JPS6353248A - Thickness control device for surface treatment - Google Patents

Thickness control device for surface treatment

Info

Publication number
JPS6353248A
JPS6353248A JP19663786A JP19663786A JPS6353248A JP S6353248 A JPS6353248 A JP S6353248A JP 19663786 A JP19663786 A JP 19663786A JP 19663786 A JP19663786 A JP 19663786A JP S6353248 A JPS6353248 A JP S6353248A
Authority
JP
Japan
Prior art keywords
surface treatment
thickness
control device
gas pressure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19663786A
Other languages
Japanese (ja)
Other versions
JPH0548291B2 (en
Inventor
Mitsuru Koyama
満 小山
Katsutaka Murakami
村上 勝孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19663786A priority Critical patent/JPS6353248A/en
Publication of JPS6353248A publication Critical patent/JPS6353248A/en
Publication of JPH0548291B2 publication Critical patent/JPH0548291B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To uniformize the thickness of a surface treatment by providing an adaptive correction function with speed, temp. and plating thickness as independent variables to a surface treatment line so that the gaseous pressure to jet nozzles for controlling the thickness of the surface treatment can be controlled. CONSTITUTION:This thickness control device for the surface treatment is formed of detectors such as thickness gage 8, speed detector 19 and temp. detector 11 which detect the various physical quantities of material, the jet nozzles 5 for blowing the gas for controlling the thickness of the surface treatment, a device 17 for positioning said nozzles, a gas pressure controller 16, a multivariable deviation calculating device 20, an adaptive correction device 22 and a control device 21. The calculating device 20 calculates the deviation between the set value and detected value of the above-mentioned various physical quantities. The correction amt. of the coefft. of influence is calculated by the correcting device 22 in accordance with the calculated value. The control device 21 outputs the optimum manipulated variable for the above-mentioned positioning device 17 and gas pressure controller 16 in accordance with the above-mentioned coefft. of influence.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、連続して走行する材料(ストリップ)の表面
処理(メッキ、塗装等)を行う表面処理ラインに係り、
特に表面処理厚みを均一に制御するに好適な厚み制御装
置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a surface treatment line that performs surface treatment (plating, painting, etc.) on a continuously running material (strip).
In particular, the present invention relates to a thickness control device suitable for uniformly controlling surface treatment thickness.

〔従来の技術〕[Conventional technology]

第1に、従来の溶融亜鉛メツキラインで用いられている
YGメッキ装置に関する模式図を示す。
First, a schematic diagram of a YG plating apparatus used in a conventional hot-dip galvanizing line is shown.

第1図において、駆動装置7によって鋼板1は連続的に
搬送され、鍍金槽2に入っている溶融鍍金材3に浸った
後、コーターロールで適度な付着量になる。ジェットノ
ズル5は鋼板1の幅方向に幅を有し、ノズル部より高速
の不燃性のガスを噴射する構造である。余分な液状の鍍
金材はジェットノズル5を通過する時吹き払われて目標
の厚みとなる。ノズル5を通過した後、鍍金材は冷却さ
れ固化した後、後工程に行く、鍍金厚みhはジェットノ
ズル5の噴射ガス圧力P、ジェットノズル5と鋼板1と
の間隙り、溶接鍍金材3の温度T、鋼板1の速度Vをパ
ラメータとして微妙に変り、単純な関係式では表わされ
ない、従来は所定の鍍金厚みhを得るためのガス圧P、
間隙D、温度T、速度Vの関係を経験的、実験的に求め
て実用に供している。
In FIG. 1, a steel plate 1 is continuously conveyed by a drive device 7, and after being immersed in a hot-dip plating material 3 contained in a plating tank 2, a coater roll coats the steel plate to an appropriate amount. The jet nozzle 5 has a width in the width direction of the steel plate 1, and has a structure that injects nonflammable gas at high speed from the nozzle portion. Excess liquid plating material is blown off when it passes through the jet nozzle 5 to reach the target thickness. After passing through the nozzle 5, the plating material is cooled and solidified before proceeding to the subsequent process.The plating thickness h is determined by the injection gas pressure P of the jet nozzle 5, the gap between the jet nozzle 5 and the steel plate 1, and the thickness of the welded plating material 3. Conventionally, the gas pressure P to obtain a predetermined plating thickness h changes slightly with the temperature T and the speed V of the steel plate 1 as parameters, and cannot be expressed by a simple relational expression.
The relationship among the gap D, temperature T, and speed V has been determined empirically and experimentally and is put to practical use.

一例を挙げれば某鍍金ラインではこの関係式は次の様に
表わされる。
For example, for a certain plating line, this relational expression is expressed as follows.

P=Ao−v^1.p^2 ・TAJl 、 hA4 
 、、、 (1)D =  Bo  、  VBI  
、  pB!  、  TBjl  、  68番  
−(2)ここにA o = A a 、 B o ” 
B 4は実験より求めた定数である。
P=Ao-v^1. p^2 ・TAJl, hA4
,,, (1) D = Bo, VBI
, pB! , TBjl, No. 68
-(2) Here A o = A a , B o ”
B4 is a constant determined from experiment.

均一なメッキを得るため、速度V、温度T、噴射ガス圧
力P、間隙りは夫々、単一ループの定値制御を行なって
いる。すなわち、溶融温度Tを与えられた目標値に保つ
ために温度調節器12を備え、温度検出器11の検出温
度により調節弁9を調節する事によりバーナ10を制御
する。速度Vは速度設定器13により与えられ、速度制
御装置14により電動機15を一定速度で回転する事に
より得られる。ガス圧力Pは圧力調節器16により調節
弁6をamする事により行なう、又、ノズル間隙りは位
置決め装置17により電動機18を回転させてノズル5
を前進、後退させることにより行なう0通常は速度V、
湿温度を一定に保ち厚み計8からのフィードバック信号
りによりガス圧P、ノズル間隙りを調節する。なお、関
連公知例に特開昭51−124633号などがある。
In order to obtain uniform plating, the speed V, temperature T, injection gas pressure P, and gap are each controlled at fixed values in a single loop. That is, a temperature regulator 12 is provided to maintain the melting temperature T at a given target value, and the burner 10 is controlled by regulating the regulating valve 9 based on the temperature detected by the temperature detector 11. The speed V is given by the speed setter 13, and is obtained by rotating the electric motor 15 at a constant speed using the speed control device 14. The gas pressure P is adjusted by adjusting the control valve 6 using the pressure regulator 16, and the nozzle gap is adjusted by rotating the electric motor 18 using the positioning device 17 to control the nozzle 5.
This is done by moving forward and backward 0 usually the speed V,
The humidity temperature is kept constant and the gas pressure P and nozzle gap are adjusted based on the feedback signal from the thickness gauge 8. Incidentally, related publicly known examples include JP-A-51-124633.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術において(1)式、(2)式で用いられる
定数A o = A a 、 B o = B 4は実
験的に求めなければならない、したがって設備仕様が変
わった場合にはその都度各定数を求める必要があるため
時間、マンパワーおよび経費等がかさむという問題があ
った。又、(1)式、(2)式から明らかなようにガス
圧P、間隙りはお互いの変数となっていて独立していな
いため、単一ループの定値制御では高精度のメッキ厚み
制御を行うのは回置であった。
In the above conventional technology, the constants A o = A a and B o = B 4 used in equations (1) and (2) must be determined experimentally. Therefore, when the equipment specifications change, each constant is changed each time. There was a problem in that time, manpower, expenses, etc. were increased because it was necessary to obtain the following information. Furthermore, as is clear from equations (1) and (2), gas pressure P and gap are mutual variables and are not independent, so single-loop constant value control cannot achieve highly accurate plating thickness control. What was done was inversion.

本発明の目的は、速度V、鍍金材温度T、メッキ厚りを
独立変数として、ガス圧P5間隙りを制御すること、及
び、影響係数変化を自動修正する適応修正機能を付加す
る事により設備仕様変化、プラント運転状態変化に対応
できるシステムとして高精度の厚み制御を提供すること
にある。
The purpose of the present invention is to control the gas pressure P5 gap using speed V, plating material temperature T, and plating thickness as independent variables, and to add an adaptive correction function that automatically corrects changes in the influence coefficient. Our goal is to provide highly accurate thickness control as a system that can respond to changes in specifications and plant operating conditions.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、本発明は、材料の表面処
理に関する請物理量を検出する複数の検出器と、前記表
面処理厚みを制御するためのガスを吹きつけるジェット
ノズルと、前記検出量に基づいて前記ジェットノズルの
位置決めを行う位置決め装置と、前記検出量に基づいて
前記ガスの圧力を調節するガス圧調節器と、を備えた表
面処理厚み制御装置において、前記表面処理に関する請
物理量の設定値と状態変数である前記検出量との偏差を
それぞれ算出する多変数偏差演算装置と、その演算値に
基づいて状態変化に対応する影響係数の修正量を演算す
る適応修正装置と、その演算された影響係数に基づいて
前記ノズル位置決め装置およびガス圧調節器に対する!
&適操作量を出力する制御装置と、を備えたことを特徴
とするものである。
In order to solve the above problems, the present invention provides a plurality of detectors for detecting physical quantities related to the surface treatment of a material, a jet nozzle for spraying a gas for controlling the thickness of the surface treatment, and a jet nozzle for blowing a gas to control the thickness of the surface treatment, and A surface treatment thickness control device comprising: a positioning device that positions the jet nozzle based on the detected amount; and a gas pressure regulator that adjusts the pressure of the gas based on the detected amount; a multivariable deviation calculation device that calculates the deviation between the value and the detected amount that is a state variable; an adaptive correction device that calculates a correction amount of an influence coefficient corresponding to a state change based on the calculated value; on the nozzle positioning device and gas pressure regulator based on the influence coefficients!
& a control device that outputs an appropriate operation amount.

〔作用〕[Effect]

上記(1)式、(2)式より明らかなようにガス圧P、
間隙りは次の様に表わされる。
As is clear from the above equations (1) and (2), the gas pressure P,
The gap is expressed as follows.

P=P (v、D、T、h)     −(3)D=D
 (v、p、’re h)     −(4)各変数の
微少変化に対し調節しなければならないガス圧P、間隙
りの値を夫々dp、dDとすると下記の(5)式、(6
)式となる。
P=P (v, D, T, h) - (3) D=D
(v, p, 're h) - (4) If the values of gas pressure P and gap that must be adjusted for minute changes in each variable are dp and dD, respectively, the following equation (5), (6
).

av    aD    aT    ab(5)式、
(6)式を整理して(7)式、(8)式を得る。
av aD aT ab formula (5),
Equations (7) and (8) are obtained by rearranging equation (6).

(7)式、(8)式をマトリクス表示すると下記(9)
式かえられる。
When formulas (7) and (8) are displayed in a matrix, the following (9) is obtained.
The ceremony can be changed.

故に =1〕    ・・・(11) 二二で(11)式のFの各要素は影響係数と呼ばれる。Therefore =1     ...(11) Each element of F in equation (11) is called an influence coefficient.

各状態変数の微少変化dv、dT、dhに対しガス圧d
p、間1)JtdDを(12)式で制御する必要がある
Gas pressure d for minute changes dv, dT, dh of each state variable
1) It is necessary to control JtdD using equation (12).

上記(11)式のFを構成する各要素は影響係数と呼ば
れる事は先に述べたが、この値は状態変数[v、T、h
]により変化するのが普通である。
As mentioned earlier, each element constituting F in equation (11) above is called an influence coefficient, and this value is the state variable [v, T, h
] It is normal for it to change depending on.

影響係数をその時々の状態変数の変化に応じて最適の値
に修正する事により、高精度の制御が可能となる。以下
に影響係数の適応修正について述べる。
Highly accurate control is possible by correcting the influence coefficient to an optimal value according to changes in state variables at any given time. The adaptive correction of the influence coefficient will be described below.

適応修正は前回の影響係数に、影響係数の変化分を最適
ゲインKをもって加えることにより行う。
Adaptive correction is performed by adding the change in the influence coefficient with the optimum gain K to the previous influence coefficient.

すなわち ここで、 Xn:今回値lXn−1=前回値 K ニゲイン 〔実施例〕 次に、本発明の一実施例を図面に基づいて説明する。i.e. here, Xn: Current value lXn-1 = Previous value K Nigain 〔Example〕 Next, one embodiment of the present invention will be described based on the drawings.

第3図は本発明を適用した一実施例を示す。FIG. 3 shows an embodiment to which the present invention is applied.

偏差演算機能20は、厚み設定H1厚み計8からの鍍金
厚み信号h、速度設定V、速度フィードバックV、温度
設定Tp、温度フィードバックTを入力し夫々の信号の
偏差を演算する機能を有する。
The deviation calculation function 20 has a function of inputting the plating thickness signal h from the thickness setting H1 thickness gauge 8, speed setting V, speed feedback V, temperature setting Tp, and temperature feedback T and calculating the deviation of each signal.

すなわち 上記(14)式で求められたdv、dT、dhは次段の
制御演算装置21に入力される。制御演算装置1121
は上記偏差dv、dT、dhに対し最も適切なガス圧p
の変分dP+間隙りの変分dDを演算し、操作量dP*
 dDを出力する。
That is, dv, dT, and dh obtained by the above equation (14) are input to the control calculation device 21 at the next stage. Control calculation device 1121
is the most appropriate gas pressure p for the above deviations dv, dT, dh.
The variation dP + gap variation dD is calculated, and the manipulated variable dP*
Output dD.

すなわち(12)式で示されるごとく となる。操作量dP、dDは圧力g4節鉛工62位置決
め装!!17に与えられ、それぞれガス圧P。
That is, as shown in equation (12). Operation amount dP, dD is pressure g4 lead-saving 62 positioning device! ! 17, and the gas pressure P, respectively.

ノズル間隙りを調節する。Adjust the nozzle gap.

また適応修正装置22は偏差演算装置i!!20からの
出力信号dv、dT、dhより上記(13)式により影
響係数を適応修正する。すなわち 上記演算結果により制御演算装置21内の影響係数を修
正する。これによりプラントの状態変化により適応修正
が可能となり好適な制御ができる。
Further, the adaptive correction device 22 is a deviation calculation device i! ! The influence coefficient is adaptively corrected using the above equation (13) from the output signals dv, dT, and dh from 20. That is, the influence coefficient within the control calculation device 21 is corrected based on the above calculation result. This makes it possible to make adaptive corrections depending on changes in plant conditions, allowing for suitable control.

第4図は鍍金厚み設定Hを時刻toにおいてHsからH
zに変更した場合の動特性を従来技術と本発明を適用し
た場合の比較をオシログラフで示したものである0本発
明を適用した場合、ガス圧P、ノズル間隙りは制御演算
袋!!!21により多変数ベクトル演算され、両者協調
して制御されるためスムーズに整定される。この結果、
実メッキ厚りの目標値に対する整定時間は速い、又りの
変化ンプリング制御で適応修正されるため、目標メッキ
厚に対する精度は飛躍的に向上する。一方従来技術の場
合の特性は第4図中点線で示さ九るが、PとDは夫々単
一ループで制御されているため。
Figure 4 shows the plating thickness setting H from Hs to H at time to.
This is an oscillograph showing a comparison of the dynamic characteristics when changing to z when applying the conventional technology and the present invention.0 When the present invention is applied, the gas pressure P and nozzle gap are control calculation bags! ! ! 21 calculates a multivariable vector, and since both are controlled cooperatively, smooth settling is achieved. As a result,
The settling time for the actual plating thickness to the target value is fast, and since the adjustment is adaptively corrected by the change sampling control, the accuracy for the target plating thickness is dramatically improved. On the other hand, the characteristics in the case of the prior art are shown by the dotted line in FIG. 4, since P and D are each controlled by a single loop.

相互の現在値によりタスキ掛けの相互補償を行なってい
るとは云え、相互干渉があるため整定するのに時間がか
かること、及びhの変化に対して影響係数の適応修正が
ないため、メッキ厚りが薄目付又は厚目付となり厚み精
度がよくない。
Although mutual compensation is performed using the mutual current values, it takes time to settle due to mutual interference, and there is no adaptive correction of the influence coefficient for changes in h, so the plating thickness The thickness becomes thinner or thicker, and the thickness accuracy is poor.

〔発明の効果〕〔Effect of the invention〕

以上述べたように1本発明によれば、プラントの運転状
態変化に応じて表面処理厚みを精度よく確保しうる。
As described above, according to the present invention, the surface treatment thickness can be accurately ensured in accordance with changes in the operating conditions of the plant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すブロック図、第2図は各
物理量の特性を示す波形図、第3図は従来の溶隔亜鉛メ
ツキラインの構成を示すブロック図、第4図はジェット
ノズルの構成例を示す説明図である。 1・・・鋼板、2・・・鍍金槽、3・・・溶隔鍍金材、
4・・・コーターロール、5・・・ジェットノズル、6
・・・調節弁、7・・・駆動装置、8・・・厚み計、9
・・・調節弁、10・・・バーナ、11・・・温度検出
器、12・・・温度調節器、13・・・速度設定器、1
4・・・速度制御装置、15・・・電動機、16・・・
圧力調節器、17・・・位置決め装置、18・・・電動
機、19・・・速度検出器、20・・・偏差演算装置、
21・・・制御演算装置、22・・・適応修正装置。
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a waveform diagram showing the characteristics of each physical quantity, Fig. 3 is a block diagram showing the configuration of a conventional galvanizing line, and Fig. 4 is a jet nozzle. FIG. 2 is an explanatory diagram showing a configuration example. 1... Steel plate, 2... Plating tank, 3... Spatial plating material,
4... Coater roll, 5... Jet nozzle, 6
...Control valve, 7...Drive device, 8...Thickness gauge, 9
...Control valve, 10...Burner, 11...Temperature detector, 12...Temperature controller, 13...Speed setting device, 1
4...Speed control device, 15...Electric motor, 16...
Pressure regulator, 17... Positioning device, 18... Electric motor, 19... Speed detector, 20... Deviation calculation device,
21... Control calculation device, 22... Adaptive correction device.

Claims (1)

【特許請求の範囲】 1、材料の表面処理に関する請物理量を検出する複数の
検出器と、前記表面処理厚みを制御するためのガスを吹
きつけるジェットノズルと、前記検出量に基づいて前記
ジェットノズルの位置決めを行う位置決め装置と、前記
検出量に基づいて前記ガスの圧力を調節するガス圧調節
器と、を備えた表面処理厚み制御装置において、 前記表面処理に関する請物理量の設定値と状態変数であ
る前記検出量との偏差をそれぞれ算出する多変数偏差演
算装置と、その演算値に基づいて状態変化に対応する影
響係数の修正量を演算する適応修正装置と、その演算さ
れた影響係数に基づいて前記ノズル位置決め装置および
ガス圧調節器に対する最適操作量を出力する制御装置と
、を備えたことを特徴とする表面処理厚み制御装置。
[Scope of Claims] 1. A plurality of detectors for detecting physical quantities related to the surface treatment of a material, a jet nozzle for spraying a gas for controlling the thickness of the surface treatment, and a jet nozzle for controlling the quantity based on the detected quantity. A surface treatment thickness control device comprising: a positioning device that performs positioning; and a gas pressure regulator that adjusts the pressure of the gas based on the detected amount; A multivariable deviation calculation device that calculates each deviation from a certain detected amount, an adaptive correction device that calculates a correction amount of an influence coefficient corresponding to a state change based on the calculated value, and an adaptive correction device that calculates a correction amount of an influence coefficient corresponding to a state change based on the calculated value. A surface treatment thickness control device comprising: a control device that outputs an optimum operation amount for the nozzle positioning device and the gas pressure regulator.
JP19663786A 1986-08-22 1986-08-22 Thickness control device for surface treatment Granted JPS6353248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19663786A JPS6353248A (en) 1986-08-22 1986-08-22 Thickness control device for surface treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19663786A JPS6353248A (en) 1986-08-22 1986-08-22 Thickness control device for surface treatment

Publications (2)

Publication Number Publication Date
JPS6353248A true JPS6353248A (en) 1988-03-07
JPH0548291B2 JPH0548291B2 (en) 1993-07-21

Family

ID=16361078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19663786A Granted JPS6353248A (en) 1986-08-22 1986-08-22 Thickness control device for surface treatment

Country Status (1)

Country Link
JP (1) JPS6353248A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678645A1 (en) * 1991-07-01 1993-01-08 Lorraine Laminage METHOD FOR REGULATING A METALLURGICAL TREATMENT PERFORMED ON A RUNNING PRODUCT AND DEVICE FOR IMPLEMENTING SAME.
JPH0533110A (en) * 1991-07-30 1993-02-09 Nippon Steel Corp Production of galvannealed steel sheet
KR20020049465A (en) * 2000-12-19 2002-06-26 이구택 Method for controlling the amount of the strip plating
WO2003027346A1 (en) * 2001-09-20 2003-04-03 Sms Demag Aktiengesellschaft Method and device for coating the surface of elongated metal products
BE1015581A3 (en) * 2003-06-25 2005-06-07 Ct Rech Metallurgiques Asbl Steel strips ripples type thickness variation measuring and correcting method, involves modifying whirling parameters of strip when preset tolerance limit is attained to reduce thickness variation and maintain constant thickness of strip
CN102912275A (en) * 2012-10-23 2013-02-06 鞍钢股份有限公司 Automatic control system for plating thickness of hot galvanizing line

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529637A (en) * 1975-07-10 1977-01-25 Seiko Instr & Electronics Apparatus for automatic adjustment of plating builddup
JPS5534861A (en) * 1978-09-04 1980-03-11 Hitachi Ltd Insulating method for winding of electric machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529637A (en) * 1975-07-10 1977-01-25 Seiko Instr & Electronics Apparatus for automatic adjustment of plating builddup
JPS5534861A (en) * 1978-09-04 1980-03-11 Hitachi Ltd Insulating method for winding of electric machine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678645A1 (en) * 1991-07-01 1993-01-08 Lorraine Laminage METHOD FOR REGULATING A METALLURGICAL TREATMENT PERFORMED ON A RUNNING PRODUCT AND DEVICE FOR IMPLEMENTING SAME.
US5370902A (en) * 1991-07-01 1994-12-06 Sollac Regulating method for a metallurgical treatment carried out on a moving product and device for its implementation
JPH0533110A (en) * 1991-07-30 1993-02-09 Nippon Steel Corp Production of galvannealed steel sheet
KR20020049465A (en) * 2000-12-19 2002-06-26 이구택 Method for controlling the amount of the strip plating
WO2003027346A1 (en) * 2001-09-20 2003-04-03 Sms Demag Aktiengesellschaft Method and device for coating the surface of elongated metal products
BE1015581A3 (en) * 2003-06-25 2005-06-07 Ct Rech Metallurgiques Asbl Steel strips ripples type thickness variation measuring and correcting method, involves modifying whirling parameters of strip when preset tolerance limit is attained to reduce thickness variation and maintain constant thickness of strip
CN102912275A (en) * 2012-10-23 2013-02-06 鞍钢股份有限公司 Automatic control system for plating thickness of hot galvanizing line
CN102912275B (en) * 2012-10-23 2015-12-02 鞍钢股份有限公司 A kind of hot galvanizing line thickness of coating automatic control system

Also Published As

Publication number Publication date
JPH0548291B2 (en) 1993-07-21

Similar Documents

Publication Publication Date Title
US4724302A (en) Bead process control with profiler
JPS6353248A (en) Thickness control device for surface treatment
JPH0192349A (en) Device for controlling molten metal plating amount
US4840116A (en) Controlling method for operation of painting booth
JP2804320B2 (en) Plating weight control method
EP0638374B1 (en) Mill actuator reference adaptation for speed changes
JP5577588B2 (en) Plating adhesion amount control method and apparatus
JPS645980B2 (en)
JP2804430B2 (en) Control method for hot metal coating weight
JP3267841B2 (en) Controller with phase compensation function
JP4037569B2 (en) Method for controlling the coating amount of hot-dip metal strip
JP2727833B2 (en) Elongation rate control method
SU1219538A1 (en) Method of controlling process of producing glassware and device for effecting same
CN112090969B (en) Through water cooling control method and system for long material rolling
JP3684091B2 (en) Coating quality assurance method for curtain coaters
JPH09285809A (en) Controller for looper of continuous rolling mill
JPH0852507A (en) Method for controlling temperature of material to be rolled in hot rolling mill and device therefor
JP2742455B2 (en) Plating weight control method
WO2023036696A1 (en) Cooling system for a rolling mill
JPH01293961A (en) Device for controlling molten steel surface level in mold in continuous casting
JPS61143573A (en) Method and device for automatic control of plating deposition
SU1569802A1 (en) Automatic control system
Guelton et al. Cross-strip coating weight control at the hot dip galvanizing line of ArcelorMittal Florange
SU1620236A2 (en) System for automatic controlling of the welding process
JP2006265618A (en) Method for controlling coating weight of plating