JPS634850B2 - - Google Patents

Info

Publication number
JPS634850B2
JPS634850B2 JP16048083A JP16048083A JPS634850B2 JP S634850 B2 JPS634850 B2 JP S634850B2 JP 16048083 A JP16048083 A JP 16048083A JP 16048083 A JP16048083 A JP 16048083A JP S634850 B2 JPS634850 B2 JP S634850B2
Authority
JP
Japan
Prior art keywords
rubber
reactor
polymerization
circulation line
mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16048083A
Other languages
Japanese (ja)
Other versions
JPS6053515A (en
Inventor
Noribumi Ito
So Iwamoto
Tetsuyuki Matsubara
Toshihiko Ando
Tetsuo Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP16048083A priority Critical patent/JPS6053515A/en
Publication of JPS6053515A publication Critical patent/JPS6053515A/en
Publication of JPS634850B2 publication Critical patent/JPS634850B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1868Stationary reactors having moving elements inside resulting in a loop-type movement
    • B01J19/1881Stationary reactors having moving elements inside resulting in a loop-type movement externally, i.e. the mixture leaving the vessel and subsequently re-entering it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1868Stationary reactors having moving elements inside resulting in a loop-type movement
    • B01J19/1875Stationary reactors having moving elements inside resulting in a loop-type movement internally, i.e. the mixture circulating inside the vessel such that the upwards stream is separated physically from the downwards stream(s)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/20Stationary reactors having moving elements inside in the form of helices, e.g. screw reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はゴム変性スチレン系樹脂の連続的製造
方法に関する。さらに詳しくは、ゴム変性スチレ
ン系樹脂を塊状もしくは溶液重合法で連続的に製
造する方法において、ゴム状重合体を分散粒子化
する方法に関する。 これまで0.1〜10μの平均径を有するゴム状重合
体粒子を分散したゴム変性スチレン系樹脂を連続
的に製造することは広く行なわれている。製品中
のゴム状重合体粒子の大きさは衝撃強度、光沢等
の性能に大きな影響を与えるので、粒子径の調節
操作はゴム変性スチレン系樹脂製造技術の中でも
極めて重要な位置を占めている。ゴム状重合体を
含む相(ゴム相)を分散粒子に転換する操作とし
て、単量体の重合体への転化率の比較的低い段階
で強い撹拌を施こす方法は公知である。また、か
かる工程において、撹拌槽型反応器を用いること
も特開昭57−96006号により知られてい。 しかしながら、近年ゴム変性スチレン系樹脂の
用途の拡大に伴う市場からの高性能製品の要求お
よびより効率的製法による低コスト生産志向の高
まりに対応するために、連続的製造法におけるゴ
ム状重合体の分散粒子化に関して、次のような課
題の解決が要請されている。 即ち、 (1) 単一の製造装置で衝撃物性及び成形物の表面
光沢等の市場の要求性能のバランスに応じた平
均粒子径、ゴム含有量及び/またはゴムの種類
の異なる銘柄を自在に製造できること。例えば
特開昭57−96006の方法は簡便な方法ではある
が、粒子径を0.8μ以下にするのに多大な撹拌動
力を要する点に改善の余地が残されていた。 (2) 衝撃物性、光沢性能及びその他の成形物の外
観性能をより良くする為に粒子化操作段階での
巨大粒子(フイツシユアイとして観察される)
の発生を防止すること。 (3) 反応器の洗浄操作を回避する為に粒子段階で
のゴム状物質の反応器壁への付着を防止するこ
と。 (4) より高い衝撃物性や難燃化剤等の混合による
ゴム変性スチレン系樹脂の性能低下の補償等の
要求に応じるために、例えば樹脂中10%以上の
高濃度のゴムを含有したゴム変性スチレン系樹
脂を製造する際に、溶解ゴム濃度の高い(通常
ゴム濃度9%以上20%以下を指す)原料を重合
に供して、ゴム状重合体を分散粒子化できるこ
と。 一般に、ゴム変性スチレン系樹脂の中に分散さ
れたゴム状重合体の粒子形状及び大きさは、ゴム
状重合体を含むゴム相が連続相をなす状態から不
連続相をなす状態に転換する際の条件、即ち、分
散粒子に転換する操作(本発明ではこの操作を粒
子化操作という)を行う際の条件によつて決定さ
れる。ゴム変性スチレン系樹脂の連続的製造方法
においては、この粒子化操作が反応流体の移動操
作及び重合操作と並行して実施されるので、通常
のスチレン系樹脂の連続的製造方法やゴム変性ス
チレン系樹脂の回分的製造方法に比して難度が高
く、そのためにこれまでに複雑な操作を要する幾
つかの解決方法が提案されている。例えば特公昭
55−8826では重合液の一部を反応器より抜き出し
管型反応器内の相転換の生じている位置の前の位
置に戻す方法、特公昭52−29793では粒子化に先
だち予備グラフト化と称する予備的重合を行う方
法、特開昭53−7794では反応転化率が30〜80%の
重合液を原料と混合する方法、また特開昭51−
114490では重合液の一部を原料系に循環する方法
が提案されている。 本発明者らは前記課題の重要性に鑑み鋭意研究
を重ねた結果、外部循環ラインを備えた特定の撹
拌槽反応器を使用し、特別に限定された条件のも
とにゴム状重合体を含むゴム相を粒子化すること
により、複雑な操作を要せず、極めて効率的に前
記課題が解決できることを見い出し、本発明に到
達した。 即ち、本発明は内部にドラフトチユーブ付スク
リユー翼又はダブルヘリカル型撹拌翌を備え、外
部に反応器内の流体を循環させるラインを持つ撹
拌槽型反応器を用いてゴム状重合体を含むゴム相
を分散粒子に転換する工程を有する溶液もしくは
塊状重合法によつてゴム変性スチレン系樹脂を連
続的に製造する方法に於いて、 (A) 前記外部の循環ラインを閉鎖して測定される
前記反応器内の流体の平均循環回数が10回/時
間以上となるように前記撹拌翼を回転させ、 (B) 前記外部循環ラインには、上流側から、(1)反
応器から流体を排出循環させるためのポンプ、
(2)新たに供給されるゴム溶液の供給口、(3)新た
に供給されるゴム溶液と循環流体を混合するた
めの静止型混合器及び、(4)強制混合するための
ラインミキサーを備え、かつ、 (C) 前記反応器から前記外部循環ラインへ排出循
環させる流体の流量F1(/Hr)と、新たに該
循環ラインへ供給するゴム溶液の流量F2(/
Hr)との関係を1≦F1/F2<50を満足するよ
うに維持し、かつ、 (D) 上記反応器内のゴム状重合体の割合をX1
量%、重合せしめるべき単量体の重合体への転
化物の総量をX2重量%とするとき、X1及びX2
の値を、 20≧X1>1 かつ 50≧X2≧2.4 X1―0.05 X2 1 を満足する様に維持することを特徴とするゴム
変性スチレン系樹脂の製造方法である。 本発明において、新たに供給されるゴム溶液と
は、ゴム状重合体をスチレン等の単量体、場合に
よつては溶剤を含む液体に溶解したもの、あるい
は、かかる溶液に少量のポリスチレン及び/又は
各種の添加剤等を添加した溶液であつて、ゴム状
重合体が溶液中で連続相を形成しているものをい
う。ゴム状重合体は前もつて予備グラフト化され
たものであつてもよい。 第1図は本発明の方法の実施に好適な外部循環
ラインを備えた撹拌槽型反応器の一例を概念図と
して示したものであり、ゴム状重合体を含む原料
は原料供給口1より供給され、生成重合体を含む
反応混合物は反応混合物排出口2より排出され
る。図中、3は排出循環用ギアポンプ、4はドラ
フトチユーブ、5はスクリユー型撹拌翼であり、
反応器内の流体の混合に有効である。6は静止型
混合器であり、例えば「化学装置21(3)20(1979)」
に例示されている商品名スタテイツクミキサー
(ケニツクス社製)、同スタテイツクミキシングエ
レメント(スルザー社製)、同ロスISGミキサー、
同ロスLPDミキサー(チヤールズロス社製)、同
スクウアーミキサー(桜製作所製)、同ハニカム
ミキサー、同イムスタツトミキサー(巽工業製)、
シマザキパイプミキサー(晃立工業製)、同ハイ
ミキサー(東レ製)等の混合器要素を挙げること
ができる。これらの混合器要素は、通常、管内に
おける混合液体の流れ方向に単数あるいは複数個
設置して使用される。更に図中7はラインミキサ
ーであり、例えば化学工業社発行による「撹拌装
置」に例示されているバツフル付き食違いパース
型(Mixing Equipment社製)、バツフル付アン
グル型(Chemineer社製)、バツフル付き偏芯ア
ングル型(佐竹化学工業社製)、オリフイス板付
直管型(佐竹化学工業社製)等を挙げることがで
きる。静止型混合器6は巨大粒子のゴム状重合体
を生成を防止する上で極めて有効である。また、
ラインミキサーは、ゴム状重合体と分散粒子化す
る上で極めて有効であり、ラインミキサーの回転
数を変更することにより、任意の平均径を有する
ゴム状重合体を自在につくりわけること、特にゴ
ム粒子径を微細にすることが可能となり、従来の
溶液もしくは塊状重合法によるゴム変性スチレン
系樹脂の連続的な製造方法に比較し、ゴム粒子径
を調整する上で極めて簡便である。 本発明の要件(A)で規定する平均循環回数は、反
応器内の撹拌翼による撹拌効率のパラメーターと
なるもので、次の様に定義される。即ち外部の循
環ラインを閉鎖した上で反応器内を約1ポアズの
機械オイルもしくはポリスチレンを溶解した溶液
で満たし撹拌を行ない、撹拌を継続しつつ溶剤に
溶解した一定量の可溶性の標識物質(染料、溶
剤)を瞬間的に注入し、それ以後経時的に反応槽
中の液体を少量づつ抜き取り、このサンプルの標
識物質濃度と理論混合濃度の相対的な差異が5%
以内となるのに要する時間をTm(時間)とした
とき、平均循環回数は次式で示される値として定
義される。 平均循環回数(回/時間)=3/Tm 例えば、Tmが0.2時間の場合は15回/時間であ
る。サンプルの標識物質濃度は比色光度計、ガス
クロマトグラフ等を用いることにより測定可能で
ある。これまで例えばポリスチレンの重合時等に
生ずる高粘度流体の混合を撹拌槽で実施しうる事
は当業者には周知である。しかしながら、ゴム状
重合体の粒子化を安定した運転状態を保持して連
続的に実施するのは容易ではない。本発明者らは
ドラフト付スクリユー型撹拌翼又はダブルヘリカ
ル型撹拌翼を有する反応器で、外部の循環ライン
を閉鎖して測定される反応器内の流体の平均循環
回数を10回/時間以上、好ましくは25回/時間以
上に維持し、かつ外部循環ラインを後述するよう
な条件で運転することが、安定した運転状態、即
ち重合性単量体の重合体への重合転化率、生成重
合体の平均分子量および生成ゴム状重合体粒子の
平均粒子径を一定値に保持し乍ら長時間運転する
ことを可能にするための必要条件であることを見
い出した。 本発明の要件(C)で規定した反応器の外部循環ラ
インへ反応器から排出循環させる単量体、溶剤と
重合体の重合流体の流量F1(/Hr)は、このラ
インに新たに供給されるゴム溶液の流量F2(/
Hr)に対し、同量以上50倍以下にすることが必
要である。新たに供給されるゴム溶液流量よりも
循環流量が少い場合には、反応器内の粒子化され
たゴム状重合体が新たに供給されるゴム溶液供給
口以後に於て連続相に逆戻りする程度が激しくな
り、静止型混合器内で重合体の付着現象が出現
し、安定運転に困難をもたらし、時には得られた
製品の成形物での不良現象の原因となる。一方循
環流量を過大にすると、混合器での滞留時間が短
かくなり所望の粒径を得ることが困難となり、且
つ工業的にも動力を過大に消費し合理的ではな
い。従つて、F1/F2は1から50の範囲、好まし
くは1.5〜10の範囲より選ばれる。 本発明においては要件(D)で規定したように、撹
拌槽型反応器におけるゴム状重合体(X1重量%)
と重合せしめるべき単量体の重合体への転化総量
(X2重量%)の値は、20≧X1>1かつ50≧X2
2.4X1―0.05X2 1を満足せねばならない。粒子化操
作を行う撹拌槽型反応器における単量体の重合体
への転化総量は、重合温度、撹拌槽型反応器への
供給原料組成、原料供給量及び/または重合開始
剤の供給量等の操作条件によつて調節可能であ
る。X2<2.4X1―0.05X2 1の場合には粒子化できな
くなるかあるいは粒子化できた場合においても巨
大粒子の発生が生じる。X1>20あるいはX2>50
の場合には粒子化操作に要する所要撹拌動力が大
きくなり、また小粒径製品を製造するのが困難と
なる。一方、X1≦1に於ては、通常の操作条件
では製品中のゴム含量が低くなり実用には供せな
い。通常、X1は好ましくは15≧X1≧2の範囲よ
り選ばれる。X2の値は上記の如く、粒子化操作
を行う際の運転条件で自由に調節でき、通常ゴム
状重合体の濃度に応じて好ましくは10〜40の範囲
より選ばれる。 本発明の目的の達成の為には、本発明の構成要
件(A)、(B)、(C)、(D)のすべてが満足されねばならな
い。(A)〜(D)のうちいずれの1つが欠せても本発明
の効果は得られない。 ゴム変性スチレン系樹脂のゴム粒子の平均粒子
径が、ゴムの種類、粒子化操作を行う際の単量体
の重合体への転化率、連鎖移動剤の量、撹拌強度
等に左右される事は公知である。しかしながら、
本発明の方法では、ゴムの種類及び、例えばメル
カプタン類やアルキルベンゼン等の連鎖移動剤の
量を任意に選ぶことができ、単量体の重合体への
転化総量を要件(D)の規定を満足するように選ぶこ
とができ、更に外部循環ラインへの反応器内流体
の流量を新たに供給されるゴム溶液流量に対し、
1ないし50倍の範囲に保持しつつ、ラインミキサ
ーでの撹拌強度を変更することができるので、希
望する平均粒子径を有する製品の製造条件は広い
範囲から選ぶことができる。斯くしてゴムの種
類、平均粒子径、ゴム含有量の異なる銘柄を自在
につくりわけることができる。 本発明の方法においてはゴム状重合体はスチレ
ン系単量体や溶剤等に溶解されて用いられる。 本発明で言うゴム状重合体としては室温におい
てゴム状を呈している物質であればよく、例えば
ポリブタジエン、スチレン―ブタジエン共重合
体、ブロツクスチレンブタジエン共重合体、エチ
レンプロピレン系共重合体、エチレン・プロピレ
ン・非共役ジエンの三元共重合体等があげられ
る。 本発明で用いる単量体としては、例えばスチレ
ン、メチルスチレン、エチルスチレン、イソプロ
ピルスチレン等のアルキルスチレン、クロロスチ
レン、ブロムスチレン等のビニル基置換または核
置換のハロゲン化スチレン、ハロゲン化アルキル
スチレン等のスチレン系単量体の少くとも1種が
用いられ、スチレン、パラメチルスチレンが特に
好ましく用いられる。本発明においてはスチレン
系単量体と共重合可能な単量体をスチレン系単量
体とともに重合に供しても良いが、この様な単量
体としては、例えば、アクリロニトリル、メタア
クリロニトリル、シアン化ビニリデン、アクリル
酸及びメタアクリル酸並びにそれらのアルキルエ
ステル等の一種もしくは二種以上が用いられる。 本発明の方法においては、溶剤として例えばエ
チルベンゼン、エチルトルエン、トルエン、キシ
レン、エチルキシレン、ジエチルベンゼン等を用
いることができる。このような溶剤の反応器への
供給量は特に制限はないが、重合反応器に供給す
る総単量体を100重量部として50重量部を越えな
いことが望ましい。その理由は溶剤により有効反
応容積が減少すること及び溶剤の回収にエネルギ
ーを要する為である。 本発明においては、単量体の重合は熱開始もし
くは重合開始剤による開始で行なわれる。重合開
始剤としてはスチレン系単量体に対して重合開始
機能を有するものであれば良い。重合の温度は重
合開始剤の存在または不存在での慣用の温度が用
いられる。粒子化段階での重合温度は通常60〜
180℃の範囲が用いられる。 本発明の方法を用いて粒子化操作を行つた後、
さらに重合反応を行つても良い。かかる重合反応
は1つまたは複数個の撹拌槽型反応器または管型
反応器において実施される。この様な場合、粒子
化操作を行つた後の段階での単量体の重合体への
転化率は、全反応器への単量体の総供給量の50〜
100%程度に高められる。通常、重合操作の終了
後、脱揮発分操作を経て製品が得られる。粒子化
を行つた後の重合に際しては新たに単量体、溶
剤、重合開始剤及び分子量調節剤等の添加剤等を
加えても良い。 本発明で得られるゴム変性ポリスチレン系樹脂
は、単独で使用することもできるが、用途に応じ
て他のスチレン系樹脂を配合して使用しても良
い。またスチレン系樹脂に用いられる熱、光、酸
素に対する安定剤、難燃化剤、可塑剤、着色剤、
滑剤、帯電防止剤等を反応器への供給によつて、
または製品樹脂へ直接混合することによつて添加
しても良い。 本発明の方法によれば、広い運転の自由度のも
とに極めて効率的に単一の製造装置において任意
の平均粒子径、ゴム含有量及び/またはゴムの種
類の異なる銘柄を自在につくりわけることがで
き、さらに巨大粒子が実質的に皆無の製品をつく
ることができ、更にまたゴム状物質等の重合体の
反応器壁への付着を完全に防止でき、更にまた高
ゴム濃度の重合液の場合にも分散粒子化操作を行
うことができる。このように本発明はゴム変性ス
チレン系樹脂の用途の拡大に伴う高品質製品の製
造要求とより効率的製法による低コスト生産の要
求に答える方法を提供し、その工業的利用価値は
極めて大きいものである。 次に本発明の実施例を示す。 実施例 1 第1図に示すような外部の循環ラインを持つ1
つの撹拌槽型反応器とこれに続く2つの管型反応
器(不図示)を用いて本発明の方法に基づくゴム
変性スチレン系樹脂の製造を行つた。撹拌槽型反
応器は内容積18.0でドラフトチユーブ付スクリ
ユー翼型撹拌機を内装している。また、撹拌槽型
反応器の外部循環ラインには、循環ポンプ、原料
供給口、静止型混合器(スルザーミキサーズ、タ
イプSMX DN10を4エレメント使用)及びライ
ンミキサー(混合部容積350ml、撹拌翼:4枚翼
傾斜タビン、翼半径3.4cm)が順次設置されてい
る。 ポリブタジエンゴム(旭化成社製、商品名ジエ
ン55、以下の実施例についても同品)7重量部を
スチレン93重量部に溶解し、この原料溶液を8
/Hr(F2)の割合で外部循環ライン上の原料供
給口1へ供給した。循環ラインを流れる流体の速
度が88/Hr(F1)となるように循環ポンプを調
節した。静止型混合器6で予備混合された流体
は、ラインミキサーの撹拌回転数1450r.p.mで強
制撹拌し、撹拌槽型反応器へリサイクルした。撹
拌槽型反応器の温度は127℃に調節した。撹拌翼
の回転速度は50r.p.mとし、この撹拌状態で平均
循環回数を測定すると25回/時間であつた。一
方、外部循環ライン、静止型混合器、ラインミキ
サーのジヤケツトは100℃に調節した。定常状態
に於て重合液の一部を抜き出し反応混合物排出口
に設けられたサンプリング口(不図示)より生成
したポリスチレンの濃度を測定した。 撹拌槽型反応器の反応混合物排出口から抜き出
した重合液は、撹拌槽型反応器に直列した2段の
管型反応器に導入し、更に重合を継続した。管型
反応器を出た重合液は脱揮発分槽に導かれ、温度
230℃30mmHgの真空度で脱揮発を施して製品樹脂
を得た。 製品樹脂中のゴム状重合体の平均粒子径は電子
顕微鏡写真(1万倍)に基づき体積平均径測定し
た。また製品を0.1mmの厚さに押し出して0.2mm2
上の面積を有するフイツシユアイの個数を測定し
た。24時間定常状態で運転した後撹拌槽型反応器
をエチルベンゼンで置換しその後、空にして槽内
を肉眼で観察したが付着物はみられなかつた。こ
れらの観察及び分析結果を表1に示す。以下の実
施例においても同様の観察及び分析測定を行つ
た。 実施例 2および3 撹拌翼の回転数を変更した他は実施例1と全く
同様にして運転を行つた。結果を表1に示した。 実施例 4 原料組成をポリブタジエン14重量部スチレン86
重量部とし、撹拌槽型反応器温度を136℃とし、
撹拌翼の回転数を150r.p.mとした他は実施例1と
全く同様にして運転を行つた。結果を表1に示し
た。 実施例 5および6 循環ラインへの排出流量(F1)を変更した他
は実施例1と全く同様にして運転を行つた。結果
を表1に示した。 実施例 7 撹拌槽型反応器内装の撹拌翼をダブルヘリカル
型とし、撹拌翼の回転数を変更した他は、実施例
1と同様にして運転を行つた。結果を表1に示し
た。 比較例 1 撹拌翼の回転数を10r.p.mとした他は実施例1
と全く同様にして運転を行つた。運転時間の経過
とともに撹拌槽型反応器での重合率の低下が生じ
た。その他の結果を表1に示した。 比較例 2 実施例7で使用した反応器を使用し、外部循環
ラインの流量を6/Hrとした以外は実施例7
と全く同様にして運転を行つた。結果を表1に示
した。 比較例 3 外部循環ラインのラインミキサーのみ取りはず
した他は実施例3と全く同様にして運転を行つ
た。結果を表1に示した。 比較例 4 外部循環ラインの静止型混合器のみ取りはずし
た他は実施例2と全く同様にして運転した。結果
を表1に示した。 比較例 5 供給量を11/Hr、反応温度を123℃とした他
は実施例1と全く同様に運転した。撹拌槽型反応
器で粒子化を行うことができなかつた。その他の
結果を表1に示した。 実施例 8 ラインミキサーの撹拌回転数を1950r.p.mとし
た他は実施例1と同様に運転した。結果を表1に
示す。
The present invention relates to a continuous method for producing rubber-modified styrenic resins. More specifically, the present invention relates to a method for continuously producing a rubber-modified styrenic resin by bulk or solution polymerization, in which a rubbery polymer is dispersed into particles. Until now, it has been widely practiced to continuously produce rubber-modified styrenic resins in which rubber-like polymer particles having an average diameter of 0.1 to 10 μm are dispersed. Since the size of the rubbery polymer particles in a product has a great effect on performance such as impact strength and gloss, particle size adjustment plays an extremely important role in the manufacturing technology of rubber-modified styrenic resins. As an operation for converting a phase containing a rubbery polymer (rubber phase) into dispersed particles, a method of applying strong stirring at a stage where the conversion rate of monomers to polymer is relatively low is known. It is also known from JP-A-57-96006 to use a stirred tank reactor in this process. However, in recent years, the use of rubber-modified styrenic resins has expanded, and in order to respond to the market's demand for high-performance products and the growing desire for low-cost production through more efficient manufacturing methods, the use of rubber-like polymers in continuous manufacturing methods has been increasing. Regarding dispersed particle formation, the following problems are required to be solved. In other words, (1) A single production device can freely produce brands with different average particle diameters, rubber contents, and/or types of rubber depending on the balance of market-required performance such as impact properties and surface gloss of molded products. What you can do. For example, the method disclosed in JP-A-57-96006 is a simple method, but there remains room for improvement in that it requires a large amount of stirring power to reduce the particle size to 0.8 μm or less. (2) Huge particles (observed as fish eyes) during the granulation process to improve impact properties, gloss performance, and other appearance properties of molded products.
To prevent the occurrence of (3) To prevent rubber-like substances from adhering to the reactor walls at the particle stage in order to avoid reactor cleaning operations. (4) In order to meet the demands for higher impact properties and compensation for performance degradation of rubber-modified styrenic resins due to the addition of flame retardants, etc., rubber-modified resins containing a high concentration of rubber of 10% or more in the resin, etc. When producing styrenic resins, raw materials with a high dissolved rubber concentration (usually refers to a rubber concentration of 9% or more and 20% or less) are subjected to polymerization, and the rubbery polymer can be dispersed into particles. Generally, the particle shape and size of the rubbery polymer dispersed in the rubber-modified styrenic resin change when the rubber phase containing the rubbery polymer changes from a continuous phase to a discontinuous phase. It is determined by the conditions for performing the operation of converting into dispersed particles (in the present invention, this operation is referred to as a particulate operation). In the continuous production method for rubber-modified styrenic resins, this granulation operation is carried out in parallel with the reaction fluid transfer operation and the polymerization operation, so it is different from the conventional continuous production method for styrene-based resins and rubber-modified styrene resins. This is more difficult than the batchwise production method of resins, and for this reason several solutions have been proposed that require complex operations. For example, Tokkosho
55-8826 describes a method in which a part of the polymerization liquid is extracted from the reactor and returned to the position in front of the position where the phase transformation occurs in the tubular reactor, and in Japanese Patent Publication No. 52-29793, it is called preliminary grafting prior to particle formation. A method of preliminary polymerization is described in JP-A-53-7794, in which a polymerization solution with a reaction conversion rate of 30 to 80% is mixed with raw materials, and JP-A-51-7794 is a method of performing preliminary polymerization.
No. 114490 proposes a method of circulating a portion of the polymerization liquid into the raw material system. The inventors of the present invention have conducted intensive research in view of the importance of the above-mentioned problem, and as a result, they have developed a system for producing rubber-like polymers under specially limited conditions using a specific stirred tank reactor equipped with an external circulation line. It has been discovered that the above-mentioned problems can be solved extremely efficiently by making the rubber phase contained in particles into particles without requiring complicated operations, and the present invention has been achieved based on this finding. That is, the present invention uses a stirred tank type reactor which is equipped with a screw blade with a draft tube or a double helical type stirrer on the inside and has a line for circulating the fluid inside the reactor on the outside. In a method for continuously producing a rubber-modified styrenic resin by a solution or bulk polymerization method, which includes a step of converting a rubber-modified styrenic resin into dispersed particles, (A) the reaction measured with the external circulation line closed; The stirring blade is rotated so that the average number of times the fluid is circulated in the vessel is 10 times/hour or more, and (B) the external circulation line is configured to discharge and circulate fluid from the reactor from the upstream side. pump for,
Equipped with (2) a supply port for the newly supplied rubber solution, (3) a static mixer for mixing the newly supplied rubber solution and the circulating fluid, and (4) a line mixer for forced mixing. , and (C) the flow rate F 1 (/Hr) of the fluid discharged and circulated from the reactor to the external circulation line, and the flow rate F 2 (/Hr) of the rubber solution newly supplied to the circulation line.
Hr) so as to satisfy 1≦F 1 /F 2 <50, and (D) the proportion of the rubbery polymer in the above reactor is X 1 % by weight, the monomer to be polymerized. X 1 and X 2 when the total amount of products converted to polymer is X 2 % by weight
This is a method for producing a rubber-modified styrenic resin, characterized by maintaining the values of 20≧X 1 >1 and 50≧X 2 ≧2.4 X 1 -0.05 X 2 1 . In the present invention, the newly supplied rubber solution is one in which a rubbery polymer is dissolved in a liquid containing a monomer such as styrene, and in some cases a solvent, or a solution containing a small amount of polystyrene and/or a solution. Alternatively, it refers to a solution containing various additives, etc., in which a rubbery polymer forms a continuous phase in the solution. The rubbery polymer may be previously pregrafted. Figure 1 shows a conceptual diagram of an example of a stirred tank reactor equipped with an external circulation line suitable for carrying out the method of the present invention, and raw materials containing a rubbery polymer are supplied from raw material supply port 1. The reaction mixture containing the produced polymer is discharged from the reaction mixture discharge port 2. In the figure, 3 is a gear pump for discharge circulation, 4 is a draft tube, and 5 is a screw type stirring blade.
Effective for mixing fluids in the reactor. 6 is a static mixer, for example "Chemical Equipment 21 (3) 20 (1979)"
The product names exemplified in ``Static Mixer'' (manufactured by Kenix), ``Static Mixing Element'' (manufactured by Sulzer), ``Ross ISG Mixer'',
The same Ross LPD mixer (manufactured by Charles Ross), the same squir mixer (manufactured by Sakura Seisakusho), the same honeycomb mixer, the same Imstat mixer (manufactured by Tatsumi Kogyo),
Mixer elements such as Shimazaki Pipe Mixer (manufactured by Kouritsu Kogyo) and Hi-mixer (manufactured by Toray Industries) can be mentioned. These mixer elements are usually used by installing one or more in the flow direction of the mixed liquid in the pipe. Furthermore, 7 in the figure is a line mixer, for example, a staggered perspective type with a buttful (manufactured by Mixing Equipment), an angle type with a buttfull (manufactured by Chemineer), and a line mixer with a buttfull, as exemplified in "Stirring Apparatus" published by Kagaku Kogyo Co., Ltd. Examples include an eccentric angle type (manufactured by Satake Chemical Industry Co., Ltd.) and a straight pipe type with orifice plate (manufactured by Satake Chemical Industry Company). The static mixer 6 is extremely effective in preventing the formation of large particles of rubbery polymer. Also,
Line mixers are extremely effective in dispersing rubber-like polymers into particles, and by changing the rotation speed of the line mixer, it is possible to freely create rubber-like polymers with any average diameter. It is possible to make the particle size finer, and it is extremely easy to adjust the rubber particle size compared to the conventional continuous production method of rubber-modified styrenic resin using a solution or bulk polymerization method. The average circulation number specified in requirement (A) of the present invention is a parameter of the stirring efficiency by the stirring blade in the reactor, and is defined as follows. That is, after closing the external circulation line, the inside of the reactor is filled with approximately 1 poise of mechanical oil or a solution in which polystyrene is dissolved, and stirred.While stirring is continued, a certain amount of a soluble labeling substance (dye) dissolved in the solvent is , solvent) was injected instantaneously, and then the liquid in the reaction tank was withdrawn little by little over time, and the relative difference between the concentration of the labeled substance in this sample and the theoretical mixed concentration was 5%.
When the time required to reach within Tm (time), the average number of circulations is defined as the value shown by the following formula. Average number of circulations (times/hour) = 3/Tm For example, when Tm is 0.2 hours, it is 15 times/hour. The concentration of the labeling substance in the sample can be measured using a colorimeter, gas chromatograph, or the like. It is well known to those skilled in the art that mixing of highly viscous fluids, such as those that occur, for example, during the polymerization of polystyrene, can be carried out in stirred tanks. However, it is not easy to continuously form particles of a rubbery polymer while maintaining stable operating conditions. The present inventors used a reactor having a screw type stirring blade with a draft or a double helical type stirring blade, and the average number of circulations of the fluid in the reactor, which was measured with the external circulation line closed, was 10 times/hour or more. Preferably, it is maintained at 25 times/hour or more, and the external circulation line is operated under the conditions described below to maintain a stable operating state, that is, the polymerization conversion rate of the polymerizable monomer to the polymer, and the polymerization rate of the produced polymer. It has been found that these are necessary conditions to enable long-term operation while maintaining the average molecular weight of the rubber-like polymer particles and the average particle diameter of the rubbery polymer particles formed at constant values. The flow rate F 1 (/Hr) of the polymer mixture of monomer, solvent, and polymer to be discharged and recycled from the reactor to the external circulation line of the reactor specified in requirement (C) of the present invention is the new supply to this line. The flow rate of rubber solution F 2 (/
Hr), it is necessary to increase the amount by more than the same amount and less than 50 times. If the circulating flow rate is lower than the newly supplied rubber solution flow rate, the particulate rubbery polymer in the reactor returns to the continuous phase after the newly supplied rubber solution supply port. The extent of the reaction becomes severe, and the phenomenon of polymer adhesion appears in the static mixer, which makes stable operation difficult and sometimes causes defects in the molded products obtained. On the other hand, if the circulation flow rate is increased too much, the residence time in the mixer will be shortened, making it difficult to obtain the desired particle size, and industrially, too much power will be consumed, which is not rational. Therefore, F 1 /F 2 is selected from the range of 1 to 50, preferably from 1.5 to 10. In the present invention, as specified in requirement (D), rubbery polymer (X 1 % by weight) in a stirred tank reactor
The total amount of monomers to be polymerized with the polymer (X 2 % by weight) is 20≧X 1 >1 and 50≧X 2
2.4X 1 - 0.05X 2 1 must be satisfied. The total amount of monomers converted into polymer in the stirred tank reactor in which the granulation operation is carried out depends on the polymerization temperature, the composition of the feedstock to the stirred tank reactor, the amount of raw materials supplied, and/or the amount of polymerization initiator supplied, etc. can be adjusted depending on the operating conditions. In the case of X 2 <2.4X 1 -0.05X 2 1 , particles cannot be made into particles, or even if particles can be made, giant particles are generated. X 1 > 20 or X 2 > 50
In this case, the stirring power required for the granulation operation becomes large, and it becomes difficult to produce a product with a small particle size. On the other hand, when X 1 ≦1, the rubber content in the product becomes too low under normal operating conditions to be of practical use. Usually, X 1 is preferably selected from the range 15≧X 1 ≧2. As mentioned above, the value of X 2 can be freely adjusted depending on the operating conditions during the particle formation operation, and is preferably selected from the range of 10 to 40 depending on the concentration of the rubbery polymer. In order to achieve the object of the present invention, all of the constituent requirements (A), (B), (C), and (D) of the present invention must be satisfied. Even if any one of (A) to (D) is missing, the effects of the present invention cannot be obtained. The average particle diameter of the rubber particles of rubber-modified styrenic resin depends on the type of rubber, the conversion rate of monomers into polymers during particle formation, the amount of chain transfer agent, the stirring intensity, etc. is publicly known. however,
In the method of the present invention, the type of rubber and the amount of chain transfer agent such as mercaptans and alkylbenzene can be arbitrarily selected, and the total amount of monomers converted into polymer satisfies the requirements (D). Furthermore, the flow rate of the fluid in the reactor to the external circulation line can be selected to be equal to the flow rate of the newly supplied rubber solution.
Since the stirring intensity in the line mixer can be changed while maintaining the particle size within the range of 1 to 50 times, the manufacturing conditions for producing a product having a desired average particle size can be selected from a wide range. In this way, brands with different rubber types, average particle diameters, and rubber contents can be freely created. In the method of the present invention, the rubbery polymer is used after being dissolved in a styrene monomer, a solvent, or the like. The rubber-like polymer referred to in the present invention may be any substance that exhibits a rubber-like state at room temperature, such as polybutadiene, styrene-butadiene copolymer, blocked styrene-butadiene copolymer, ethylene-propylene copolymer, ethylene-propylene copolymer, and ethylene-propylene copolymer. Examples include terpolymer of propylene and non-conjugated diene. Monomers used in the present invention include, for example, styrene, alkylstyrenes such as methylstyrene, ethylstyrene, and isopropylstyrene; halogenated styrenes substituted with vinyl groups or substituted with nuclei such as chlorostyrene and bromustyrene; and halogenated alkylstyrenes. At least one type of styrene monomer is used, and styrene and paramethylstyrene are particularly preferably used. In the present invention, a monomer copolymerizable with the styrene monomer may be polymerized together with the styrene monomer, but such monomers include, for example, acrylonitrile, methacrylonitrile, cyanide, etc. One or more of vinylidene, acrylic acid, methacrylic acid, and alkyl esters thereof are used. In the method of the present invention, for example, ethylbenzene, ethyltoluene, toluene, xylene, ethylxylene, diethylbenzene, etc. can be used as the solvent. The amount of such a solvent supplied to the reactor is not particularly limited, but preferably does not exceed 50 parts by weight, based on 100 parts by weight of the total monomers supplied to the polymerization reactor. This is because the effective reaction volume is reduced by the solvent and energy is required to recover the solvent. In the present invention, polymerization of monomers is carried out by thermal initiation or initiation by a polymerization initiator. Any polymerization initiator may be used as long as it has a polymerization initiating function for styrene monomers. The polymerization temperature is a conventional temperature in the presence or absence of a polymerization initiator. The polymerization temperature at the particulate stage is usually 60~
A range of 180°C is used. After performing the particleization operation using the method of the present invention,
Further, a polymerization reaction may be performed. Such polymerization reactions are carried out in one or more stirred tank reactors or tube reactors. In such cases, the conversion rate of monomer to polymer at a stage after the particulation operation is approximately 50% to 50% of the total amount of monomer fed to all reactors.
It can be increased to about 100%. Usually, after the polymerization operation is completed, a product is obtained through a devolatilization operation. During polymerization after particle formation, additives such as monomers, solvents, polymerization initiators, and molecular weight regulators may be added. The rubber-modified polystyrene resin obtained in the present invention can be used alone, but it may also be used in combination with other styrene resins depending on the application. In addition, stabilizers against heat, light, and oxygen used in styrene resins, flame retardants, plasticizers, colorants,
By supplying lubricants, antistatic agents, etc. to the reactor,
Alternatively, it may be added by mixing directly into the product resin. According to the method of the present invention, brands with different average particle diameters, rubber contents, and/or rubber types can be freely produced in a single manufacturing device extremely efficiently with a wide degree of operational freedom. Furthermore, it is possible to produce products with virtually no giant particles, it is also possible to completely prevent polymers such as rubber-like substances from adhering to the reactor walls, and it is also possible to produce polymeric liquids with a high rubber concentration. The dispersion and particle formation operation can also be performed in this case. As described above, the present invention provides a method that meets the demand for manufacturing high-quality products as the uses of rubber-modified styrenic resins expand and the demand for low-cost production through more efficient manufacturing methods, and its industrial utility value is extremely large. It is. Next, examples of the present invention will be shown. Example 1 1 with an external circulation line as shown in Figure 1
A rubber-modified styrenic resin was produced according to the method of the present invention using one stirred tank reactor followed by two tubular reactors (not shown). The stirred tank type reactor has an internal volume of 18.0 mm and is equipped with a screw blade type stirrer with a draft tube. In addition, the external circulation line of the stirred tank reactor is equipped with a circulation pump, a raw material supply port, a static mixer (Sulzer mixers, type SMX DN10 with 4 elements), and a line mixer (mixing section volume 350ml, stirring blades: A four-blade inclined turbine (blade radius 3.4cm) is being installed one after another. 7 parts by weight of polybutadiene rubber (manufactured by Asahi Kasei Co., Ltd., trade name Diene 55, same product for the following examples) was dissolved in 93 parts by weight of styrene, and this raw material solution was dissolved in 8 parts by weight of styrene.
/Hr(F 2 ) was supplied to the raw material supply port 1 on the external circulation line. The circulation pump was adjusted so that the velocity of the fluid flowing through the circulation line was 88/Hr (F 1 ). The fluid premixed in the static mixer 6 was forcibly stirred by the line mixer at a stirring rotation speed of 1450 rpm and recycled to the stirred tank reactor. The temperature of the stirred tank reactor was adjusted to 127°C. The rotational speed of the stirring blade was 50 rpm, and the average number of circulations under this stirring condition was 25 times/hour. Meanwhile, the jackets of the external circulation line, static mixer, and line mixer were adjusted to 100°C. In a steady state, a portion of the polymerization solution was extracted and the concentration of polystyrene produced was measured through a sampling port (not shown) provided at the reaction mixture outlet. The polymerization liquid extracted from the reaction mixture outlet of the stirred tank reactor was introduced into a two-stage tubular reactor connected in series with the stirred tank reactor, and polymerization was further continued. The polymerization liquid exiting the tubular reactor is led to a devolatilization tank where the temperature
A product resin was obtained by devolatilization at 230°C and a vacuum of 30mmHg. The average particle diameter of the rubbery polymer in the product resin was measured by volume average diameter based on an electron micrograph (10,000 times magnification). In addition, the product was extruded to a thickness of 0.1 mm, and the number of fish eyes having an area of 0.2 mm 2 or more was measured. After operating in a steady state for 24 hours, the stirred tank reactor was replaced with ethylbenzene, then emptied and the inside of the tank was visually observed, but no deposits were observed. The results of these observations and analyzes are shown in Table 1. Similar observations and analytical measurements were performed in the following examples. Examples 2 and 3 The operation was carried out in exactly the same manner as in Example 1 except that the rotation speed of the stirring blade was changed. The results are shown in Table 1. Example 4 Raw material composition: 14 parts by weight of polybutadiene, 86 parts by weight of styrene.
parts by weight, the stirred tank reactor temperature is 136°C,
The operation was carried out in exactly the same manner as in Example 1, except that the rotational speed of the stirring blade was 150 rpm. The results are shown in Table 1. Examples 5 and 6 The operation was carried out in exactly the same manner as in Example 1, except that the discharge flow rate (F 1 ) to the circulation line was changed. The results are shown in Table 1. Example 7 The operation was carried out in the same manner as in Example 1, except that the stirring blade inside the stirred tank reactor was of a double helical type and the rotation speed of the stirring blade was changed. The results are shown in Table 1. Comparative example 1 Example 1 except that the rotation speed of the stirring blade was 10 r.pm
I drove in exactly the same way. As the operating time progressed, the polymerization rate in the stirred tank reactor decreased. Other results are shown in Table 1. Comparative Example 2 Example 7 except that the reactor used in Example 7 was used and the flow rate of the external circulation line was set to 6/Hr.
I drove in exactly the same way. The results are shown in Table 1. Comparative Example 3 The operation was carried out in the same manner as in Example 3 except that only the line mixer of the external circulation line was removed. The results are shown in Table 1. Comparative Example 4 The operation was carried out in the same manner as in Example 2, except that only the static mixer in the external circulation line was removed. The results are shown in Table 1. Comparative Example 5 The operation was carried out in the same manner as in Example 1, except that the feed rate was 11/Hr and the reaction temperature was 123°C. Particle formation could not be carried out in a stirred tank reactor. Other results are shown in Table 1. Example 8 The line mixer was operated in the same manner as in Example 1, except that the stirring rotation speed of the line mixer was set to 1950 rpm. The results are shown in Table 1.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の実施に好適な外部循環
ラインを備えた撹拌槽型反応器の一例を概念図と
して示した図である。 1…原料供給口、2…反応混合物排出口、3…
循環ポンプ、4…ドラフトチユーブ、5…スクリ
ユー型撹拌翼、6…静止型混合器、7…ラインミ
キサー。
FIG. 1 is a conceptual diagram showing an example of a stirred tank reactor equipped with an external circulation line suitable for carrying out the method of the present invention. 1... Raw material supply port, 2... Reaction mixture outlet, 3...
Circulation pump, 4...Draft tube, 5...Screw type stirring blade, 6...Static mixer, 7...Line mixer.

Claims (1)

【特許請求の範囲】 1 内部にドラフト・チユーブ付スクリユー翼又
はダブル・ヘリカル型撹拌翼を備え、外部に反応
器内の流体を循環させるラインを持つ撹拌槽型反
応器を用いてゴム状重合体を含むゴム相を分散粒
子に転換する工程を有する溶液もしくは塊状重合
法によりゴム変性スチレン系樹脂を連続的に製造
する方法に於て、 (A) 前記外部の循環ラインを閉鎖して測定される
前記反応器内の流体の平均循環回数が10回/時
以上となるように前記撹拌翼を回転させ、 (B) 前記外部の循環ラインには、上流側から、(1)
反応器から流体を排出循環させるためのポン
プ、(2)新たに供給されるゴム溶液の供給口、(3)
新たに供給されるゴム溶液と循環流体を混合す
るための静止型混合器及び、(4)強制混合するた
めのラインミキサーを設置し、 (C) 前記反応器から前記外部の循環ラインへ排出
循環させる流体の流量F1(/Hr)と、新たに
該循環ラインへゴム溶液の流量F2(/Hr)と
の関係を 1≦F1/F2<50 を満足するように維持し、かつ (D) 前記反応器内のゴム状重合体の割合をX1
量%、重合せしめるべき単量体の重合体への転
化物の総量をX2重量%とする時、X1及びX2
値を 20≧X1>1かつ 50≧X2≧2.4X1―0.05X2 1 を満足する様に維持する ことを特徴とするゴム変性スチレン系樹脂の連続
的製造方法。
[Claims] 1. Rubbery polymer production using a stirred tank reactor equipped with a screw blade with a draft tube or a double helical stirring blade on the inside and a line for circulating the fluid inside the reactor on the outside. In a method for continuously producing a rubber-modified styrenic resin by a solution or bulk polymerization method that includes a step of converting a rubber phase containing (B) The external circulation line includes (1)
A pump for discharging and circulating fluid from the reactor, (2) a supply port for newly supplied rubber solution, (3)
A static mixer for mixing the newly supplied rubber solution and circulating fluid, and (4) a line mixer for forced mixing are installed, and (C) discharge circulation from the reactor to the external circulation line is installed. The relationship between the flow rate F 1 (/Hr) of the fluid to be added and the flow rate F 2 (/Hr) of the rubber solution newly added to the circulation line is maintained to satisfy 1≦F 1 /F 2 <50, and (D) When the proportion of the rubbery polymer in the reactor is X 1 % by weight and the total amount of monomers to be polymerized converted into polymer is X 2 % by weight, the proportion of X 1 and X 2 is A method for continuously producing a rubber-modified styrenic resin, characterized in that the values are maintained to satisfy 20≧X 1 >1 and 50≧X 2 ≧2.4X 1 -0.05X 2 1 .
JP16048083A 1983-09-02 1983-09-02 Continuous preparation of rubber modified styrenic resin Granted JPS6053515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16048083A JPS6053515A (en) 1983-09-02 1983-09-02 Continuous preparation of rubber modified styrenic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16048083A JPS6053515A (en) 1983-09-02 1983-09-02 Continuous preparation of rubber modified styrenic resin

Publications (2)

Publication Number Publication Date
JPS6053515A JPS6053515A (en) 1985-03-27
JPS634850B2 true JPS634850B2 (en) 1988-02-01

Family

ID=15715859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16048083A Granted JPS6053515A (en) 1983-09-02 1983-09-02 Continuous preparation of rubber modified styrenic resin

Country Status (1)

Country Link
JP (1) JPS6053515A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312165A (en) * 2005-04-08 2006-11-16 Sumitomo Chemical Co Ltd Method for producing emulsion

Also Published As

Publication number Publication date
JPS6053515A (en) 1985-03-27

Similar Documents

Publication Publication Date Title
US4952627A (en) Process for producing high impact styrene resin by continuous bulk polymerization
JPS6328082B2 (en)
US4198383A (en) Apparatus for continuous preparation of acrylonitrilebutadienstyrene copolymer
US4334039A (en) Process for preparing polymeric polyblends having a rubber phase as particles with a bimodal particle size distribution
US5256732A (en) Method for the continuous bulk polymerization for impact resistant styrene resin
US5210132A (en) Continuous process for preparing rubber modified high impact resin
JPS629245B2 (en)
JPS6234047B2 (en)
JPH037708A (en) Production of rubber-modified styrene resin
KR100675239B1 (en) Process for the Manufacture of Impact Resistant Modified Polymers
JPS634850B2 (en)
KR970005478B1 (en) Process for producing rubber-modified styrene resin, and resin composition
EP0376232B1 (en) Continuous process for preparing rubber modified high impact resins
JPH0134444B2 (en)
US5973079A (en) Large particle generation
CN102443110A (en) Bulk polymerization production process of ABS (Acrylonitrile Butadiene Styrene) resin and application of static mixer
JP2594343B2 (en) Continuous production method of rubber-modified styrenic resin
JP2594344B2 (en) Continuous production method of rubber-modified impact-resistant resin
JPH0725856B2 (en) Continuous bulk polymerization of rubber-modified styrenic resin
JPH0134445B2 (en)
JPH04366116A (en) Preparation of rubber-modified styrene-based resin
JPH07188306A (en) Constituous production of methyl methacrylate-based prepolymer and fully mixing tank-type reaction vessel
JPH082934B2 (en) Method for producing rubber-modified styrene resin and resin composition
JPS60233117A (en) Continuous preparation of rubber-modified aromatic monovinyl resin
JPH0725857B2 (en) Continuous bulk polymerization of impact-resistant styrenic resin