transmission
JPH0686193B2 (en) Continuously variable transmission with throttle control
JPH0231080A (en) Method of controlling speed change accompanied by control of throttle for continuously varial transmission
JPS6353344A (en) Speed change controlling method for continuously variable transmission for vehicle
US20050166586A1 (en) Engine control based on flow rate and pressure for hydraulic hybrid vehicle
JPH01160743A (en) Method of controlling gear shift of continuously variable transmission
JPH0721307B2 (en) Shift control device for continuously variable transmission for vehicle
JPS6353346A (en) Speed change controlling method for continuously variable transmission for vehicle
US5166877A (en) Method of speed reduction ratio control in continuously variable speed transmission
CN108930786B (en) Method for controlling a hydrostatic drive
JPH04165162A (en) Speed change control method for vehicular continuously variable transmission
WO2013069101A1 (en) Operational state switching device for variable capacity pump
CA1332966C (en) Method of speed reduction ratio control in continuously variable speed transmission
JPS62215156A (en) Oil pressure controlling device for automatic transmission
JPH0193662A (en) Speed change control method for continuously variable transmission for vehicle
JPH01120475A (en) Speed change control method for continuously variable transmission in vehicle
JPS6230312B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees