JPS6352694B2 - - Google Patents

Info

Publication number
JPS6352694B2
JPS6352694B2 JP57042584A JP4258482A JPS6352694B2 JP S6352694 B2 JPS6352694 B2 JP S6352694B2 JP 57042584 A JP57042584 A JP 57042584A JP 4258482 A JP4258482 A JP 4258482A JP S6352694 B2 JPS6352694 B2 JP S6352694B2
Authority
JP
Japan
Prior art keywords
polarization
optical
optical fiber
light
maintaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57042584A
Other languages
Japanese (ja)
Other versions
JPS58160848A (en
Inventor
Kyobumi Mochizuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP57042584A priority Critical patent/JPS58160848A/en
Priority to GB8307262A priority patent/GB2117132B/en
Publication of JPS58160848A publication Critical patent/JPS58160848A/en
Publication of JPS6352694B2 publication Critical patent/JPS6352694B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02024Measuring in transmission, i.e. light traverses the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J2009/0226Fibres

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

An interferometer, characterized by a polarization-maintaining optical fiber (312) for transmitting incident light while preserving planes of polarization in two perpendicularly crossing principal axes, a constant temperature bath (311) for maintaining the polarization- maintaining optical fiber at an arbitrary temperature, and combining means (313) for receiving light emitted from the polarization- maintaining optical fiber to combine components along the two perpendicularly crossing principal axes. An optical path difference is introduced between the 2 polarization states by passage through the fibre, which is proportional to the temp. of the fibre, and therefore the 2 states can be considered to follow 2 independent optical paths, the difference between which can be varied by changing the temp. of the bath. <IMAGE>

Description

【発明の詳細な説明】 本発明は光干渉計に関するものである。[Detailed description of the invention] The present invention relates to an optical interferometer.

従来光干渉計としては第1図に示すようなもの
が用いられていた。図の干渉計は通常マツハ・ツ
エンダ・干渉計と呼ばれているものである。図に
おいて、光波11はビーム・スプリツタ12によ
つて2分岐され、光波13と光波14とに別れ
る。これらの2光波はミラ15及び光遅延路1
9、ミラ16で折り返され、再びビーム・スプリ
ツタ17で合成されて合成波18となる。この干
渉計において、一方を試験光路、他方を参照光路
とする。この場合、光遅延路19の遅延時間の調
整は機械的に行なうため、高精度の測定は不可能
であつた。
Conventionally, an optical interferometer as shown in FIG. 1 has been used. The interferometer shown in the figure is commonly called a Matsuha-Zenda interferometer. In the figure, a light wave 11 is split into two by a beam splitter 12 and separated into a light wave 13 and a light wave 14. These two light waves are connected to mirror 15 and optical delay path 1.
9, is turned back by the mirror 16 and combined again by the beam splitter 17 to become a composite wave 18. In this interferometer, one side is used as a test optical path and the other side is used as a reference optical path. In this case, since the delay time of the optical delay path 19 is mechanically adjusted, highly accurate measurement is not possible.

本発明は、光フアイバを用いてその光フアイバ
の雰囲気温度を変えることによつて2光波の光路
長を高精度に変えることのできる光干渉計を提供
するものである。
The present invention provides an optical interferometer that can change the optical path length of two light waves with high precision by using an optical fiber and changing the ambient temperature of the optical fiber.

以下図面を用いて本発明を詳細に説明する。 The present invention will be explained in detail below using the drawings.

第2図に本発明の基本構成を示す。図におい
て、偏光子21によつて直線偏光にされた光波2
2は、半波長板23によつて直線偏光の状態で、
直交する2つの光軸において偏波面を保存して光
を伝送する偏波面保存光フアイバ29の直交する
2つの光軸25,26の中間に位置するように回
転される。偏波面保存光フアイバ29は2つの直
交する直線偏光波27,28が互いにモード結合
することなく独立に伝搬するように作られた光フ
アイバであり、光軸25及び光軸26を独立した
2つの光路として1本の光フアイバで作つている
と考えることができる。半波長板23によつて2
つの光軸25,26の中間に入るように回転され
た光波24は、偏波面保存光フアイバ29に入る
と光波27及び光波28に別れそれぞれ独立に伝
搬する。出力側では、検光子210によつて光波
27及び光波28の1部が合成され光波211と
なる。
FIG. 2 shows the basic configuration of the present invention. In the figure, a light wave 2 is made linearly polarized by a polarizer 21.
2 is linearly polarized by the half-wave plate 23,
The polarization-maintaining optical fiber 29 transmits light while maintaining the polarization plane on two orthogonal optical axes, and is rotated so as to be located between two orthogonal optical axes 25 and 26. The polarization maintaining optical fiber 29 is an optical fiber made so that two orthogonal linearly polarized waves 27 and 28 propagate independently without mode coupling with each other, and the optical axis 25 and the optical axis 26 are connected to two independent optical fibers. It can be considered that the optical path is made of a single optical fiber. 2 by the half-wave plate 23
The light wave 24 rotated so as to fall between the two optical axes 25 and 26 enters the polarization maintaining optical fiber 29 and is separated into a light wave 27 and a light wave 28, each of which propagates independently. On the output side, a portion of the light wave 27 and the light wave 28 are combined by the analyzer 210 to form a light wave 211 .

一方、偏波面保存光フアイバ29の直交する2
つの光軸の屈折率は互いに異なるため、2つの光
波27,28は、互いに異なる速度で伝搬するこ
とになる。このため、偏波面保存光フアイバ29
の出力側では光波27と光波28との間に位相差
が生じる。この位相差は次式で与えられる。
On the other hand, two orthogonal polarization maintaining optical fibers 29
Since the refractive indices of the two optical axes are different from each other, the two light waves 27 and 28 propagate at different speeds. For this reason, the polarization maintaining optical fiber 29
A phase difference occurs between the light waves 27 and 28 on the output side. This phase difference is given by the following equation.

=2π/λ・L・Cp・a・(T0−T) (1) ここで、λは光波24の波長、Lは偏波面保存
光フアイバ29の長さ、Cpは偏波面光フアイバ
29の光弾性定数、aは偏波面保存光フアイバ2
9のヤング率とポアソン比及び熱膨張係数に関係
する比例係数、T0はドーパントを含むシリカガ
ラスの軟化温度で約1000℃、また、Tは偏波面保
存光フアイバ29の置かれている雰囲気温度であ
る。(1)式より、光波27と光波28との位相差
は温度変化と線型の関係にあることが分る。この
ことは、温度変化が第1図における干渉計の光遅
延路19の動きに相当することを意味している。
第1図におけるビーム・スプリツタ12及びビー
ム・スプリツタ17は第2図においては、偏波面
保存光フアイバ29の入力側端面212及び検光
子210に対応している。ここで偏波面保存光フ
アイバ29を任意の温度に設定可能な恒温槽に収
納する。偏波面保存光フアイバの雰囲気温度変化
に対する検光子の出力変化の実測結果の1例を第
5図に示す。温度変化に対して光出力が正弦波状
に変化している様子が分かる。なお、破線は偏波
面保存光フアイバの長さLが短かい場合における
検光子の出力変化である。
=2π/λ・L・Cp・a・(T 0 −T) (1) Here, λ is the wavelength of the light wave 24, L is the length of the polarization-maintaining optical fiber 29, and Cp is the length of the polarization-maintaining optical fiber 29. Photoelastic constant, a is polarization maintaining optical fiber 2
9, a proportionality coefficient related to Young's modulus, Poisson's ratio, and thermal expansion coefficient, T 0 is the softening temperature of silica glass containing a dopant, which is approximately 1000°C, and T is the ambient temperature in which the polarization preserving optical fiber 29 is placed. It is. From equation (1), it can be seen that the phase difference between the light waves 27 and 28 has a linear relationship with the temperature change. This means that the temperature change corresponds to the movement of the optical delay path 19 of the interferometer in FIG.
The beam splitter 12 and beam splitter 17 in FIG. 1 correspond to the input end face 212 of the polarization-maintaining optical fiber 29 and the analyzer 210 in FIG. Here, the polarization preserving optical fiber 29 is housed in a constant temperature bath that can be set to any temperature. FIG. 5 shows an example of actual measurement results of changes in the output of the analyzer with respect to changes in the ambient temperature of the polarization preserving optical fiber. It can be seen that the optical output changes sinusoidally in response to temperature changes. Note that the broken line shows the change in the output of the analyzer when the length L of the polarization-maintaining optical fiber is short.

本発明の実施例を第3図に示した。図におい
て、光波31はビーム・スプリツタ32によつて
2分岐され、光波33、光波34に別れる。この
2光波は各々が直線偏光波であるときは半波長板
によりそうでないときは偏光子35,36および
半波長板38,39によつて互いに直交する直線
偏光波になり、ビーム・スプリツタ37によつて
再び合成される。直交した2光波の合成波316
は半波長板310によつて偏波面保存光フアイバ
312の直交する2軸に合せられ、偏波面保存光
フアイバ312を伝搬する。直交した2光波は、
検光子313により検光子313の軸方向成分だ
けが出力される。この干渉計の遅延路としては、
先に述べたように偏波面保存光フアイバ312の
温度を設定温度可変の恒温槽311の雰囲気温度
を変えることで作られる。この変化量は、偏波面
保存光フアイバの単位長さ、単位温度変化あたり
光波31がHe―Neレーザ(波長0.6328μm)の
場合0.1μm/℃・m以下にすることは容易で連続
的に変化することができる。
An embodiment of the invention is shown in FIG. In the figure, a light wave 31 is split into two by a beam splitter 32 and separated into a light wave 33 and a light wave 34. When these two light waves are linearly polarized waves, they are turned into mutually orthogonal linearly polarized waves by a half-wave plate; otherwise, they are turned into mutually orthogonal linearly polarized waves by polarizers 35 and 36 and half-wave plates 38 and 39, and then sent to a beam splitter 37. It is then synthesized again. Combined wave 316 of two orthogonal light waves
is aligned with two orthogonal axes of the polarization-maintaining optical fiber 312 by the half-wave plate 310, and propagates through the polarization-maintaining optical fiber 312. Two orthogonal light waves are
The analyzer 313 outputs only the axial component of the analyzer 313. The delay path of this interferometer is
As mentioned above, the temperature of the polarization preserving optical fiber 312 is made by changing the ambient temperature of the constant temperature bath 311 whose set temperature is variable. If the light wave 31 is a He-Ne laser (wavelength 0.6328 μm), this amount of change can be easily reduced to less than 0.1 μm/℃・m per unit length and unit temperature change of the polarization-maintaining optical fiber, and it changes continuously. can do.

以上の説明においては、偏波面保存光フアイバ
とマツハ・ツエンダ・干渉計との組合せのものに
ついてのみあつかつたが、その他の干渉計と偏波
面保存光フアイバとを組合せ、上述したものと同
様な干渉計を作ることが可能である。この干渉計
において、一方を試験光路、他方を参照光路とし
て用いれば、物質の屈折率測定または光源の可干
渉度の測定等を高精度に測定することができる。
物質の屈折率測定の場合には、例えば、第3図に
おいて、光波33が伝搬する光路(ビーム・スプ
リツタ32―半波長板38―偏光子35―ビー
ム・スプリツタ37間)内に屈折率を測定すべき
物質を配置して、試験光路とし、光波34が伝搬
する光路(ビーム・スプリツタ32―偏光子36
―半波長板39―ビーム・スプリツタ37間)内
に屈折率が既知の物質(又は空間)を配置して参
照光路とすると、物質の屈折率nによつて伝搬速
度(v=c/n,但しcは真空中における光速)
が異なるので伝搬速度vの差(位相差)から、屈
折率を得ることができる。また、光源の可干渉度
の測定の際には、第3図の恒温槽311の温度を
変え、受光器314からの出力の最大値(Inax
と最小値(Inio)とから、次式によつて求められ
る。
In the above explanation, only the combination of a polarization-maintaining optical fiber and a Matsuha-Zehnder interferometer has been discussed, but other interferometers and polarization-maintaining optical fibers can be combined to be used in combinations similar to those described above. It is possible to make an interferometer. In this interferometer, if one side is used as a test optical path and the other as a reference optical path, it is possible to measure the refractive index of a substance or the coherence of a light source with high precision.
In the case of measuring the refractive index of a substance, for example, in FIG. 3, the refractive index is measured within the optical path in which the light wave 33 propagates (between the beam splitter 32 - half-wave plate 38 - polarizer 35 - beam splitter 37). The material to be tested is arranged as a test optical path, and the optical path along which the light wave 34 propagates (beam splitter 32 - polarizer 36
If a material (or space) with a known refractive index is placed in the space (between the half-wave plate 39 and the beam splitter 37) as a reference optical path, the propagation velocity (v=c/n, However, c is the speed of light in vacuum)
Since they are different, the refractive index can be obtained from the difference in propagation velocity v (phase difference). In addition, when measuring the coherence of the light source, the temperature of the thermostatic chamber 311 shown in FIG .
and the minimum value (I nio ), using the following equation.

可干渉度=Inax−Inio/Inax+Inio ……(2) なお、位相差の測定方法として、受光器314
を用いて可干渉度変化から求める方法や、受光器
314の代りにスクリーンを置き干渉縞の変位量
から求める方法等がある。
Coherence = I nax - I nio / I nax + I nio ... (2) As a method of measuring the phase difference, the optical receiver 314
There is a method of determining from the change in coherence using the method, a method of placing a screen in place of the light receiver 314 and determining from the amount of displacement of interference fringes, etc.

第3図においてビーム・スプリツタ32からビ
ーム・スプリツタ37の間で構成される干渉計の
一部は第4図のように構成することも可能であ
る。第4図において、41及び42は偏光子及び
半波長板、または、偏光子及び1/4波長板の組合
せで、前者の場合には半波長板42の出力光は偏
光ビーム・スプリツタ43の光軸に対して45゜傾
くように調整され、後者の場合には、1/4波長板
42の出力は円偏光に調整される。44,45は
ミラであり、46は偏光ビーム・スプリツタであ
る。
A part of the interferometer constructed between beam splitter 32 and beam splitter 37 in FIG. 3 can also be constructed as shown in FIG. 4. In FIG. 4, 41 and 42 are a combination of a polarizer and a half-wave plate, or a polarizer and a quarter-wave plate; in the former case, the output light of the half-wave plate 42 is the light of the polarizing beam splitter 43. In the latter case, the output of the quarter-wave plate 42 is adjusted to be circularly polarized. 44 and 45 are mirrors, and 46 is a polarizing beam splitter.

以上のように、本発明は偏波面保存光フアイバ
の直交する2つの伝送路を干渉計の2つの光路ま
たは光路の1部として用い、この2つの光路長差
が温度によつて高精度に変えられることを利用し
たもので、高精度に動く光遅延路を有する光フア
イバ干渉計を実現するものである。
As described above, the present invention uses two orthogonal transmission paths of a polarization-maintaining optical fiber as two optical paths or a part of an optical path of an interferometer, and changes the length difference between the two optical paths with high precision depending on the temperature. The purpose is to realize an optical fiber interferometer with an optical delay path that moves with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光干渉計の1例を示す構成系統
図、第2図は本発明の基本的構成を示す斜視図、
第3図は本発明の実施例を示す構成系統図、第4
図は第3図の実施例の一部変形例を示す構成系統
図、第5図は本発明に用いる偏波面保存光フアイ
バの雰囲気温度変化に対する検光子の出力変化を
示す特性例図である。 11,13,14…光波、12,17…ビー
ム・スプリツタ、15,16…ミラ、18…合成
波、19…光遅延路、21…偏光子、22,2
4,27,28…光波、23…半波長板、25,
26…光軸、29…偏波面保存光フアイバ、21
0…検光子、211…光波、212…入力側端
面、31,33,34…光波、32,37…ビー
ム・スプリツタ、35,36…偏光子、38,3
9,310…半波長板、311…恒温槽、312
…偏波面保存光フアイバ、313…検光子、31
4…受光器、316…合成波、41…偏光子、4
2…半波長板又は1/4波長板、43…偏光ビー
ム・スプリツタ、44,45…ミラ、46…ビー
ム・スプリツタ。
FIG. 1 is a structural diagram showing an example of a conventional optical interferometer, and FIG. 2 is a perspective view showing the basic structure of the present invention.
Fig. 3 is a configuration system diagram showing an embodiment of the present invention;
This figure is a structural diagram showing a partial modification of the embodiment shown in FIG. 3, and FIG. 5 is a characteristic diagram showing changes in the output of the analyzer with respect to changes in the ambient temperature of the polarization-maintaining optical fiber used in the present invention. 11, 13, 14... Light wave, 12, 17... Beam splitter, 15, 16... Mira, 18... Combined wave, 19... Optical delay path, 21... Polarizer, 22, 2
4, 27, 28...light wave, 23...half wave plate, 25,
26... Optical axis, 29... Polarization maintaining optical fiber, 21
0... Analyzer, 211... Light wave, 212... Input side end face, 31, 33, 34... Light wave, 32, 37... Beam splitter, 35, 36... Polarizer, 38, 3
9,310...Half-wave plate, 311...Thermostat, 312
...Polarization preserving optical fiber, 313...Analyzer, 31
4... Light receiver, 316... Combined wave, 41... Polarizer, 4
2... Half-wave plate or quarter-wave plate, 43... Polarizing beam splitter, 44, 45... Mira, 46... Beam splitter.

Claims (1)

【特許請求の範囲】[Claims] 1 互いに直交する2つの光軸において偏波面を
保存して入射光を伝送する偏波面保存光フアイバ
と、該偏波面保存光フアイバを任意所望の温度に
保つ恒温槽と、前記偏波面保存光フアイバの出射
光を入射して前記直交する2つの光軸に沿う成分
を合成する合成手段とを備え、前記直交する2つ
の光軸を2つの独立した光路とし前記恒温槽内の
雰囲気温度変化により前記光路間の光路長差を変
えるように構成されたことを特徴とする光干渉
計。
1. A polarization-preserving optical fiber that transmits incident light while preserving the polarization plane on two mutually orthogonal optical axes, a constant temperature chamber that maintains the polarization-preserving optical fiber at any desired temperature, and the polarization-preserving optical fiber. and a synthesizing means for inputting the emitted light and synthesizing the components along the two orthogonal optical axes, the two orthogonal optical axes being made into two independent optical paths, and the two orthogonal optical axes being made into two independent optical paths, An optical interferometer characterized by being configured to change the optical path length difference between optical paths.
JP57042584A 1982-03-19 1982-03-19 Photointerferometer Granted JPS58160848A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57042584A JPS58160848A (en) 1982-03-19 1982-03-19 Photointerferometer
GB8307262A GB2117132B (en) 1982-03-19 1983-03-16 Interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57042584A JPS58160848A (en) 1982-03-19 1982-03-19 Photointerferometer

Publications (2)

Publication Number Publication Date
JPS58160848A JPS58160848A (en) 1983-09-24
JPS6352694B2 true JPS6352694B2 (en) 1988-10-19

Family

ID=12640111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57042584A Granted JPS58160848A (en) 1982-03-19 1982-03-19 Photointerferometer

Country Status (2)

Country Link
JP (1) JPS58160848A (en)
GB (1) GB2117132B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3578211D1 (en) * 1984-06-30 1990-07-19 Kent Scient Ind Projects INTERFEROMETRIC SENSOR.
US4852106A (en) * 1987-02-19 1989-07-25 Brother Kogyo Kabushiki Kaisha Optical system for producing controlled beat frequency
JP2507790B2 (en) * 1988-12-20 1996-06-19 富士通株式会社 Semiconductor laser FM modulation characteristic measuring device
JP2802390B2 (en) * 1989-06-02 1998-09-24 日本電信電話株式会社 Optical frequency modulation characteristics measurement device
JPH0359428A (en) * 1989-07-28 1991-03-14 Fujitsu Ltd Method and device for measuring frequency modulation characteristic of semiconductor laser
FR2697336B1 (en) * 1992-10-28 1994-12-16 Inst Francais Du Petrole Method and device for differential measurement of refractive indices and associated use.
DE102005041491A1 (en) * 2005-09-01 2007-03-08 Robert Bosch Gmbh Interferometric measuring device
KR101358091B1 (en) * 2012-01-11 2014-02-06 주식회사 고영테크놀러지 An Interferometer using asymmetric polarization and Optical Apparatus using the Interferometer
CN104330162A (en) * 2014-11-17 2015-02-04 中国科学院光电研究院 Portable Fourier transformation spectrograph

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1175855A (en) * 1966-08-25 1970-01-01 American Optical Corp Improvements in or relating to information processors

Also Published As

Publication number Publication date
GB2117132A (en) 1983-10-05
JPS58160848A (en) 1983-09-24
GB8307262D0 (en) 1983-04-20
GB2117132B (en) 1986-01-22

Similar Documents

Publication Publication Date Title
JP4316691B2 (en) Device for measuring excursion
CN108592800B (en) A kind of laser heterodyne interference measuring device and method based on plane mirror reflection
CN101871788B (en) Distributed polarization crosstalk method and device for measuring polarization-preserving fiber and birefringent medium
WO2006052816A2 (en) Optical connection for interferometry
US7426039B2 (en) Optically balanced instrument for high accuracy measurement of dimensional change
JP4067427B2 (en) Orthogonal circularly polarized light transmission in fiber
Yu et al. Distributed measurement of polarization characteristics for a multifunctional integrated optical chip: A review
JPS6352694B2 (en)
JPH0342622B2 (en)
JPS61219803A (en) Apparatus for measuring physical quantity
JP2003083711A (en) Interferometer and beam coupling method
Bock et al. Characterization of highly birefringent optical fibers using interferometric techniques
WO2016127323A1 (en) Laser-based sensor
US6495999B1 (en) Method and device for measuring a magnetic field with the aid of the faraday effect
JPH0440649B2 (en)
JPH0739971B2 (en) Interferometric wavelength measuring device
JPH0755571A (en) Plarization dispersion measuring instrument
JP2760830B2 (en) Optical measuring device for displacement
CN204535727U (en) A kind of ring laser sensor
JP2751599B2 (en) Hikaribaiyairo
JPH0617851B2 (en) Method and apparatus for measuring mode birefringence of birefringent fiber
US20030231390A1 (en) Athermal delay line
JPH0361898B2 (en)
US20060279740A1 (en) Optically balanced instrument for high accuracy measurement of dimensional change
JPH0338555B2 (en)