JPS6350726A - Method for measuring flow rate of abrasive material for shot blast - Google Patents

Method for measuring flow rate of abrasive material for shot blast

Info

Publication number
JPS6350726A
JPS6350726A JP19633686A JP19633686A JPS6350726A JP S6350726 A JPS6350726 A JP S6350726A JP 19633686 A JP19633686 A JP 19633686A JP 19633686 A JP19633686 A JP 19633686A JP S6350726 A JPS6350726 A JP S6350726A
Authority
JP
Japan
Prior art keywords
abrasive material
abrasive
mixing ratio
abrasive materials
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19633686A
Other languages
Japanese (ja)
Inventor
Teiichi Higuchi
樋口 禎一
Mitsuru Funahashi
舟橋 充
Hiroshi Tamaoki
洋 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP19633686A priority Critical patent/JPS6350726A/en
Publication of JPS6350726A publication Critical patent/JPS6350726A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To quantitatively measure shot quantity, by allowing a metal abrasive material to pass between opposed electrodes to which AC voltage is applied while setting the mixing ratio of air and the abrasive material to 0.7 or more. CONSTITUTION:AC voltage is applied to two opposed electrodes 2, 3 constituting a condenser 1 and metal abrasive materials (shots or grids) 4 pass between the opposed electrodes 2, 3 while being carried by compressed air. Herein, when the mixing ratio of compressed air and the abrasive materials 4 is set to 0.7 or more, spaces are formed between abrasive materials 4 and the abrasive materials 4 are considered to become non-conductive as a whole. When this flowable mixture of compressed air and the abrasive materials 4 is allowed to pass between the opposed electrodes 2, 3 to which AC voltage is applied, the electrostatic capacity corresponding to the mixing ratio of compressed air and the abrasive materials 4 is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空気との混合流動体として移送されるショツ
トブラスト用研削材の流量測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for measuring the flow rate of shot blasting abrasive material transported as a mixed fluid with air.

従来の技術 従来、鋳鉄管などの鋳造品を形成した場合、鋳造品の表
面処理法としてショツトブラスト法が用いられている。
BACKGROUND ART Conventionally, when a cast product such as a cast iron pipe is formed, a shot blasting method has been used as a surface treatment method for the cast product.

すなわち、金B製研削材を、加圧、  空気との混合流
動体として鋳造品の表面に噴射することが行なわれてい
る。
That is, gold B abrasive material is pressurized and sprayed as a mixed fluid with air onto the surface of a cast product.

発明が解決しようとする問題点 前記ショツトブラスト法では、加圧空気と研削材の混合
比が最適値を越えると、脈動現象が発生し、プラスト効
果が低減する。しかしながら、このような脈動現象を肉
眼視することは非常にむずかしく、結果として、表面処
理の研削精度がバラつきやすい。
Problems to be Solved by the Invention In the above-mentioned shot blasting method, when the mixing ratio of pressurized air and abrasive material exceeds an optimum value, a pulsation phenomenon occurs and the blasting effect is reduced. However, it is very difficult to observe such a pulsation phenomenon with the naked eye, and as a result, the grinding accuracy of surface treatment tends to vary.

また、ショツトブラスト、法を実施するときに、前記最
適植以下でのショットが望ましい場合があり、その際に
は、ショット量を定量的に測定すると共に、一定量を安
定して供給しなければならない。しかし、従来はショッ
ト量を定量的に測定することはできなかった。さらに、
このようにショット量を適正に制御できないため、ブラ
スト装置の研削材詰りによるトラブルも発生していた。
In addition, when carrying out shot blasting, it may be desirable to shoot at less than the above-mentioned optimum seeding rate. It won't happen. However, conventionally it has not been possible to quantitatively measure the amount of shots. moreover,
Since the shot amount cannot be properly controlled in this way, troubles have also occurred due to clogging of the abrasive material in the blasting device.

本発明は前記のような従来の問題点を解決するため、シ
ョット量の定量的な測定を可能とするショツトブラスト
用研削材の流量測定方法を提供することを目的とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned conventional problems, an object of the present invention is to provide a method for measuring the flow rate of an abrasive material for shot blasting, which makes it possible to quantitatively measure the amount of shots.

問題点を解決するための手段 上記問題点を解決するため、本光明は、金属製研削材を
空気:研削材=0.7以上:1の混合比として、交流電
圧が印加された対向電極間を通過させるものである。
Means for Solving the Problems In order to solve the above problems, this Komei uses a metal abrasive material at a mixing ratio of air:abrasive material = 0.7 or more: 1, between opposing electrodes to which an alternating current voltage is applied. It allows the passage of

作用 このようにすると、研削材自体は導体であるが、空気:
研削材−0,7以上:1の混合比では、研削材と研削材
の間に空間ができ、研削材全体として導体でなくなると
考えられる。このような空気と研削材の混合流動体を、
交流電圧が印加された対向電極間を通過させると、空気
と研削材の混合比に対応した静電容量が誘発されるので
、その静電容量から研削材の通過吊すなわち流出が測定
できる。
Effect In this way, the abrasive itself is a conductor, but the air:
At a mixing ratio of abrasive material -0.7 or more: 1, a space is created between the abrasive materials, and it is considered that the abrasive material as a whole ceases to be a conductor. This mixed fluid of air and abrasive material is
When the abrasive material is passed between opposing electrodes to which an alternating current voltage is applied, a capacitance corresponding to the mixing ratio of air and abrasive material is induced, and from this capacitance, the passing suspension or outflow of the abrasive material can be measured.

実施例 第1図は、本発明のショツトブラスト用研削材の流出測
定方法の原理図である。
Embodiment FIG. 1 is a diagram showing the principle of the method for measuring the outflow of abrasive material for shot blasting according to the present invention.

この図において、コンデンサ1を構成する2枚の対向電
極2,3には、交流電圧が印加される。
In this figure, an alternating current voltage is applied to two opposing electrodes 2 and 3 that constitute a capacitor 1.

このような対向電極2,3の間を、金属製研削材くショ
ットまたはグリッド)4が加圧空気にのつて通過する。
A metal abrasive shot or grid 4 is passed between these opposing electrodes 2 and 3 in pressurized air.

ここで、加圧空気と研削材4との混合比を、空気:研削
材−0,7以上=1とすると、研削材4と研削材4の間
に空間ができ、研削材全体として、導体でなくなると考
えられる。このような加圧空気と研削材4との混合流動
体を、交流電圧が印加された対向電極2,3間に通過さ
せると、加圧空気と研削材4との混合比に対応した静電
容量が得られる。
Here, if the mixing ratio of the pressurized air and the abrasive material 4 is set to air:abrasive material -0. It is thought that it will disappear. When such a mixed fluid of pressurized air and abrasive material 4 is passed between opposing electrodes 2 and 3 to which an alternating current voltage is applied, an electrostatic charge corresponding to the mixture ratio of pressurized air and abrasive material 4 is generated. Capacity is obtained.

第2図は、静電容量(μF)と加圧空気:研削材との関
係を示す線図である。これより、加圧空気:研削材=0
,7以上:1の混合比では、研削材(ここではグリッド
)の粒径が変わっても、10φ以下の粒径ならば、その
ときの加圧空気と研削材の混合比に対応した静電容量を
誘発させることができる。
FIG. 2 is a diagram showing the relationship between capacitance (μF) and pressurized air: abrasive material. From this, pressurized air: abrasive material = 0
, at a mixing ratio of 7 or more: 1, even if the particle size of the abrasive material (here, the grid) changes, if the particle size is 10φ or less, the electrostatic charge corresponding to the mixture ratio of pressurized air and abrasive material at that time will be reduced. Capacity can be induced.

しかも、上記数値以上にあっては、数値が変化すれば静
電容量も変化する。そこで、この静電容量の変化を測定
して示した第3図の線図より、単位時間当たりのショッ
ト吊の計測を行うことができる。
Furthermore, if the value exceeds the above value, the capacitance also changes as the value changes. Therefore, from the diagram of FIG. 3 which shows the measured changes in capacitance, it is possible to measure the shot suspension per unit time.

第4図は、本発明方法の第1の適用例を示す概略構成図
である。
FIG. 4 is a schematic diagram showing a first application example of the method of the present invention.

この図にJ3いて、ショツトブラスト装置5には、鋳造
品など、表面処理を必要とするワークが装入される。そ
の後、研削材供給通路6からショツトブラスト装置5に
研削材が加圧空気にのって連続的に供給される。そして
、ワークの研削に用いられた研削材は排出ホッパ7に流
出し、第1図に示すものと同様の電極1を通過して、回
収用ベルトコンベア8上に落下する。
In this figure, at J3, a workpiece that requires surface treatment, such as a cast product, is charged into the shot blasting device 5. Thereafter, the abrasive is continuously supplied from the abrasive supply passage 6 to the shot blasting device 5 using pressurized air. The abrasive material used for grinding the workpiece flows out into the discharge hopper 7, passes through an electrode 1 similar to that shown in FIG. 1, and falls onto a recovery belt conveyor 8.

一方、排出ホッパ7からの研削月流吊に対応して変化す
るコンデンサ1の静電容量(よ、変換器9により電流信
号として記録計10に入力され、その静電容量に対応し
た研削材流Bが記録される。そして、研削材流出の異常
があった場合は、記録計10に接続された警報器11か
ら警報が発ゼられる。
On the other hand, the capacitance of the capacitor 1 that changes in response to the grinding flow from the discharge hopper 7 is input to the recorder 10 as a current signal by the converter 9, and the abrasive flow corresponding to the capacitance is inputted to the recorder 10 as a current signal by the converter 9. B is recorded. If there is an abnormality in the outflow of abrasive material, an alarm is issued from the alarm device 11 connected to the recorder 10.

第5図は、木光明方法の第2の適用例を示づものである
FIG. 5 shows a second application example of the Kikomei method.

この例にJ5いて、研削材は、第1の適用例と同様に、
研削材供給通路6からショツトブラスト装置5、排出ホ
ッパ7およびコンデンサ1を順次通過し、回収用ベルト
コンベア8に落下ける。
In this example, the abrasive material is J5, as in the first application example.
From the abrasive supply passage 6, the abrasive passes through the shot blasting device 5, the discharge hopper 7, and the condenser 1 in order, and falls onto the recovery belt conveyor 8.

ここで、第1の適用例とは次の点において5”シなる。Here, the first application example is 5" in the following points.

すなわち、コンデンサ1の静電容量は変換器9を介して
コンピュータ12に入力され、この入力信号としてのア
ナログ信号(変換器からの4〜20 nAの電流信号)
の積算処理により、ショットプラス1−装置5からの研
削材吐出量が9出されるとともに、それが表示装置13
により表示される。
That is, the capacitance of the capacitor 1 is input to the computer 12 via the converter 9, and an analog signal (4-20 nA current signal from the converter) is input as this input signal.
Through the integration process, the amount of abrasive discharged from the Shot Plus 1-device 5 is 9, and it is displayed on the display device 13.
Displayed by

したがって、作業者によって研削材供給量を監視づるこ
とができる。
Therefore, the amount of abrasive supplied can be monitored by the operator.

また、上記表示と同時に、上記積算処理により研削材供
給通路6に設けられた電磁量開弁1・1の開度が制御さ
れることにより、最適プラス1−条flが維持される。
Simultaneously with the above display, the opening degree of the electromagnetic opening valve 1.1 provided in the abrasive supply passage 6 is controlled by the integration process, thereby maintaining the optimal plus 1-thread fl.

さらに、このような構成にtjいて、研削材供給通路6
の中に第1図で述べたものと同様のコンデン→)−1A
を設け、このコンデンサ1Aからの信号を前記コンピュ
ータ12に入力し、ここでアナログ信号の基準値と比較
演算するように構成することができる。このようにする
と、両コンデンサ1゜1Aからの出力の差によりワーク
の被研削吊を測定でき、合理的な研削を行なうことがで
きる。
Furthermore, in such a configuration, the abrasive supply passage 6
Condensate similar to that described in Figure 1 →)-1A
The signal from the capacitor 1A can be inputted to the computer 12, where it can be compared and calculated with a reference value of the analog signal. In this way, the suspension of the workpiece to be ground can be measured based on the difference in the outputs from both capacitors 1.degree. 1A, and rational grinding can be performed.

発明の効果 以上述べたように本発明のショツトブラスト用研削材の
流量測定方法によれば、金属製研削材を空気:研削材=
0.7以上:1の混合比として、交流電圧が印加された
対向電極間を通過させることにより、空気と研削材の混
合比に対応した静電容量を誘発させるので、その静電容
量から研削材の流量を知ることかできる。
Effects of the Invention As described above, according to the method for measuring the flow rate of abrasive material for shot blasting of the present invention, the metal abrasive material is mixed with air: abrasive material =
At a mixing ratio of 0.7 or more: 1, by passing an AC voltage between opposing electrodes, a capacitance corresponding to the mixing ratio of air and abrasive material is induced, so that grinding can be performed from that capacitance. It is possible to know the flow rate of material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のショツトブラスト用研削材の流ffl
測定方法の原理図、第2図は静電容量と空気:研削材の
比との関係を示す線図、第3図はスヂールグリッド実流
量と静電容量との関係を示′rj線図、第4図は本発明
の第1の適用例を示すII!を略椙成図、第5図は本発
明の第2の適用例を示す概略栴成図である。 2.3・・・対向電極、4・・・金属製研削口。 代理人   森  本  義  弘 第1図 ↓ 第2図 mfi’# : MII’J7t (Hjitt)第2
図 tr:(p電gt例変乞)ソFノ 第d図
Figure 1 shows the flow of the abrasive material for shot blasting of the present invention.
Figure 2 is a diagram showing the relationship between capacitance and the air:abrasive ratio. Figure 3 is a 'rj diagram showing the relationship between the actual flow rate of Suzuru grid and capacitance. FIG. 4 shows the first application example of the present invention II! FIG. 5 is a schematic drawing showing a second application example of the present invention. 2.3...Counter electrode, 4...Metal grinding port. Agent Yoshihiro Morimoto Figure 1 ↓ Figure 2 mfi'#: MII'J7t (Hjitt) 2nd
Figure tr: (p electric gt example change request) SoF No. d figure

Claims (1)

【特許請求の範囲】[Claims] 1、金属製研削材を空気:研削材=0.7以上:1の混
合比として、交流電圧が印加された対向電極間を通過さ
せることを特徴とするショットブラスト用研削材の流量
測定方法。
1. A method for measuring the flow rate of an abrasive for shot blasting, characterized in that the metal abrasive is passed between opposing electrodes to which an alternating current voltage is applied at a mixing ratio of air:abrasive of 0.7 or more:1.
JP19633686A 1986-08-20 1986-08-20 Method for measuring flow rate of abrasive material for shot blast Pending JPS6350726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19633686A JPS6350726A (en) 1986-08-20 1986-08-20 Method for measuring flow rate of abrasive material for shot blast

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19633686A JPS6350726A (en) 1986-08-20 1986-08-20 Method for measuring flow rate of abrasive material for shot blast

Publications (1)

Publication Number Publication Date
JPS6350726A true JPS6350726A (en) 1988-03-03

Family

ID=16356135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19633686A Pending JPS6350726A (en) 1986-08-20 1986-08-20 Method for measuring flow rate of abrasive material for shot blast

Country Status (1)

Country Link
JP (1) JPS6350726A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948367A (en) * 1996-05-09 1999-09-07 Micafil Vakuumtechnk Ag Device for conveying metered quantities of at least two free-flowing components of a reactive compound
JP2000046611A (en) * 1998-07-29 2000-02-18 Kawata Mfg Co Ltd Weighing equipment for powder and granular material
US11162151B2 (en) 2016-11-09 2021-11-02 Kubota Corporation Tube body that is to be used in high-temperature atmosphere and method for forming metal oxide layer on inner surface of tube body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948367A (en) * 1996-05-09 1999-09-07 Micafil Vakuumtechnk Ag Device for conveying metered quantities of at least two free-flowing components of a reactive compound
JP2000046611A (en) * 1998-07-29 2000-02-18 Kawata Mfg Co Ltd Weighing equipment for powder and granular material
US11162151B2 (en) 2016-11-09 2021-11-02 Kubota Corporation Tube body that is to be used in high-temperature atmosphere and method for forming metal oxide layer on inner surface of tube body

Similar Documents

Publication Publication Date Title
JPS6411662A (en) Method and device for controlling quantity of powder in powder scattering coating
Nedderman et al. The effect of interstitial air pressure gradients on the discharge from bins
CN1058927A (en) The improvement of sand blasting unit
JPS6350726A (en) Method for measuring flow rate of abrasive material for shot blast
US3358938A (en) Method of control of particle size utilizing viscosity
GB2121542A (en) A procedure for measuring the throughput volume or mass or the grain size of divided products, and apparatus for putting this procedure into effect
Smith et al. Spouting of mixed particle‐size beds
JPS57209743A (en) Method and device for treating recovered sand
EP0344618B1 (en) Gas-sampling device
JPS6434448A (en) Operational control of vertical roller mill
DE4301646C2 (en) Device for regenerating foundry sand
SU1608499A1 (en) Method of measuring dispersed composition of course-dispersed aerosol
Courtney et al. Dust deposition in coal mine airways
KR100213336B1 (en) Method and apparatus for measuring flow dust of fine iron ore
JPS60184641A (en) Method for measuring air permeability of raw material on pallet of sintering machine
CN204769043U (en) Forge burnt dust fall system of processing in back
CN104815737B (en) Calcined coke depositing dust system of processing
JPH067322Y2 (en) Powder flow rate measuring device
KR101130467B1 (en) Monitoring system for efficient operation in a electrical dust collector
AT500674B1 (en) DEVICE FOR MEASURING THE FLOW SPEED OF A MASS FLOW
Pascot et al. Discharge of a granular silo under mechanical vibrations
JPH01316613A (en) Method for measuring flow rate transporting particle
DD264289A1 (en) DEVICE FOR MEASURING AND MONITORING DUST-GAS MIXTURES
JP4134680B2 (en) Abnormality detection method for mass transfer system
SU891548A1 (en) Method and apparatus for automatic monitoring of delivery of material from hopper