JPS6350369B2 - - Google Patents

Info

Publication number
JPS6350369B2
JPS6350369B2 JP58115776A JP11577683A JPS6350369B2 JP S6350369 B2 JPS6350369 B2 JP S6350369B2 JP 58115776 A JP58115776 A JP 58115776A JP 11577683 A JP11577683 A JP 11577683A JP S6350369 B2 JPS6350369 B2 JP S6350369B2
Authority
JP
Japan
Prior art keywords
parts
weight
polycarbonate
monomer
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58115776A
Other languages
Japanese (ja)
Other versions
JPS608351A (en
Inventor
Noriaki Goto
Masayuki Tanaka
Akihiko Kishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP11577683A priority Critical patent/JPS608351A/en
Publication of JPS608351A publication Critical patent/JPS608351A/en
Publication of JPS6350369B2 publication Critical patent/JPS6350369B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はとくに耐熱性および耐衝撃性がすぐ
れ、しかも耐候性および成形性が良好な熱可塑性
樹脂組成物に関するものである。 エチレン、プロピレン、ジエン系ゴム(以降、
EPDMゴムと略称する。)をベースゴムとして用
い、これにスチレンとアクリロニトリルをグラフ
ト共重合して得られるいわゆるAES樹脂は、す
ぐれた耐候性、耐衝撃性および成形加工性を有し
ており、電気、自動車関係の屋外用部品としての
用途に大きな利用価値が認められてきているが、
耐熱性が劣るという欠点を有している。 一方、ポリカーボネートは、耐熱性がすぐれ、
かつ機械的特性も良好であるが成形加工温度が高
く、流動性が悪いため加工しにくいという難点が
ある。 上記、AES樹脂の耐熱性とポリカーボネート
の成形加工性を併せて改善することを目的とした
樹脂組成物として、スチレン/エチレン・プロピ
レン系ゴム/アクリロニトリル共重合体とポリカ
ーボネートのブレンド(特開昭48−48547号公報)
およびスチレン/EPDM系ゴム/アクリロニト
リル共重合体とポリカーボネート樹脂のブレンド
(特公昭51−41145号公報)提案されている。そし
てこれらの方法においては、AES樹脂として、
EPDMゴムとスチレン/アクリロニトリル共重
合体を過酸化物系開始剤の存在下で熱ロールまた
は押出機で混練することによつて製造したAES
樹脂や乳化重合、溶液重合法によつて得られた
AES樹脂などが用いられており、このようにし
て得られたAES樹脂とポリカーボネートを混合
してなる組成物の衝撃強度および成形加工性はい
まだ不十分である。 そこで本発明者らは、耐熱性および耐衝撃性が
すぐれ、かつ耐候性と成形加工性の良好な熱可塑
性樹脂の開発を目的として鋭意検討した結果、溶
媒を含む懸濁重合法によつて得られた粒状の
AES樹脂とポリカーボネートを溶融混練するこ
とによつて、上記目的に合致した熱可塑性樹脂組
成物が得られることを見い出し本発明に到達し
た。 すなわち、本発明は()(A)エチレン−プロピ
レン−ジエン系ゴム、(B)(a)芳香族ビニル系単量体
および/または(b)メタクリル酸エステル酸エステ
ル系単量体55〜95重量%、(c)シアン化ビニル系単
量体5〜45重量%および(d)これらと共重合可能な
他のビニル系単量体0〜30重量%からなる単量体
混合物および(C)炭化水素系溶媒を(A)10〜60重量部
の合計100重量部に対し、(C)が20〜400重量部とな
る割合で配合した溶液を、水系懸濁状態で重合さ
せて得られる粒状のグラフト共重合体10〜90重量
部および()ポリカーポネート90〜10重量部を
溶融混練してなる熱可塑性樹脂組成物を提供する
ものである。 通常の乳化重合法や懸濁重合法で製造した
AES樹脂とポリカーボネートを配合した樹脂組
成物は、溶融流動性が劣り、しかも耐衝撃性が不
十分である。しかるに溶媒を含む懸濁重合法で得
た粒状のAES樹脂とポリカーボネートを混合し
て溶融混練することにより、耐衝撃性と溶融流動
性が著しく改善された組成物が得られる。かかる
本発明の効果の発現理由は明らかではないが、お
そらく溶媒を含む懸濁重合法による粒状のAES
樹脂は、ゴム成分が海相、樹脂成分が島相からな
る相構造を形成しており、これにポリカーボネー
トを溶融混練することにより、混合と相転移が同
時に生起するため、相溶性が向上し、成形性およ
び耐衝撃性が著しく改善されるものと考えられ
る。 本発明の()グラフト共重合体(AES樹脂)
を得る際に使用する(A)EPDMゴムとしては、通
常エチレン20〜90モル%、プロピレン9〜80モル
%および非共役ジエン1〜10モル%の割合からな
る共重合体ゴムが適当である。これらEPDMゴ
ムのムーニー粘度は20〜200が好ましい。なお、
ここで非共役ジエンとしては、ノルボルネン類、
シクロペンタジエン類などの環状ジエン類、ある
いは1,4ヘキサジエンなどの非共役鎖状ジエン
類が用いられる。 また(B)単量体混合物における(a)芳香族ビニル系
単量体としては、スチレン、α−メチルスチレ
ン、p−メチルスチレン、p−t−ブチルスチレ
ンおよびビニルトルエンなどが、(b)メタクリル酸
エステル単量体としては、メタクリル酸メチル、
メタクリル酸エチルおよびメタクリル酸n−プロ
ピルなどが、(c)シアン化ビニル単量体としては、
アクリロニトリルおよびメタクリロニトリルなど
が挙げられる。さらに本発明の効果を損なわない
範囲においては(d)共重合可能な他のビニル単量
体、たとえばアクリル酸、アクリル酸メチル、無
水マレイン酸およびN−フエニルマレイミドなど
を30重量%以下の割合で用いることができる。こ
の(B)単量体混合物における(a)芳香族ビニル系単量
体および/またはメタクリル酸エステル系単量体
と(c)シアン化ビニル系単量体との割合は(a)およ
び/または(b)55〜95重量%、とくに70〜85重量%
に対し、(c)5〜45重量%とくに30〜15重量%(合
計100重量%)が好ましい。ここで(c)の割合から
5重量%未満では得られる樹脂組成物の衝撃強度
が不十分であり、また45重量%を越えると熱安定
性が劣りしかも成形品が着色するため好ましくな
い。 本発明で用いる(C)炭化水素系溶媒とは炭素数5
〜15の飽和脂肪族、脂環族および芳香族炭化水素
から選ばれた少なくとも一種の炭化水素化合物で
あり、例えばペンタン、ヘキサン、ヘプタン、オ
クタン、灯油、シクロペンタン、シクロヘキサ
ン、メチルシクロヘキサン、ベンゼン、トルエ
ン、キシレンおよびイソプロピルベンゼンなどが
挙げられる。これらの炭化水素系溶媒は単独で使
用することができるし、また二種以上任意の割合
で混合して使用することもできる。 本発明の粒状グラフト共重合体を製造する際の
(A)EPDMゴムと(B)単量体混合物の割合は(A)10〜
60重量部、とくに15〜50重量部に対し(B)40〜90重
量部とくに85〜50重量部(合計100重量部)が好
ましく(A)EPDMゴムが10重量部未満では、ゴム
成分が少ないため、耐衝撃性の十分なものが得ら
れなく、また60重量部を越えるとゴムの溶解性が
悪くなつたり、グラフト率が上がりにくくなつた
りするため好ましくない。 上記(A)EPDMゴムおよび(B)単量体混合物と共
に用いる(C)炭化水素系溶媒の量は、(A)+(B)100重
量部に対し、20〜400重量部、好ましくは50〜250
重量部であり、この範囲の炭化水素系溶媒を用い
ることによつて、EPDMゴムを溶解し、安定し
たグラフト共重合を行なうことができる。 本発明のグラフト共重合体を製造するための重
合方法は、溶媒を含む懸濁重合法が必須である。
他の方法いわゆる溶液重合法および乳化重合法等
による方法で得たAES樹脂を用いると得られる
樹脂組成物の耐衝撃性と成形流動性が不十分とな
るため好ましくない。この懸濁重合法は通常公知
の条件で重合を行なうことができるし、懸濁剤に
ついても特に制限なく、任意のものを用いること
ができる。なお炭化水素系溶媒は、重合終了後、
水蒸気蒸留によつて除去、回収される。 本発明に用いられるポリカーボネートに関して
は、特に制限なく、ビスフエノールAとホスゲン
とから得られるもの、ビスフエノールAとジフエ
ニルカーボネートから得られるものなど通常公知
の方法で製造されたものを用いることができる。 上記()粒状グラフト共重合体と()ポリ
カーボネートの混合比率は()10〜90重量部好
ましくは20〜80重量部に対して()90〜10重量
部、好ましくは80〜20重量部である。粒状グラフ
ト共重合体が10重量未満では、目的とする耐衝撃
性、成形加工性の改善が得られず、またポリカー
ボネートが10重量部未満では、耐熱性がそこなわ
れるため好ましくない。 上記()の粒状グラフト共重合体と()の
ポリカーボネートをブレンドして、所期の物性を
有する組成物を得るためにはこれらをそのまま、
または混合して押出機(220℃)で溶融混練する
ことが必須であり、グラフト共重合体をあらかじ
め溶融混練してからポリカーボネートと混合した
りすると、本発明の効果は十分発揮されない。 本発明の樹脂組成物は、さらに他の熱可塑性樹
脂、たとえばスチレン/アクリロニトリル共重合
体、アクリロニトリル−ブタジエン−スチレン三
元共重合体(ABA樹脂)およびα−メチルスチ
レン/アクリロニトリル共重合体などを加えて、
望ましい特性に調節することもできる。 なお、本発明の熱可塑性樹脂組成物には通常の
ヒンダートフエノール系酸化防止剤、リン系酸化
防止剤およびイオウ系酸化防止剤を添加して熱安
定性向上させたり、滑剤を添加して溶融流動性を
良くすることもできる。また、目的に合わせて鉱
油、ガラス繊維等の繊維状補強剤、無機充填剤、
着色剤、顔料および紫外線吸収剤などを配合する
こともできる。 以上説明したように本発明の熱可塑性樹脂組成
物は耐衝撃性に代表される機械的性質、熱変形温
度に代表される耐熱性および溶融成形時の流動性
のバランスがすぐれており、これらの特性を生か
した種々の用途に適用が期待される。 以下、参考例および実施例によつて本発明をさ
らに説明する。なお、実施例中、熱変形温度は
ASTM−648−56、アイゾツト衝撃強度は
ASTMD−256−56Method Aに従つて測定し
た。溶融粘度は高化式フローテスターによつて樹
脂温度230〜250℃で測定した。部数は重量部を表
わす。 参考例 1 次の各処方によりEPDMゴムをベースとする
共重合体A〜Eを製造した。 (1) EPDMゴム(三井石油化学製EPT#3045)
25部をトルエン100部中に溶解したのち、スチ
レン57.0部、アクリロニトリル18.0部および過
酸化ベンゾイル0.5部を添加し、撹拌混合した。
一方、純水300部にメタクリル酸メチル/アク
リルアミド=20/80の共重合体0.3部およびリ
ン酸1ナトリウム0.05部を溶解し、この水溶液
を前記EPDMゴム−モノマー溶液に加えたの
ち高速撹拌して懸濁化した。 その後、90℃で6時間、さらに100℃で1時
間懸濁重合を行ない、重合終了後水蒸気蒸留に
よつて溶媒を除去して、粒状グラフト共重合体
Aを得た。 (2) EPDMゴム(三井石油化学製EPT#3045)
30部をトルエン67部およびn−ヘキサン33部中
に溶解したのち、スチレン57.0部、メタクリル
酸メチル90部、アクリロニトリル9.0部および
過酸化ベンゾイル0.6部を添加し、撹拌混合し
た。一方、純水200部にメタクリル酸メチル/
アクリルアミド=20/80の共重合体0.5部およ
びリン酸1ナトリウム0.05部を溶解した。この
後は参考例1と同様にして、粒状のグラフト共
重合体Bを得た。 (3) EPDMゴム(三井石油化学製EPT#4045)
30部をトルエン50部およびn−ヘプタン50部中
に溶解したのち、α−メチルスチレン53.2部、
アクリロニトリル16.8部および過酸化ベンゾイ
ル0.5部を添加し、撹拌混合した。一方純水400
部にメタクリル酸メチル/アクリルアミド=
20/80の共重合体0.4部およびリン酸1ナトリ
ウム0.05部を溶解した。この後は参考側1と同
様にして粒状のグラフト共重合体Cを得た。 (4) EPDMゴム(三井石油化学製EPT#4045)
30部をベンゼン67部およびn−ヘキサン33部中
に溶解したのち、スチレン54.8部、メタクリル
酸エチル10.1部アクリロニトリル10.1部および
過酸化ベンゾイル0.6部を添加し、撹拌混合し
た。一方、純水200部にメタクリル酸メチル/
アクリルアミド=20/80の共重合体0.3部およ
びリン酸1ナトリウム0.05部を溶解した。この
後は参考例1と同様にして粒状のグラフト共重
合体Dを得た。 (5) EPDMゴム(三井石油化学製EPT4070)25
部をイソプロピルベンゼン67部、n−ヘプタン
33部中に溶解したのち、スチレン54.8部、アク
リロニトリル20.2部および過酸化ベンゾイル
0.7部を添加し、撹拌混合した。一方純水300部
にメタクリル酸メチル/アクリルアミド=20/
80の共重合体0.3部およびリン酸1ナトリウム
0.05部を溶解した。この後は参考例1と同様に
して粒状のグラフト共重合体Eを得た。 参考例 2 参考例1と比較するため、次の処方によりグラ
フト共重合体(F)〜(H)を調製した。 (1) EPDMゴム(三井石油化学製EPT#3045)
25部とアクリロニトリル−スチレン共重合体
(アクリロニトリル成分24部)75重量部を過酸
化ベンゾイルの存在下に加熱ロール(220℃)
で混練して、その後で粉砕機で微粉砕にして、
アクリロニトリル−EPDMゴム−スチレン共
重合体Fを調製した。 (2) EPDM(三井石油化学製EPT#3045)20部を
n−ヘキサン200部および二塩化エチレン150部
に溶解し、アクリロニトリル30部、スチレン70
部および過酸化ベンゾイル2.0部を仕込んだ後、
67℃で10時間、窒素雰囲気下で撹拌しながら重
合した。重合液を大過剰のメタノールで置換さ
せ、析出した沈澱物を分離乾燥後、グラフト共
重合体Gを得た。 (3) EPDM(三井石油化学製EPT#3045)30部を
トルエン100部、n−ヘキサン50部中に溶解し
たのち、スチレン53.2部、アクリロニトリル
16.8部および過酸化ベンゾイル0.7部を添加し、
撹拌混合した。一方、純水200部にメタクリル
酸メチル/アクリルアミド=20/80の共重合体
0.3部、リン酸1ナトリウム0.05部を溶解し、
この水溶液を前記EPDMゴム・モノマー溶液
に加えた後、窒素を吹き込んで系内の酸素を除
去した。その後、90℃で6時間、さらに100℃
で1時間重合を行なつたのち、水蒸気蒸留によ
つて溶液を回収したのち、粒状グラフト共重合
体を得た。 このようにして得られたグラフト共重合体に
酸化剤ジエニルモノイソデシルフオスフアイト
(三光化学製)0.1部および安定剤イルガノツク
ス1076(チバガイギー(株)製)0.3部を添加してヘ
ンシエルミキサーで混合したのち、40mmφ押出
機でシリンダ設定温度220℃で押出混練し、ペ
レツト化し、グラフト共重合体Hを得た。 実施例 1〜5 参考例1で調製したグラフト共重合体(A)〜(E)お
よびポリカーボネート(ゼネラル・エレクトリツ
ク社製、レキサン101)をそれぞれ表1の割合で
ヘンシエルミキサーで混合し、次に40mmφ押出機
によつて樹脂温度240℃で押出し、それぞれペレ
ツト化した後、各ペレツトについて、シリンダ温
度240℃、金型温度80℃の条件での射出成形に供
し、各試験片を作製し、それについて特性の評価
を行なつた。これらの結果を表1に併せて示す。 比較例 1〜4 参考例2で調製したグラフト共重合体(F)〜(H)お
よびポリカーボネート(ゼネラルエレクトリツク
社製:レキサン101)を表1に示す割合で実施例
と同様方法によつて調製し、物性を測定した。ま
たポリカーボネート単独の物性も測定した結果を
表1に併せて示す。 比較例 5〜9 参考例1で得られた各グラフト共重合体(A)〜(E)
を押出機によつて、樹脂温度220℃で押出し、そ
れぞれペレツト化した。次いで、各ペレツトにつ
いてシリンダ温度230℃、金型温度50℃の条件で
の射出成形に供し、各試験片を作製し、それにつ
いて特性の評価を行なつた。これらの結果
The present invention particularly relates to a thermoplastic resin composition that has excellent heat resistance and impact resistance, as well as good weather resistance and moldability. Ethylene, propylene, diene rubber (hereinafter referred to as
It is abbreviated as EPDM rubber. ) is used as a base rubber, and the so-called AES resin obtained by graft copolymerizing styrene and acrylonitrile has excellent weather resistance, impact resistance, and moldability, and is suitable for outdoor use in electrical and automotive fields. Although it has been recognized that it has great utility value as a component,
It has the disadvantage of poor heat resistance. On the other hand, polycarbonate has excellent heat resistance,
Although it has good mechanical properties, it has the drawbacks of high molding temperature and poor fluidity, making it difficult to process. A blend of styrene/ethylene/propylene rubber/acrylonitrile copolymer and polycarbonate (Japanese Unexamined Patent Application Publication No. 1983-1983) was used as a resin composition with the aim of improving both the heat resistance of AES resin and the moldability of polycarbonate. Publication No. 48547)
and a blend of styrene/EPDM rubber/acrylonitrile copolymer and polycarbonate resin (Japanese Patent Publication No. 41145/1983) has been proposed. In these methods, as AES resin,
AES made by kneading EPDM rubber and styrene/acrylonitrile copolymer in the presence of a peroxide initiator in a hot roll or extruder.
obtained by resin, emulsion polymerization, and solution polymerization methods.
AES resin and the like are used, and the impact strength and moldability of the composition obtained by mixing the AES resin and polycarbonate thus obtained are still insufficient. The inventors of the present invention conducted extensive research with the aim of developing a thermoplastic resin that has excellent heat resistance and impact resistance, as well as good weather resistance and moldability. granular
The inventors have discovered that a thermoplastic resin composition meeting the above objectives can be obtained by melt-kneading AES resin and polycarbonate, and have arrived at the present invention. That is, the present invention comprises () (A) ethylene-propylene-diene rubber, (B) (a) aromatic vinyl monomer and/or (b) methacrylic acid ester acid ester monomer 55 to 95% by weight %, (c) a monomer mixture consisting of 5 to 45% by weight of a vinyl cyanide monomer and (d) 0 to 30% by weight of another vinyl monomer copolymerizable with these, and (C) carbonization. Granular particles obtained by polymerizing a solution containing 20 to 400 parts by weight of (C) to a total of 100 parts by weight (10 to 60 parts by weight of (A)) in an aqueous suspension state. The present invention provides a thermoplastic resin composition obtained by melt-kneading 10 to 90 parts by weight of a graft copolymer and 90 to 10 parts by weight of a polycarbonate. Manufactured using normal emulsion polymerization method or suspension polymerization method
A resin composition containing AES resin and polycarbonate has poor melt flowability and insufficient impact resistance. However, by mixing and melt-kneading granular AES resin obtained by a suspension polymerization method containing a solvent and polycarbonate, a composition with significantly improved impact resistance and melt fluidity can be obtained. Although the reason for the manifestation of the effect of the present invention is not clear, it is likely that granular AES produced by suspension polymerization method containing a solvent
The resin has a phase structure in which the rubber component is a sea phase and the resin component is an island phase. By melt-kneading polycarbonate into this, mixing and phase transition occur simultaneously, improving compatibility. It is believed that moldability and impact resistance are significantly improved. () Graft copolymer (AES resin) of the present invention
As the EPDM rubber (A) used in obtaining the above, a copolymer rubber containing usually 20 to 90 mol% of ethylene, 9 to 80 mol% of propylene, and 1 to 10 mol% of a nonconjugated diene is suitable. The Mooney viscosity of these EPDM rubbers is preferably 20 to 200. In addition,
Here, the non-conjugated dienes include norbornenes,
Cyclic dienes such as cyclopentadiene or non-conjugated linear dienes such as 1,4 hexadiene are used. In addition, (a) aromatic vinyl monomers in the monomer mixture (B) include styrene, α-methylstyrene, p-methylstyrene, pt-butylstyrene, and vinyltoluene, and (b) methacrylate. As acid ester monomers, methyl methacrylate,
Examples of vinyl cyanide monomers include ethyl methacrylate and n-propyl methacrylate.
Examples include acrylonitrile and methacrylonitrile. Furthermore, within a range that does not impair the effects of the present invention, (d) other copolymerizable vinyl monomers, such as acrylic acid, methyl acrylate, maleic anhydride, and N-phenylmaleimide, may be added in a proportion of 30% by weight or less. It can be used in The ratio of (a) aromatic vinyl monomer and/or methacrylic acid ester monomer to (c) vinyl cyanide monomer in this (B) monomer mixture is (a) and/or (b) 55-95% by weight, especially 70-85% by weight
In contrast, (c) is preferably 5 to 45% by weight, particularly 30 to 15% by weight (total 100% by weight). If the proportion of (c) is less than 5% by weight, the resulting resin composition will have insufficient impact strength, and if it exceeds 45% by weight, the thermal stability will be poor and the molded product will be colored, which is not preferable. The hydrocarbon solvent (C) used in the present invention has 5 carbon atoms.
At least one hydrocarbon compound selected from ~15 saturated aliphatic, alicyclic and aromatic hydrocarbons, such as pentane, hexane, heptane, octane, kerosene, cyclopentane, cyclohexane, methylcyclohexane, benzene, toluene , xylene and isopropylbenzene. These hydrocarbon solvents can be used alone or in combination of two or more in any proportion. When producing the granular graft copolymer of the present invention
The ratio of (A) EPDM rubber and (B) monomer mixture is (A) 10~
60 parts by weight, especially 15 to 50 parts by weight, (B) 40 to 90 parts by weight, especially 85 to 50 parts by weight (total 100 parts by weight) (A) If the EPDM rubber is less than 10 parts by weight, the rubber component is small. Therefore, it is not possible to obtain a product with sufficient impact resistance, and if it exceeds 60 parts by weight, the solubility of the rubber deteriorates and it becomes difficult to increase the grafting rate, which is not preferable. The amount of (C) hydrocarbon solvent used together with the above (A) EPDM rubber and (B) monomer mixture is 20 to 400 parts by weight, preferably 50 to 400 parts by weight, based on 100 parts by weight of (A) + (B). 250
By using a hydrocarbon solvent within this range, it is possible to dissolve the EPDM rubber and perform stable graft copolymerization. The polymerization method for producing the graft copolymer of the present invention must be a suspension polymerization method that includes a solvent.
If AES resin obtained by other methods such as solution polymerization and emulsion polymerization is used, the resulting resin composition will have insufficient impact resistance and molding fluidity, which is not preferred. In this suspension polymerization method, polymerization can be carried out under generally known conditions, and any suspending agent can be used without any particular restrictions. Note that the hydrocarbon solvent is used after polymerization is completed.
Removed and recovered by steam distillation. Regarding the polycarbonate used in the present invention, there are no particular limitations, and those produced by commonly known methods such as those obtained from bisphenol A and phosgene, those obtained from bisphenol A and diphenyl carbonate, etc. can be used. . The mixing ratio of the above () granular graft copolymer and () polycarbonate is () 10 to 90 parts by weight, preferably 20 to 80 parts by weight, and () 90 to 10 parts by weight, preferably 80 to 20 parts by weight. . If the particulate graft copolymer is less than 10 parts by weight, the desired improvement in impact resistance and moldability cannot be obtained, and if the polycarbonate is less than 10 parts by weight, heat resistance will be impaired, which is not preferable. In order to obtain a composition having the desired physical properties by blending the above granular graft copolymer () with the polycarbonate (),
Alternatively, it is essential to mix and melt-knead in an extruder (220°C), and if the graft copolymer is melt-kneaded in advance and then mixed with polycarbonate, the effects of the present invention will not be sufficiently exhibited. The resin composition of the present invention can further contain other thermoplastic resins such as styrene/acrylonitrile copolymer, acrylonitrile-butadiene-styrene terpolymer (ABA resin), and α-methylstyrene/acrylonitrile copolymer. hand,
It can also be adjusted to desired properties. The thermoplastic resin composition of the present invention may be added with ordinary hindered phenol antioxidants, phosphorus antioxidants, and sulfur antioxidants to improve thermal stability, or may be added with lubricants to improve melting properties. It can also improve fluidity. In addition, mineral oil, fibrous reinforcing agents such as glass fiber, inorganic fillers,
Colorants, pigments, ultraviolet absorbers, etc. can also be blended. As explained above, the thermoplastic resin composition of the present invention has an excellent balance of mechanical properties represented by impact resistance, heat resistance represented by heat distortion temperature, and fluidity during melt molding. It is expected to be applied to a variety of applications that take advantage of its characteristics. The present invention will be further explained below using reference examples and examples. In addition, in the examples, the heat distortion temperature is
ASTM-648-56, Izotsu impact strength is
Measured according to ASTMD-256-56Method A. The melt viscosity was measured at a resin temperature of 230 to 250°C using a Koka type flow tester. Parts represent parts by weight. Reference Example 1 EPDM rubber-based copolymers A to E were produced using the following formulations. (1) EPDM rubber (EPT#3045 manufactured by Mitsui Petrochemicals)
After dissolving 25 parts in 100 parts of toluene, 57.0 parts of styrene, 18.0 parts of acrylonitrile and 0.5 parts of benzoyl peroxide were added and mixed with stirring.
On the other hand, 0.3 parts of methyl methacrylate/acrylamide = 20/80 copolymer and 0.05 parts of monosodium phosphate were dissolved in 300 parts of pure water, and this aqueous solution was added to the EPDM rubber monomer solution and stirred at high speed. Suspended. Thereafter, suspension polymerization was carried out at 90° C. for 6 hours and then at 100° C. for 1 hour, and after the polymerization was completed, the solvent was removed by steam distillation to obtain granular graft copolymer A. (2) EPDM rubber (EPT#3045 manufactured by Mitsui Petrochemicals)
After dissolving 30 parts in 67 parts of toluene and 33 parts of n-hexane, 57.0 parts of styrene, 90 parts of methyl methacrylate, 9.0 parts of acrylonitrile and 0.6 parts of benzoyl peroxide were added and mixed with stirring. Meanwhile, methyl methacrylate/200 parts of pure water
0.5 part of acrylamide = 20/80 copolymer and 0.05 part of monosodium phosphate were dissolved. Thereafter, a granular graft copolymer B was obtained in the same manner as in Reference Example 1. (3) EPDM rubber (EPT #4045 manufactured by Mitsui Petrochemicals)
After dissolving 30 parts in 50 parts of toluene and 50 parts of n-heptane, 53.2 parts of α-methylstyrene,
16.8 parts of acrylonitrile and 0.5 parts of benzoyl peroxide were added and mixed with stirring. On the other hand, pure water 400
Methyl methacrylate/acrylamide in part =
0.4 part of 20/80 copolymer and 0.05 part of monosodium phosphate were dissolved. Thereafter, a granular graft copolymer C was obtained in the same manner as in Reference Side 1. (4) EPDM rubber (EPT#4045 manufactured by Mitsui Petrochemicals)
After dissolving 30 parts in 67 parts of benzene and 33 parts of n-hexane, 54.8 parts of styrene, 10.1 parts of ethyl methacrylate, 10.1 parts of acrylonitrile and 0.6 parts of benzoyl peroxide were added and mixed with stirring. Meanwhile, methyl methacrylate/200 parts of pure water
0.3 part of acrylamide = 20/80 copolymer and 0.05 part of monosodium phosphate were dissolved. Thereafter, a granular graft copolymer D was obtained in the same manner as in Reference Example 1. (5) EPDM rubber (EPT4070 manufactured by Mitsui Petrochemicals) 25
67 parts of isopropylbenzene, n-heptane
After dissolving in 33 parts of styrene, 54.8 parts of styrene, 20.2 parts of acrylonitrile and benzoyl peroxide.
0.7 part was added and mixed by stirring. Meanwhile, 300 parts of pure water and methyl methacrylate/acrylamide = 20/
0.3 parts of copolymer of 80 and monosodium phosphate
0.05 part was dissolved. Thereafter, a granular graft copolymer E was obtained in the same manner as in Reference Example 1. Reference Example 2 For comparison with Reference Example 1, graft copolymers (F) to (H) were prepared according to the following formulations. (1) EPDM rubber (EPT#3045 manufactured by Mitsui Petrochemicals)
25 parts by weight of acrylonitrile-styrene copolymer (acrylonitrile component 24 parts) and 75 parts by weight in the presence of benzoyl peroxide on a heated roll (220°C).
Knead it with a pulverizer, then finely grind it with a pulverizer,
Acrylonitrile-EPDM rubber-styrene copolymer F was prepared. (2) Dissolve 20 parts of EPDM (EPT #3045 manufactured by Mitsui Petrochemicals) in 200 parts of n-hexane and 150 parts of ethylene dichloride, add 30 parts of acrylonitrile, and 70 parts of styrene.
After charging 1 part and 2.0 parts of benzoyl peroxide,
Polymerization was carried out at 67° C. for 10 hours with stirring under a nitrogen atmosphere. Graft copolymer G was obtained by replacing the polymerization liquid with a large excess of methanol and separating and drying the precipitate. (3) After dissolving 30 parts of EPDM (EPT#3045 manufactured by Mitsui Petrochemicals) in 100 parts of toluene and 50 parts of n-hexane, 53.2 parts of styrene and acrylonitrile were dissolved.
16.8 parts and 0.7 parts of benzoyl peroxide are added;
Stir and mix. On the other hand, add 200 parts of pure water to a copolymer of methyl methacrylate/acrylamide = 20/80.
Dissolve 0.3 parts and 0.05 parts of monosodium phosphate,
After adding this aqueous solution to the EPDM rubber monomer solution, nitrogen was blown into the system to remove oxygen from the system. Then, at 90℃ for 6 hours and then at 100℃.
After polymerization was carried out for 1 hour, the solution was recovered by steam distillation, and a granular graft copolymer was obtained. To the thus obtained graft copolymer were added 0.1 part of an oxidizing agent dienyl monoisodecyl phosphorite (manufactured by Sanko Kagaku) and 0.3 part of a stabilizer Irganox 1076 (manufactured by Ciba Geigy), and the mixture was heated in a Henschel mixer. After mixing, the mixture was extruded and kneaded using a 40 mmφ extruder at a cylinder temperature of 220° C., and pelletized to obtain a graft copolymer H. Examples 1 to 5 The graft copolymers (A) to (E) prepared in Reference Example 1 and polycarbonate (Lexan 101, manufactured by General Electric Company) were mixed in the proportions shown in Table 1 using a Henschel mixer, and the following The resin was extruded using a 40 mmφ extruder at a resin temperature of 240°C, and each pellet was formed into pellets. Each pellet was then subjected to injection molding at a cylinder temperature of 240°C and a mold temperature of 80°C to prepare each test piece. We evaluated its characteristics. These results are also shown in Table 1. Comparative Examples 1 to 4 Graft copolymers (F) to (H) prepared in Reference Example 2 and polycarbonate (Lexan 101, manufactured by General Electric Company) were prepared in the proportions shown in Table 1 in the same manner as in Examples. The physical properties were measured. Table 1 also shows the results of measuring the physical properties of polycarbonate alone. Comparative Examples 5 to 9 Each graft copolymer (A) to (E) obtained in Reference Example 1
were extruded using an extruder at a resin temperature of 220°C to form pellets. Next, each pellet was subjected to injection molding at a cylinder temperature of 230°C and a mold temperature of 50°C to prepare each test piece, and its properties were evaluated. These results

【表】 を表1に示す。 表1から明らかなように、本発明の方法で得ら
れたグラフト共重合体(A)〜(E)は、いずれも耐衝撃
性および成形加工性が均衝にすぐれているが、耐
熱性については十分なものが得られていない。 また他の重合方法で得たグラフト共重合体(F)〜
(H)とポリカーボネートを混合して、混練しても耐
熱性および成形性はすぐれているが、耐衝撃性が
劣る。しかるに、本発明の方法で得たグラフト共
重合体(A)〜(E)とポリカーボネートを混合して混練
することにより、耐衝撃性、耐熱性および成形加
工性が均衝にすぐれた組成物が得られる。
[Table] is shown in Table 1. As is clear from Table 1, the graft copolymers (A) to (E) obtained by the method of the present invention all have excellent impact resistance and moldability, but the heat resistance are not getting enough. Also, graft copolymers (F) obtained by other polymerization methods ~
Even if (H) and polycarbonate are mixed and kneaded, the heat resistance and moldability are excellent, but the impact resistance is poor. However, by mixing and kneading the graft copolymers (A) to (E) obtained by the method of the present invention with polycarbonate, a composition with excellent impact resistance, heat resistance, and moldability can be obtained. can get.

Claims (1)

【特許請求の範囲】[Claims] 1 ()(A)エチレン−プロピレン−ジエン系ゴ
ム、(B)(a)芳香族ビニル系単量体および/または(b)
メタクリル酸エステル系単量体55〜95重量%、(c)
シアン化ビニル系単量体5〜45重量%および(d)こ
れらと共重合可能な他のビニル系単量体0〜30重
量%からなる単量体混合物および(C)炭化水素系溶
媒を(A)10〜60重量部および(B)40〜90重量部の合計
100重量部に対し(C)が20〜400重量部となる割合で
配合した溶液を、水系懸濁状態で重合させて得ら
れる粒状のグラフト共重合体10〜90重量部および
()ポリカーボネート90〜10重量部を溶融混練
してなる熱可塑性樹脂組成物。
1 () (A) ethylene-propylene-diene rubber, (B) (a) aromatic vinyl monomer and/or (b)
Methacrylic acid ester monomer 55-95% by weight, (c)
A monomer mixture consisting of 5 to 45% by weight of a vinyl cyanide monomer and (d) 0 to 30% by weight of another vinyl monomer copolymerizable with these and (C) a hydrocarbon solvent ( Total of A) 10-60 parts by weight and (B) 40-90 parts by weight
10 to 90 parts by weight of a granular graft copolymer obtained by polymerizing a solution containing 20 to 400 parts by weight of (C) in an aqueous suspension state and 90 to 90 parts by weight of () polycarbonate per 100 parts by weight. A thermoplastic resin composition obtained by melting and kneading 10 parts by weight.
JP11577683A 1983-06-29 1983-06-29 Thermoplastic resin composition Granted JPS608351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11577683A JPS608351A (en) 1983-06-29 1983-06-29 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11577683A JPS608351A (en) 1983-06-29 1983-06-29 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS608351A JPS608351A (en) 1985-01-17
JPS6350369B2 true JPS6350369B2 (en) 1988-10-07

Family

ID=14670766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11577683A Granted JPS608351A (en) 1983-06-29 1983-06-29 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS608351A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524552A (en) * 1975-06-28 1977-01-13 Japan Synthetic Rubber Co Ltd Thermoplastic resin composition
JPS52168937U (en) * 1976-06-16 1977-12-21
JPS5365349A (en) * 1976-11-23 1978-06-10 Bayer Ag Molding composition
JPS5714934A (en) * 1980-06-30 1982-01-26 Toshiba Corp Input/output channel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524552A (en) * 1975-06-28 1977-01-13 Japan Synthetic Rubber Co Ltd Thermoplastic resin composition
JPS52168937U (en) * 1976-06-16 1977-12-21
JPS5365349A (en) * 1976-11-23 1978-06-10 Bayer Ag Molding composition
JPS5714934A (en) * 1980-06-30 1982-01-26 Toshiba Corp Input/output channel

Also Published As

Publication number Publication date
JPS608351A (en) 1985-01-17

Similar Documents

Publication Publication Date Title
JPH0134461B2 (en)
JPS63146960A (en) Thermoplastic resin composition
JPH0554500B2 (en)
CA1262978A (en) Weather resistant thermoplastic resin composition
JPH02272050A (en) Transparent thermoplastic resin composition
US4395516A (en) Thermoplastic resin compositions comprising copolymer of unsaturated dicarboxylic acid anhydride and vinyl aromatic monomer, ABS, and methylmethacrylate polymer
JPS6350369B2 (en)
JPH0730228B2 (en) Matte thermoplastic resin composition
KR20030097298A (en) Thermoplastic resin composition superior elongation in high temperature and method for preparing thereof
KR100372568B1 (en) Thermoplastic Resin Composition
JPH05202263A (en) Thermoplastic resin composition
JPS63234055A (en) Thermoplastic polymer composition
JPS5942017B2 (en) thermoplastic resin composition
JP3386532B2 (en) Thermoplastic resin composition
KR0125707B1 (en) Thermoplastic polyamide resin composition
JPH0611837B2 (en) Thermoplastic resin composition
JPH0674363B2 (en) Rubber-modified thermoplastic resin composition
JPH0125337B2 (en)
JPH0827336A (en) Thermoplastic resin composition
JPS6129982B2 (en)
KR970004668B1 (en) Thermoplastic resin composition
JPH0623294B2 (en) Thermoplastic resin composition
JPH0977841A (en) Styrenic resin composition
JPH01311160A (en) Matte resin composition
JPS5883058A (en) Thermoplastic resin composition