JPS6350435A - Manufacture of tough titanium-base sintered hard alloy - Google Patents

Manufacture of tough titanium-base sintered hard alloy

Info

Publication number
JPS6350435A
JPS6350435A JP61193822A JP19382286A JPS6350435A JP S6350435 A JPS6350435 A JP S6350435A JP 61193822 A JP61193822 A JP 61193822A JP 19382286 A JP19382286 A JP 19382286A JP S6350435 A JPS6350435 A JP S6350435A
Authority
JP
Japan
Prior art keywords
titanium
tantalum
niobium
oxide
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61193822A
Other languages
Japanese (ja)
Inventor
Masaaki Tobioka
正明 飛岡
Kazutaka Isobe
和孝 磯部
Yasuhiro Shimizu
靖弘 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61193822A priority Critical patent/JPS6350435A/en
Publication of JPS6350435A publication Critical patent/JPS6350435A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a tough titanium-base sintered hard alloy having hard dispersed grains, by preparing a perfect fine double carbonitride of titanium, molybdenum and/or tungsten, and tantalum and/or niobium, by adding a metal powder of Fe, etc., to the above, by mixing them, and then by subjecting the resulting powder mixture to press compacting and sintering. CONSTITUTION:A carbon powder is added to titanium oxide and tantalum oxide, which is heated at 1,400-2,500 deg.C in a nitrogen stream. Then WC powder is added to the resulting double carbonitride (Ti, Ta) (C, N) and they are mixed, which is heated to 1,400-2,500 deg.C in a nitrogen stream to be formed into a double carbonitride of titanium, tantalum, and W. Subsequently, a powder of one or more metals selected from Fe, Co, Ni, etc., is added as binding metal to the above by 3.0-40.0wt%. These powders are further mixed and then is subjected to press compacting and sintering. Besides the above, another method using TiO2 and Nb2O5 (niobium oxide) can be applied. In this way, the tough titanium-base hard sintered alloy having extremely fine hard dispersed grains can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明はチタン基焼結硬質合金の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing a titanium-based sintered hard alloy.

(従来技術) チタン基焼結硬質合金(以下サーメットと絡称す)切削
工具は、従来の炭化タングステン基焼結硬質合金に比べ
、被削材たる鉄との耐溶着性にすぐれていることから仕
上げ切削の分野で広く実用に供している。しかしながら
耐欠損性、特に討熱疲労欠損性に欠けるため、倣い旋削
などの、熱疲労が厳しい環境下では、はとんど実用に耐
えなかった。そのためサーメットにTiN、TaNなど
の窒rヒ物を添加し、この窒化物の焼結中の粒成長抑制
効果を利用することばよって、硬質分散相がきわめて微
細なサーメットをうる゛ことKよってサーメットの耐欠
損性を改善することが提案されている(特公昭56−5
1201号、特公昭55−14856号など)。
(Prior art) Titanium-based sintered hard alloy (hereinafter referred to as cermet) cutting tools have superior adhesion resistance to iron, the workpiece material, compared to conventional tungsten carbide-based sintered hard alloys, so they can be finished easily. It is widely used in the field of cutting. However, because it lacks fracture resistance, especially thermal fatigue fracture resistance, it could hardly be put to practical use in environments with severe thermal fatigue, such as copy turning. Therefore, by adding nitrides such as TiN and TaN to cermets and utilizing the grain growth suppressing effect of these nitrides during sintering, it is possible to obtain cermets with extremely fine hard dispersed phases. It has been proposed to improve fracture resistance (Japanese Patent Publication No. 56-5
1201, Special Publication No. 55-14856, etc.).

しかし乍ら特公昭56−51201号には、サーメット
に窒化物を添加する方法として金属粉末および金属炭化
物の混合物を1400℃ないし1800℃の温度にて窒
素ガスと反応させることにより、炭窒化物を生成し、こ
の炭窒化物を粉砕したものに結合金属粉末を添加混合し
たのち、型押し成形、焼結することが開示されている。
However, Japanese Patent Publication No. 56-51201 describes a method for adding nitrides to cermet by reacting a mixture of metal powder and metal carbide with nitrogen gas at a temperature of 1400°C to 1800°C. It is disclosed that a bonding metal powder is added to and mixed with the generated carbonitride and then pulverized, followed by stamping and sintering.

しかしながらこの方法によって炭窒化物をえるのは金属
粉末および金属炭化物の窒化および固溶の反応速度がき
わめておそいことから、実際には10時間以上の長時間
1400℃ないし1800℃の高温で処理する必要があ
り工業生産上きわめて困難であった。
However, in order to obtain carbonitrides by this method, since the reaction rate of nitridation and solid solution of metal powder and metal carbide is extremely slow, it is actually necessary to process at a high temperature of 1400°C to 1800°C for a long time of 10 hours or more. This made industrial production extremely difficult.

そこで特公昭55−14856号に開示されているよう
な、TiN、 TiCr TaN、 Mo2C+ WC
にCo、Niを添加し、混合、プレス、焼結して製造す
ると、窒化物の粒成長抑制効果はあるものの得られたサ
ーメットの硬質分散相は決して十分に微細ではないため
耐欠損性の改善は満足すべきものではなかった。
Therefore, TiN, TiCr TaN, Mo2C+ WC as disclosed in Japanese Patent Publication No. 55-14856
When manufactured by adding Co and Ni to the cermet, mixing, pressing, and sintering, although it has the effect of suppressing nitride grain growth, the hard dispersed phase of the resulting cermet is never sufficiently fine, resulting in improved fracture resistance. was not satisfactory.

又特開昭58−213842号、特開昭58−2138
43号には、チタンの酸化物にタングステン及び/又は
モリブデンの酸化物さらには必要て応じジルコニウム及
び/又はハフニウムの酸化物に炭素を加え、窒素雰囲気
中で加熱することばよって、1.0μ以下の粒径を有す
る複炭窒化物を得、これにW、MOICOINiなどの
結合金属粉末を添加、混合したのち、プレス成形し、焼
結することによってきわめて微細な硬質分散相を有する
サーメットの製造法が提案されている。
Also, JP-A-58-213842, JP-A-58-2138
No. 43 discloses that tungsten and/or molybdenum oxides are added to titanium oxides, and carbon is added to zirconium and/or hafnium oxides as necessary, and the mixture is heated in a nitrogen atmosphere to form particles with a particle size of 1.0μ or less. A method for producing a cermet with an extremely fine hard dispersed phase is obtained by obtaining double carbonitride having a particle size, adding and mixing binder metal powder such as W and MOICOINi, press-forming, and sintering. Proposed.

(発明が解決しようとする間m点) サーメットにおいて、 TaC,TaNなどの添加がそ
の耐欠損性を著しく改善することは前記の通り特公昭5
5−14856号などでよく知られているそこでチタン
の酸化物πタングステン及び/又はモリブデンの酸化物
さらには必要に応じジルコニウム及び/又はハフニウム
の酸化物に炭素を加えたものに、さらにタンタルの酸f
ヒ物を加えたものて炭素を加え窒素雰囲気中で加熱を行
なったところ、たしかにきわめて微細な炭窒化物かえら
れる。
(Point m before the invention attempts to solve the problem) As mentioned above, the addition of TaC, TaN, etc. to cermets significantly improves their fracture resistance, as reported in the Japanese Patent Publication No. 5.
5-14856, titanium oxide, π tungsten and/or molybdenum oxide, and if necessary, zirconium and/or hafnium oxide with carbon added thereto, as well as tantalum acid. f
When carbon is added to the mixture and heated in a nitrogen atmosphere, extremely fine carbonitrides are indeed formed.

しかしこの炭窒化物をX−線回折にて調べたところ、チ
タンとタングステン及び/又はモリブデン、必要に応じ
ジルコニウム及び/又はハフニウムの複炭窒化物と炭化
クンタルの二つの物質が同定され、決して一つの複炭窒
化物に固溶しているものではなかった。この混合物知結
合金属を添加し混合、プレス成形したのち焼結したとこ
ろたしかに、きわめて硬質分散相の微細なサーメットが
得られるものの予想π反し、得られたサーメットの耐欠
損性は決して満足すべきものではなく、従来の製造方法
によるサーメットとはy同等にすぎなかった。
However, when this carbonitride was examined by X-ray diffraction, two substances were identified: a double carbonitride of titanium, tungsten and/or molybdenum, and optionally zirconium and/or hafnium, and kuntal carbide. There was no solid solution in the double carbonitride. When this mixture was sintered after adding a bonding metal and press-forming, it was true that a fine cermet with an extremely hard dispersed phase was obtained, but contrary to expectations, the fracture resistance of the obtained cermet was by no means satisfactory. y was only equivalent to that of cermet produced by conventional manufacturing methods.

上記に鑑み本発明はこの様な問題点を解消するため開発
されたものである。
In view of the above, the present invention has been developed to solve these problems.

(間m点を解決するだめの手段) 即ち本発明のサーメットの製造方法は酸化チタンと酸化
クンタル及び/又は酸化ニオブと、炭素の混合物を窒素
気流中1400℃〜2500℃に加熱することによって
きわめて微細なチタンとクンタル及び/又はニオブの複
炭窒化物を作成、これにさらに炭化タングステン及び/
又は炭化モリブデンを添加し、同じく窒素気流中140
0℃〜2500℃に加熱することによって、一種類のチ
タンとクンタル及び/又はニオブとモリブデン及び/又
はタンタルの微細な複炭窒化物を作成、これに結合金属
粉末としてFe+ Co+ Ni + Cr+ Mo、
 Wからなる群より選んだ1種以上の金属粉末を3.0
〜40.0重量%添加、混合し、プレス成形したのち焼
結することを特徴とするものである。
(Another means to solve the problem) That is, the cermet manufacturing method of the present invention is extremely effective by heating a mixture of titanium oxide, quantal oxide and/or niobium oxide, and carbon to 1400°C to 2500°C in a nitrogen stream. Create a fine double carbonitride of titanium, countal and/or niobium, and further add tungsten carbide and/or niobium to this.
Or add molybdenum carbide and 140% in the same nitrogen stream.
By heating to 0°C to 2500°C, one type of fine double carbonitride of titanium and countal and/or niobium and molybdenum and/or tantalum is created, and to this, Fe + Co + Ni + Cr + Mo as bonding metal powder,
3.0 of one or more metal powders selected from the group consisting of W.
It is characterized by adding ~40.0% by weight, mixing, press molding, and then sintering.

(作用) 強靭なサーメットをうるためには種々のテストを行なっ
た結果、チタンとモリブデン及び/又はタングステンと
タンタル及び/又はニオブの完全なる微細な複炭窒化物
を作成し、これに結合金属を添加、混合し、プレス成形
したのち焼結すればよいとの知見をえた。
(Function) In order to obtain a strong cermet, as a result of various tests, we created a complete fine double carbonitride of titanium and molybdenum and/or tungsten and tantalum and/or niobium, and added a bonding metal to this. We found that it is sufficient to add, mix, press-form, and then sinter.

なお結合金属はFe + N i+ Coのいわゆる鉄
、属金属および、Cr、Mo、Wからなる群より選んだ
1種以上の金属が好ましく、かつ3.0重量係以下では
、得られたサーメットの靭性が不足し、40重量多以上
では耐摩耗性が不足し、いずれも好ましくない。
The binding metal is preferably one or more metals selected from the group consisting of iron, metals such as Fe + Ni + Co, Cr, Mo, and W, and if the weight coefficient is 3.0 or less, the resulting cermet Toughness is insufficient, and if the weight is more than 40%, wear resistance is insufficient, both of which are unfavorable.

そして微細な複炭窒化物を得るためKは出発原料として
微細なものの得られる酸化物から作成することが好まし
いとの知見もえた。
It was also found that in order to obtain a fine double carbonitride, it is preferable to prepare K from a fine oxide obtained as a starting material.

さらに発明者はチタンとモリブデン及び/又はタングス
テンとクンタル及び/又はニオブの各踵炭化物、窒化物
、炭窒化物との固溶反応について詳細に検討を加えた結
果、チタンとタンタル及び/又はニオブの炭化物、窒化
物、炭窒化物は比較的低温ですみやかに固溶し、チタン
とタングステン及び/又はモリブデンの炭化物、窒化物
、炭窒化物とは比較的高温で固溶すること、さらにチタ
ンとクンタル及び/又はニオブの複炭窒化物に、モリブ
デン及び/又はタングステンの炭化物は容易に固溶する
が逆に、チタンとモリブデン及び/又はタングステンの
複炭窒化物てクンタル及び/又はニオブの炭化物、窒化
物、炭窒化物はほとんど固溶しないとの知見をえた。
Furthermore, the inventor conducted a detailed study on solid solution reactions between titanium and molybdenum and/or tungsten and coontal and/or niobium with each heel carbide, nitride, and carbonitride. Carbides, nitrides, and carbonitrides form a solid solution quickly at a relatively low temperature, and carbides, nitrides, and carbonitrides of titanium and tungsten and/or molybdenum form a solid solution at a relatively high temperature. Molybdenum and/or tungsten carbide easily forms a solid solution in titanium and molybdenum and/or tungsten double carbonitride, and niobium and/or niobium carbide. It was found that carbonitrides and carbonitrides hardly dissolve in solid solution.

この知見に従ってまず、酸化チタンと、酸化クンタル及
び/又は酸化ニオブに炭素を加え、窒素気流中1400
℃以上2500℃以下に加熱することによってきわめて
微細なチタンとクンタル及び/又はニオブの複炭窒化物
を作成する。1400℃以下では還元、炭窒化、固溶が
十分でなく、2500℃以上では粒成長が著しく好まし
くない。
According to this knowledge, first, carbon was added to titanium oxide, quantal oxide and/or niobium oxide, and
Extremely fine double carbonitrides of titanium, cumtal and/or niobium are created by heating to a temperature of .degree. C. to 2500.degree. At temperatures below 1,400°C, reduction, carbonitriding, and solid solution are insufficient, and at temperatures above 2,500°C, grain growth is significantly undesirable.

次にこのチタンとタンタル及び/又はニオブの複炭窒化
物に、炭化モリブデン及び/又は炭化タングステンを加
え、窒素気流中1400℃以上2500℃以下に加熱す
Sことによって、完全に炭化タングステン及び/又は炭
化モリブデンが、チタンとタンタル及び/又はニオブの
複炭窒化物へ固溶するため一種類のチタンとタンタル及
び/又はニオブとモリブデン及び/又はタングステンの
複炭窒化物をえることが出来る。1400℃以下では固
溶が不十分であり、2500℃以上では粒成長が著しい
ため好ましくない。
Next, molybdenum carbide and/or tungsten carbide are added to this double carbonitride of titanium, tantalum, and/or niobium, and heated in a nitrogen stream from 1400°C to 2500°C to completely remove tungsten carbide and/or niobium. Since molybdenum carbide is dissolved in the double carbonitride of titanium, tantalum, and/or niobium, one type of double carbonitride of titanium, tantalum, niobium, molybdenum, and/or tungsten can be obtained. If the temperature is below 1400°C, the solid solution will be insufficient, and if it is above 2500°C, grain growth will be significant, which is not preferable.

なおはじめから酸化チタンと酸化タンタル及び/又は酸
化ニオブと酸化モリブデン及び/又は酸化タングステン
に炭素を加え、窒素気流中で加熱すると炭素による還元
、炭化および窒素てよS窒化がいずれも発熱反応である
ため試料が局部的に高温になるためチタンとタングステ
ン及び/又はモリブデンの複炭窒化物の生成が優先的に
進行してしまい、タンタル及び/又はニオブの炭化物、
窒化物、炭窒化物の固溶が進まないことがわかった。
Furthermore, when carbon is added to titanium oxide, tantalum oxide, and/or niobium oxide, molybdenum oxide, and/or tungsten oxide from the beginning and heated in a nitrogen stream, reduction by carbon, carbonization, and nitrogen and S nitridation are all exothermic reactions. As a result, the sample becomes locally high temperature, and the formation of double carbonitrides of titanium and tungsten and/or molybdenum progresses preferentially, resulting in tantalum and/or niobium carbides,
It was found that solid solution of nitrides and carbonitrides did not proceed.

(実施例) 以下に本発明の実施例を述べる。(Example) Examples of the present invention will be described below.

実施例1゜ 市販のTiO2、Ta205に炭素粉末を加えたものを
1気圧の窒素気流中1600℃にて1時間加熱した。
Example 1 A mixture of commercially available TiO2 and Ta205 to which carbon powder was added was heated at 1600° C. for 1 hour in a nitrogen stream of 1 atmosphere.

得られた(Ti、Ta)(C,N)にこれも市販のWC
粉末を加え、同じく1気圧の窒素気流中1650℃にて
1時間加熱した。冷却後X−線回折でしらべたところ、
Taの炭化物、窒化物、炭窒化物は全くみとめられず、
原子比で(” 0.82 TaO,10WO,08) 
(CD、55 NO,45)なるチタンとタンタルおよ
びタングステンの複炭窒化物が得られた。走査型電子顕
微鏡でしらべたとこる約01〜0.5μのきわめて微細
な粒子でるることがわかった。
The obtained (Ti, Ta) (C, N) was also commercially available WC.
The powder was added and heated at 1650° C. for 1 hour in a nitrogen stream of 1 atm. When examined by X-ray diffraction after cooling,
No carbides, nitrides, or carbonitrides of Ta were observed.
In atomic ratio ("0.82 TaO, 10WO, 08)
A double carbonitride of titanium, tantalum, and tungsten (CD, 55 NO, 45) was obtained. When examined using a scanning electron microscope, it was found that extremely fine particles of about 01 to 0.5 μm were present.

この複炭窒化物に7.5wtチのCoと7.5wt係の
Niを添加混合したのち、プレス成形し、15 Tor
rの窒素気流中1450℃で焼結を行なった。この合金
をA1比較のため同一組成の合金をTi(CN)TaC
,WC+ Ni + Co粉末を混合し、プレス成形、
焼結して作成したものをB、さらにTiO2,Ta2o
5 +Wo、に炭素粉末を添加し、1気圧の窒素気流中
1650℃1時間加熱したもの(X−線回折の結果(T
i、Ta、W)(CN)とTaCが同定された)にNt
 I Coを添加、混合し、プレス成形、焼結したもの
をCとする。第1表にA181Cの合金特性を示す。
After adding and mixing 7.5wt of Co and 7.5wt of Ni to this double carbonitride, it was press-formed to 15 Torr.
Sintering was carried out at 1450° C. in a nitrogen stream of r. For comparison, an alloy with the same composition as Ti(CN)TaC
, WC + Ni + Co powders were mixed, press molded,
The one created by sintering is B, and further TiO2, Ta2o
Carbon powder was added to 5 +Wo and heated at 1650°C for 1 hour in a nitrogen stream of 1 atm (X-ray diffraction results (T
i, Ta, W) (CN) and TaC were identified)
A product obtained by adding I Co, mixing, press molding, and sintering is designated as C. Table 1 shows the alloy properties of A181C.

第  1  表 次に、A、B、C三つの合金で以下の条件で切削テスト
を行なった。
Table 1 Next, cutting tests were conducted on three alloys A, B, and C under the following conditions.

被削材SCM435 (HB”230 ) 50”X 
150=角切削速度 150 m/min 送      リ    0.1 5 覇/l切り込み
 2.5問 カッター FPG4100R チップSDKN42MT Aは5バス切削してフランク摩耗か0.08ta1熱亀
裂が2本発生したのに対し、Bは2バスで折損、Cは5
バス切削しフランク摩耗が0.09+++m、熱亀裂が
8本発生し、Aの本発明品かきわだちで、耐欠損性、特
に耐熱疲労性にすぐれていることがわかる。
Work material SCM435 (HB”230) 50”X
150 = Corner cutting speed 150 m/min Feed rate 0.1 5 h/l depth of cut 2.5 cutter FPG4100R Tip SDKN42MT A had 5 bus cuts and two 0.08ta1 thermal cracks occurred due to flank wear. , B broke at 2 buses, C broke at 5
The flank wear during bus cutting was 0.09 +++ m, and 8 thermal cracks were generated, indicating that the invention product A has excellent chipping resistance, especially thermal fatigue resistance.

実施例2 市販の7102 + Nb2O5に炭素を加え1気圧の
窒素気流中、1600℃、1500℃、1800℃、2
300℃、2600℃で加熱した。130()℃で加熱
したもの7CはTlO2、Nb2O5が残存していたが
、それ以外のものはすべて均一な(Ti、Nb)(C,
N)が得られた。但し、得られた(Ti、Nb)(C,
N)の粒度はそれぞれ01〜0.2μ、0.3〜0.5
μ、0.8〜1.2μ、3.0μ以上であり、2500
℃以上では著しく粒成長するこ、とがわかった。
Example 2 Carbon was added to commercially available 7102 + Nb2O5, and the mixture was heated at 1600°C, 1500°C, 1800°C, 2
Heated at 300°C and 2600°C. In 7C heated at 130 ()℃, TlO2 and Nb2O5 remained, but in all other cases, uniform (Ti, Nb) (C,
N) was obtained. However, the obtained (Ti, Nb) (C,
The particle size of N) is 01-0.2μ and 0.3-0.5, respectively.
μ, 0.8 to 1.2 μ, 3.0 μ or more, 2500
It was found that grains grow significantly at temperatures above ℃.

次に1800℃で加熱した試料にWCとMo 2 Cを
添加し1気圧の窒素気流中1300℃、1soo℃。
Next, WC and Mo 2 C were added to the sample heated at 1800°C, and heated at 1300°C and 1 soo°C in a nitrogen stream of 1 atm.

1800℃、2300℃、2600℃で加熱した。Heating was performed at 1800°C, 2300°C, and 2600°C.

1600℃で加熱したものには、Vl’C、Mo 2C
が残存していたが、それ以外のものはすべて均一な(T
i、Nb、Mo、W)(C,N)が得られた。
For those heated at 1600℃, Vl'C, Mo2C
remained, but everything else was uniform (T
i, Nb, Mo, W) (C, N) was obtained.

この複炭窒化物に5wt% Co+ 5wt%Niを加
え混合、プレス成型後1480℃で1時間焼結した。
5wt% Co+5wt%Ni were added to this double carbonitride, mixed, press-molded, and sintered at 1480°C for 1 hour.

得られた合金の特性を第2表に示す。The properties of the obtained alloy are shown in Table 2.

(発明の効果)(Effect of the invention)

Claims (1)

【特許請求の範囲】[Claims] (1)酸化チタンと酸化タンタル及び/又は酸化ニオブ
と炭素との混合物を窒素気流中1400℃〜2500℃
にて加熱することによつて、チタンとタンタル及び/又
はニオブの複炭窒化物を作成したのち、これに炭化タン
グステン及び/又は炭化モリブデンを混合し、窒素気流
中1400℃〜2500℃にて加熱することによって、
チタンとタンタル及び/又はニオブとタングステン及び
/又はモリブデンの複炭窒化物を作成する、しかるのち
、これにFe、Co、Ni、Cr、Mo、Wからなる群
より選んだ1種以上の金属粉末を3.0〜40.0重量
%添加し、混合後、プレス成形し焼結することを特徴と
する強靭チタン基焼結硬質合金の製造方法。
(1) A mixture of titanium oxide, tantalum oxide and/or niobium oxide and carbon is heated at 1400°C to 2500°C in a nitrogen stream.
After creating a double carbonitride of titanium, tantalum, and/or niobium by heating in By,
A double carbonitride of titanium and tantalum and/or niobium and tungsten and/or molybdenum is prepared, and then one or more metal powders selected from the group consisting of Fe, Co, Ni, Cr, Mo, and W are added to this. 1. A method for producing a tough titanium-based sintered hard alloy, which comprises adding 3.0 to 40.0% by weight of, mixing, press-forming, and sintering.
JP61193822A 1986-08-19 1986-08-19 Manufacture of tough titanium-base sintered hard alloy Pending JPS6350435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61193822A JPS6350435A (en) 1986-08-19 1986-08-19 Manufacture of tough titanium-base sintered hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61193822A JPS6350435A (en) 1986-08-19 1986-08-19 Manufacture of tough titanium-base sintered hard alloy

Publications (1)

Publication Number Publication Date
JPS6350435A true JPS6350435A (en) 1988-03-03

Family

ID=16314324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61193822A Pending JPS6350435A (en) 1986-08-19 1986-08-19 Manufacture of tough titanium-base sintered hard alloy

Country Status (1)

Country Link
JP (1) JPS6350435A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109732084A (en) * 2019-03-21 2019-05-10 西京学院 A kind of ferrotitanium molybdenum alloy and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109732084A (en) * 2019-03-21 2019-05-10 西京学院 A kind of ferrotitanium molybdenum alloy and preparation method thereof
CN109732084B (en) * 2019-03-21 2021-05-11 西京学院 Iron-titanium-molybdenum alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2622131B2 (en) Alloys for cutting tools
JPH0711048B2 (en) High-strength nitrogen-containing cermet and method for producing the same
JPH0860201A (en) Carburized carbide powder mixture based on tungsten and carburized carbide product produced therefrom
US4270952A (en) Process for preparing titanium carbide-tungsten carbide base powder for cemented carbide alloys
JP3300409B2 (en) Sintered titanium-based carbonitride alloy and its manufacturing method
US5368812A (en) Metal carbides and derived composites made by milling to obtain a particular nanostructural composite powder
EP0047752A1 (en) Sintered hardmetals
JPH05271842A (en) Cermet alloy and its production
JPS6350435A (en) Manufacture of tough titanium-base sintered hard alloy
JPH0698540B2 (en) Method for manufacturing a cutting tool made of thermite with excellent wear resistance
JP3102167B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
WO1981001422A1 (en) Sintered hard metals
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JPS58213842A (en) Manufacture of high strength cermet
JP2502322B2 (en) High toughness cermet
JPH0450373B2 (en)
JP4126451B2 (en) Cemented carbide
JPS594499B2 (en) Hard alloys and manufacturing methods
US4092156A (en) Process for preparing titanium carbide base powder for cemented carbide alloys
JPH0471986B2 (en)
JPS59146918A (en) Production of double carbide
JPH0517298B2 (en)
JPH1136022A (en) Production of cemented carbide containing plate crystal wc
JPH0754001A (en) Production of fine composite carbide powder for producing tungsten carbide base cemented carbide
JPS59229430A (en) Production of cermet having high hardness and high toughness