JPS6352765B2 - - Google Patents

Info

Publication number
JPS6352765B2
JPS6352765B2 JP55099512A JP9951280A JPS6352765B2 JP S6352765 B2 JPS6352765 B2 JP S6352765B2 JP 55099512 A JP55099512 A JP 55099512A JP 9951280 A JP9951280 A JP 9951280A JP S6352765 B2 JPS6352765 B2 JP S6352765B2
Authority
JP
Japan
Prior art keywords
anode
lead wire
metal powder
aluminum
anode lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55099512A
Other languages
Japanese (ja)
Other versions
JPS5724530A (en
Inventor
Shigeaki Nakada
Tsunehiko Todoroki
Tatsuo Kikuchi
Yasuhiro Ogawa
Katsuhiko Pponjo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9951280A priority Critical patent/JPS5724530A/en
Publication of JPS5724530A publication Critical patent/JPS5724530A/en
Publication of JPS6352765B2 publication Critical patent/JPS6352765B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明はタンタルまたはニオブなどの希少金属
を陽極物質にする固体電解コンデンサの陽極の製
造法に関するものである。タンタルまたはニオブ
を陽極物質とする固体電解コンデンサの陽極には
これらの金属粉末を成形して焼結した多孔質焼結
体が用いられ、そのリード線は金属粉末を成形焼
結する際に、これと一体に焼結接続される。とこ
ろで、タンタルやニオブは希少金属であるため、
金属粉末の微粉化によつて単位重量あたりの表面
積を拡大して静電容量を増大させる方法や陽極リ
ード線に使用するタンタル線又はニオブ線を細線
化することによつてその節約が行なわれている
が、一方ではタンタル線やニオブ線に代つて安価
なアルミニユーム線を陽極リード線として使用す
ることが考えられる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an anode for a solid electrolytic capacitor using a rare metal such as tantalum or niobium as the anode material. A porous sintered body made by molding and sintering these metal powders is used for the anode of a solid electrolytic capacitor that uses tantalum or niobium as the anode material. It is sintered and connected as one piece. By the way, since tantalum and niobium are rare metals,
Savings are achieved by increasing the surface area per unit weight by pulverizing the metal powder and increasing the capacitance, and by making the tantalum or niobium wire used for the anode lead wire thinner. However, it is conceivable to use an inexpensive aluminum wire as the anode lead wire instead of tantalum wire or niobium wire.

しかし、アルミニユームの融点はタンタル粉末
やニオブ粉末の焼結温度よりはるかに低いので、
アルミニユームの陽極リード線を焼結によつて接
続することはできない。したがつてアルミニユー
ムを陽極リード線とする場合は陽極金属粉末を焼
結しないでそのまま化成を行なう方法、すなわ
ち、非焼結法が行なわれる。この方法は陽極金属
粉末と陽極リード線との接触を良好にするため
と、コンデンサ製造工程中の機械的衝撃に耐える
ために、焼結法の場合よりも成形密度を高くする
必要がある。その結果、この非焼結陽極は固体電
解コンデンサを構成したときにそのtanδの値が大
きくなる。これは成形密度の増大により陰極材料
である二酸化マンガンの充填量が不足してコンデ
ンサの直列抵抗が増大するからである。
However, the melting point of aluminum is much lower than the sintering temperature of tantalum powder or niobium powder, so
Aluminum anode leads cannot be connected by sintering. Therefore, when aluminum is used as the anode lead wire, a method is used in which the anode metal powder is chemically converted as it is without sintering, that is, a non-sintering method is used. This method requires higher compaction density than the sintering method in order to ensure good contact between the anode metal powder and the anode lead wire and to withstand mechanical shock during the capacitor manufacturing process. As a result, this non-sintered anode has a large tan δ value when forming a solid electrolytic capacitor. This is because the increased molding density causes an insufficient filling amount of manganese dioxide, which is a cathode material, and increases the series resistance of the capacitor.

アルミニユームを陽極リード線として使用する
方法に、多孔質焼結体に直接、溶接する方法もあ
るが、この方法は溶接時の加熱によつて陽極金属
が酸化汚染されてコンデンサの漏れ電流特性が劣
化する。酸化を防止するために、真空中又は不活
性ガス中で溶接することは設備および作業が複雑
になつて生産性が低下する。
Another method of using aluminum as an anode lead wire is to weld it directly to a porous sintered body, but this method oxidizes and contaminates the anode metal due to heating during welding, which deteriorates the capacitor's leakage current characteristics. do. Welding in a vacuum or in an inert gas to prevent oxidation complicates equipment and operations and reduces productivity.

本発明は前記非焼結法および溶接法のもつ欠点
を排除したこれに代る新しいアルミニユーム陽極
リード線の接続法により、タンタルやニオブ等の
希少金属の陽極多孔質焼結体にアルミニユーム陽
極リード線を接続した固体電解コンデンサの陽極
の製造法を提供することを目的とするものであ
る。以下その実施例を図面について説明する。第
1図は本発明の製造法により得られる陽極リード
端子を備えた固体電解コンデンサの陽極を示して
いる。1はタンタルやニオブ等の希少金属粉末を
成形焼結した陽極多孔質焼結体、2はその中心部
に設けたリード線の埋設孔、3はアルミニユーム
陽極リード線で、該リード線3は前記埋設孔2の
内部に圧入されたタンタル、ニオブ等の希少金属
粉末、又はアルミニユーム粉末、あるいはこれら
の混合物よりなる金属粉末4によつて多孔質焼結
体1と一体的に結合されている。以上のように本
発明においては陽極金属粉末の多孔質焼結体1に
陽極リード線3が接続されるので、前記非焼結法
による従来例のようにtanδを増大させることな
く、また、溶接法による従来例のように加熱によ
る陽極金属の酸化汚染を避けることができる。
The present invention utilizes a new aluminum anode lead wire connection method that eliminates the drawbacks of the non-sintering method and the welding method, and provides an aluminum anode lead wire to a porous sintered anode of rare metals such as tantalum and niobium. The object of the present invention is to provide a method for manufacturing an anode for a solid electrolytic capacitor connected to a solid electrolytic capacitor. Examples thereof will be described below with reference to the drawings. FIG. 1 shows an anode of a solid electrolytic capacitor equipped with an anode lead terminal obtained by the manufacturing method of the present invention. 1 is an anode porous sintered body formed by molding and sintering rare metal powder such as tantalum or niobium; 2 is a hole for embedding a lead wire in the center; 3 is an aluminum anode lead wire; It is integrally bonded to the porous sintered body 1 by a metal powder 4 made of rare metal powder such as tantalum or niobium, aluminum powder, or a mixture thereof, which is press-fitted into the buried hole 2 . As described above, in the present invention, since the anode lead wire 3 is connected to the porous sintered body 1 of the anode metal powder, there is no need to increase tan δ unlike the conventional example using the non-sintering method, and it is possible to weld It is possible to avoid oxidation contamination of the anode metal due to heating as in the conventional method.

次に本発明の陽極製造法を第2図について説明
する。多孔質焼結体1に設ける埋設孔2は金属粉
末の焼結前の成形時に金型によつて所定の形状に
あらかじめ形成される。埋設孔2は金属粉末4の
圧入を容易にするために入口を拡大したラツパ型
のものとし、金属粉末4を充填する際には振動を
与える。陽極リード線3を挿入し、金属粉末4を
埋設孔2に充填した多孔質焼結体1はウレタンゴ
ムやシリコンゴム等に弾性物よりなる弾性容器5
に収容される。6は弾性容器5と同様の弾性材料
よりなる弾性蓋である。弾性容器5と弾性蓋6と
によつて包被された多孔質焼結体1はダイス7と
上下のパンチ8,9とよりなる金型内において等
方的に加圧されて埋設孔2内の金属粉末4を圧縮
し、陽極リード線3と多孔質焼結体1とを電気的
および機械的に一体に結合する。加圧は多孔性焼
結体1を破損しない程度の圧力で行なわれ、1000
Kg/cm2以上の圧力が使用可能である。弾性容器5
および弾性蓋6は加圧の際に多孔質焼結体1が損
傷するのを防止する。
Next, the anode manufacturing method of the present invention will be explained with reference to FIG. The embedded holes 2 provided in the porous sintered body 1 are preformed into a predetermined shape using a mold during molding of the metal powder before sintering. The buried hole 2 is of a trumpet type with an enlarged entrance to facilitate press-fitting of the metal powder 4, and vibration is applied when filling the metal powder 4. The porous sintered body 1 into which the anode lead wire 3 is inserted and the buried hole 2 filled with metal powder 4 is an elastic container 5 made of an elastic material such as urethane rubber or silicone rubber.
be accommodated in. Reference numeral 6 denotes an elastic lid made of the same elastic material as the elastic container 5. The porous sintered body 1 covered by the elastic container 5 and the elastic lid 6 is isotropically pressurized in the mold consisting of the die 7 and the upper and lower punches 8 and 9, and is pressed inside the burial hole 2. The metal powder 4 is compressed, and the anode lead wire 3 and the porous sintered body 1 are electrically and mechanically bonded together. Pressure is applied at a pressure that does not damage the porous sintered body 1.
Pressures greater than Kg/ cm2 can be used. Elastic container 5
And the elastic lid 6 prevents the porous sintered body 1 from being damaged during pressurization.

以上述べたように、本発明の固体電解コンデン
サの製造法は多孔質焼結体を弾性容器に収納して
金型内に圧縮するきわめて簡単な手段によつて実
施することができるので生産性が高く量産に適し
ている。
As described above, the method for manufacturing a solid electrolytic capacitor of the present invention can be carried out by an extremely simple method of storing a porous sintered body in an elastic container and compressing it in a mold, thereby increasing productivity. It is expensive and suitable for mass production.

さらに詳述すると本体部を予め焼結しているた
めに焼結工程での不純物の揮発で得られる金属純
度の向上によるコンデンサ特性の向上、本体の機
械的強度の向上によるコンデンサ製造のための処
理工程での特性劣化の低減など、本体部が圧縮成
形されただけの未焼結電極では得られない特性が
得られる。
More specifically, since the main body is pre-sintered, impurities are volatilized during the sintering process, resulting in improved metal purity, which improves the capacitor properties, and improves the mechanical strength of the main body, which is a process used to manufacture capacitors. It provides properties that cannot be obtained with an unsintered electrode whose main body is simply compression molded, such as reduced property deterioration during the process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図:本発明の製造法により得られる陽極の
縦断面図、第2図:本発明の製造法の説明図 〔記号〕、1……多孔質焼結体、2……埋設孔、
3……陽極リード線、4……金属粉末、5……弾
性容器、6……弾性蓋、7……ダイス、8……下
パンチ、9……上パンチ。
Figure 1: Longitudinal cross-sectional view of an anode obtained by the manufacturing method of the present invention, Figure 2: Explanatory diagram of the manufacturing method of the present invention [Symbols], 1... Porous sintered body, 2... Buried hole,
3...Anode lead wire, 4...Metal powder, 5...Elastic container, 6...Elastic lid, 7...Dice, 8...Lower punch, 9...Upper punch.

Claims (1)

【特許請求の範囲】[Claims] 1 タンタル、ニオブ等の希少金属からなる陽極
多孔質焼結体に陽極リード線の埋設孔を設け、該
埋設孔に前記希少金属粉末又はアルミニユーム若
しくはこれらの混合物よりなる金属粉末と共にア
ルミニユーム陽極リード線を挿入し、これらを弾
性容器に収納して金型により外部から等方的に加
圧して前記金属粉末を圧縮することによつて前記
アルミニユーム陽極リード線を前記埋設孔に一体
的に埋設固定することを特徴とする固体電解コン
デンサ陽極の製造法。
1. An anode porous sintered body made of a rare metal such as tantalum or niobium is provided with a hole for embedding the anode lead wire, and an aluminum anode lead wire is inserted into the hole together with the rare metal powder or metal powder made of aluminum or a mixture thereof. The aluminum anode lead wire is integrally buried and fixed in the buried hole by inserting the aluminum anode lead wire into the hole, storing them in an elastic container, and isotropically applying pressure from the outside with a mold to compress the metal powder. A method for manufacturing a solid electrolytic capacitor anode characterized by:
JP9951280A 1980-07-21 1980-07-21 Anode for solid electrolytic condenser and method of producing same Granted JPS5724530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9951280A JPS5724530A (en) 1980-07-21 1980-07-21 Anode for solid electrolytic condenser and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9951280A JPS5724530A (en) 1980-07-21 1980-07-21 Anode for solid electrolytic condenser and method of producing same

Publications (2)

Publication Number Publication Date
JPS5724530A JPS5724530A (en) 1982-02-09
JPS6352765B2 true JPS6352765B2 (en) 1988-10-20

Family

ID=14249300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9951280A Granted JPS5724530A (en) 1980-07-21 1980-07-21 Anode for solid electrolytic condenser and method of producing same

Country Status (1)

Country Link
JP (1) JPS5724530A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7257636B2 (en) * 2018-10-12 2023-04-14 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JPS5724530A (en) 1982-02-09

Similar Documents

Publication Publication Date Title
US4791532A (en) Capacitor anode and method
JP4447884B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US6493214B1 (en) Solid electrolytic capacitor
KR100850844B1 (en) Solid electrolytic capacitor, anode used for solid electrolytic capacitor, and method of manufacturing the anode
US11120949B2 (en) Wire to anode connection
JPS6352765B2 (en)
JP2010165701A (en) Solid-state field capacitor element and method for manufacturing the same
JP2004014667A (en) Solid electrolytic capacitor
JPH04167512A (en) Manufacture of solid electrolytic capacitor
JP2006080266A (en) Solid electrolytic capacitor element and its manufacturing method
JP2792480B2 (en) Method for manufacturing tantalum anode body
JP3881481B2 (en) Manufacturing method for solid electrolytic capacitors
JPH09120935A (en) Tantalum solid-state electrolytic capacitor
JPH04279020A (en) Manufacture of solid electrolytic capacitor
US11929215B2 (en) Wire to anode connection
JP4247974B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0353511A (en) Manufacture of solid electrolytic capacitor
JP2008034429A (en) Solid electrolytic capacitor
JP4653643B2 (en) Element for solid electrolytic capacitor, solid electrolytic capacitor and method for producing the same
JP2005116589A (en) Molding method and molding apparatus
JPS6051254B2 (en) Manufacturing method of solid electrolytic capacitor
JP2734825B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001176756A (en) Solid electrolytic capacitor
JPS622517A (en) Manufacture of solid electrolytic capacitor
JPH10163074A (en) Method and apparatus for compact molding porous chip body for capacitor element in solid electrolytic capacitor