JPS6348250B2 - - Google Patents

Info

Publication number
JPS6348250B2
JPS6348250B2 JP10732284A JP10732284A JPS6348250B2 JP S6348250 B2 JPS6348250 B2 JP S6348250B2 JP 10732284 A JP10732284 A JP 10732284A JP 10732284 A JP10732284 A JP 10732284A JP S6348250 B2 JPS6348250 B2 JP S6348250B2
Authority
JP
Japan
Prior art keywords
nickel
reaction product
tar
line
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10732284A
Other languages
Japanese (ja)
Other versions
JPS60252434A (en
Inventor
Haruo Miki
Yoshitaka Izumi
Toshiro Ooishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP10732284A priority Critical patent/JPS60252434A/en
Publication of JPS60252434A publication Critical patent/JPS60252434A/en
Publication of JPS6348250B2 publication Critical patent/JPS6348250B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアリルクロライドの製造方法に関す
る。更に詳細には高温にてプロピレンと塩素とを
反応させて生ずる反応生成物からアリルクロライ
ドを経済的に効率よく回収する方法に関するもの
である。 従来、アリルクロライドは高温にてプロピレン
と塩素とを反応させ、その反応生成物を熱交換器
により冷却後、急冷し、冷却留分を分留すること
によりアリルクロライドを回収する方法によつて
実施されている(例えば特公昭40−28177号公
報)。 しかし、上記方法は急冷前における冷却が適当
に行なわれ難く、そのため、熱交換器内に多塩素
化物、タール、カーボン等が沈積し熱交換器を閉
塞させ、連続操業が出来ないという不都合があ
る。 このような不都合を改善する方法として、プロ
ピレンと塩素とを高温において反応させ、その反
応生成物を急冷するに当り、反応生成物を急冷塔
より取り出される低温ガスの一部と混合して180
〜250℃の混合ガスとして急冷塔に導入する方法
が提案されている(特公昭48−30250号公報)。 該方法は前記方法に比較して配管内部へのター
ル、カーボン等の沈積は著しく改善されるが、し
かし、反応生成物と低温ガスが混合する部分にお
いてはタール、カーボン等の沈積を完全には防止
し得ず反応生成物と低温ガスの混合が乱れると長
期間の連続運転が不可能になることがある。 このような事情に鑑み、本発明者らは上述のよ
うな熱交換器、配管等への多塩素化物、タール、
カーボン等の沈積を生じないプロセスを確立すべ
く鋭意検討した結果、上記多塩素化物、タール、
カーボン等の沈積は反応生成物が約300〜150℃の
温度に冷却される部分において鉄を含有する材質
と接触する場合に顕著に生ずることおよび該沈積
はニツケル材質面には生じ難いことを見出し本発
明を完成するに至つた。 すなわち、本発明は高温にてプロピレンと塩素
とを反応させて生ずるガス状反応生成物を冷却し
て、未反応プロピレン、副生塩化水素、軽質留
分、重質残渣及びアリルクロライドに分離する工
程から成るアリルクロライドの製造方法に於い
て、少なくともガス状反応生成物が約300〜150℃
に冷却される装置の内面をニツケル又はニツケル
含有量30重量%以上のニツケル合金製の部材にて
構成したことを特徴とするアリルクロライドの製
造方法であり、熱交換器、配管等への多塩素化
物、タール、カーボン等の沈積が実質的に生じな
い。 以下に本発明方法について詳述する。 本発明方法の実施に当り、プロピレンと塩素と
は約450〜510℃の温度範囲において反応せしめら
れる。 反応生成物は主成分であるアリルクロライド、
未反応プロピレン、副生塩化水素、若干の多塩素
化物、タール、カーボン等を含有している。 これら反応生成物ガスは熱交換器又は急冷塔よ
り取り出される低温ガスと混合帯へ送られる。 本発明方法の実施に当り、反応生成物が約300
〜150℃に冷却されるのは、通常この熱交換器又
は混合帯であり、本発明はこの部分の装置の内面
をニツケル又はニツケル含有量30重量%以上のニ
ツケル合金製の部材にて構成するものである。 このようなニツケル又はニツケル合金としては
ニツケル又はインコネル、インコロイ、ハステロ
イ合金等のニツケル含有量30重量%以上、好まし
くは45重量%以上のニツケル合金を挙げることが
できる。 ニツケル又はニツケル合金を用いることにより
熱交換器、配管等への多塩素化物、タール、カー
ボン等の沈積が実質的に無くなるという効果が生
ずる理由は審びらかでないが、熱交換器、配管等
の冷却用装置の材質が鉄系材質の場合には反応生
成物中の特定の成分が鉄材表面でタール化して生
じたタール成分又は反応生成物中のタール成分が
鉄材表面と馴じみ性が高いために、ガス状反応生
成物が冷却されそれにより折出する多塩素化物、
タール等が装置内面に著しく沈積するが、一方ニ
ツケル系材質の場合にはその耐腐食性のために馴
じみが悪く、結果として多塩素化物、タール、カ
ーボン等の沈積を実質的に無くすることができる
ためと考えられる。 反応生成物が約300〜150℃に冷却される装置の
内面をニツケル又はニツケル合金製の部材にて構
成するのは、通常のアリルクロライドの合成反応
条件で生じる反応生成物は一般に約300〜150℃で
多塩素化物、タールが折出し出すので、少なくと
もこの折出開始部分をコーキングを生じないニツ
ケル系合金とし、これを防止しているのである。 装置内面をニツケル又はニツケル合金製の部材
にて構成する手段としては全体をニツケル又はニ
ツケル合金で形成してもよいし、また、装置内面
にニツケル又はニツケル合金をクラツドして形成
させてもよい。 もちろん、プロピレンとCl2を450〜510℃で反
応させる部分から約300〜150℃まで冷却させる部
分まで装置の内面をニツケル又はニツケル合金製
の部材で構成することは、更に多塩素化物、ター
ル、カーボンを減少させる効果がある。 本発明方法の実施に当り、反応器からのガス状
反応生成物は好ましくはニツケル又はニツケル合
金製の熱回収器に導入し、約450〜510℃の反応生
成物ガスのエネルギーを150〜250℃まで回収す
る。 エネルギー回収方法としては反応生成ガスで水
を直接加熱しスチームとして回収するとか、又は
ダウサム等の熱媒体、アリルクロライドの原料で
あるプロピレンを加熱し回収する等の方法が一般
に採用される。 本発明方法の実施に当り、約300〜150℃に冷却
される装置の内面をニツケル又はニツケル合金製
の部材にて構成した部分で予冷却、一般に約150
〜250℃まで冷却された反応生成物ガスは次いで
タール分を完全及至実質的完全に折出させるため
に急冷設備へ送られる。急冷設備はラインクエン
チヤーでもよいしまた塔式であつてもいずれでも
よい。 急冷設備での反応生成物の冷却は一般に約70〜
50℃まで冷却され、タール分を有効に除去する。 ラインクエンチヤーを用いる場合にはラインク
エンチヤーの后に貯槽を設け、冷却された反応生
成物の一部をラインクエンチヤーに供給するため
に利用し、貯槽のガス相からの未反応プロピレ
ン、副生塩化水素、低沸点成分およびアリルクロ
ライドを適宜分離する。一方冷却液の一部は適宜
抜き取り濃縮釜に送り蒸発留分は貯槽に再循環
し、他方タール、カーボン等から成る釜残は系外
へ取出され廃棄される。 以上詳述したような本発明方法を採用すること
によつて従来法の場合には熱交換器を1―2ケ月
前后で清掃しなければならなかつたが、本発明方
法によれば約1年連続運転することが可能となる
という顕著な工業的利益が達成できる。 本発明方法をさらに詳細に説明するために実施
例に基づき説明する。 実施例 1 第1図に基づいて説明する。 ライン1よりプロピレン1.28mol/H、ライン
2より塩素0.32mol/H(C1 3/Cl2=4モル比)が
約480〜500℃に保持された熱塩素化反応器18へ
連続的に供給される。熱塩素化反応器18からの
ガス状反応生成物はライン3を経てニツケル製の
チユーブを有する熱交換器19に送られ約200℃
まで冷却される。熱交換器19へはライン4を通
してボイラー給水が送られ、水蒸気としてライン
5より取出され利用される。 熱交換器19からの予冷された反応生成物はラ
イン8を通りポンプにより昇圧せしめられライン
9より供給される冷却された反応生成物400Kg/
Hにより急冷される。 ライン6及びラインクエンチヤー20はインコ
ネル製のものを用いた。 ラインクエンチヤー20により60℃まで冷却さ
れた反応生成物はライン7を通り貯槽21に送ら
れる。 貯槽21のガス相は主としてアリルクロライド
その他未反応プロピレン、副生塩化水素、若干の
多塩素化物より成り、該ガス相はライン10を経
てコンデンサー22により適宜冷却されアリルク
ロライドと多塩素化物をライン11を経て凝縮再
循環させる。未凝縮の未反応プロピレン、副生塩
化水素、アリルクロライドはライン12を経て蒸
留塔23に送られ塔頂より副生塩化水素、未反応
プロピレンをライン13より抜き出し、塔底より
アリルクロライドが21Kg/Hでライン14より抜
き出される。 未反応プロピレンは副生塩化水素と分離され塩
素化反応用原料として再循環される。またライン
14より回収されたアリルクロライドは必要に応
じて更に蒸留処理に付され精製される。 他方、貯槽21の底部からは冷却された反応生
成物がライン15を経て濃縮釜24に送られ、ス
チーム加熱器により加熱され、濃縮された多塩素
化物、タール、カーボン等の重質分をライン16
より3Kg/Hrの割合で系外に廃棄させる。濃縮
釜よりの低沸点留分はライン17より貯槽21へ
再循環される。 以上の条件下に3ケ月間連続運転を行なつた結
果熱交換器内のタール状沈積物の量は第1表、実
験番号1に示すようであつた。 また、上記方法において熱交換器の材質を第1
表に示す材質を用いた以外は全く同様にして操業
した。その結果を第1表に示す。
The present invention relates to a method for producing allyl chloride. More specifically, the present invention relates to a method for economically and efficiently recovering allyl chloride from a reaction product produced by reacting propylene and chlorine at high temperatures. Conventionally, allyl chloride is produced by reacting propylene and chlorine at high temperatures, cooling the reaction product using a heat exchanger, rapidly cooling it, and recovering allyl chloride by fractionating the cooled fraction. (For example, Japanese Patent Publication No. 40-28177). However, in the above method, it is difficult to cool properly before quenching, and as a result, polychlorides, tar, carbon, etc. accumulate in the heat exchanger, clogging the heat exchanger and making continuous operation impossible. . As a method to improve these inconveniences, propylene and chlorine are reacted at high temperatures, and when the reaction product is rapidly cooled, the reaction product is mixed with a portion of the low-temperature gas taken out from the quench tower.
A method has been proposed in which it is introduced into a quenching tower as a mixed gas at ~250°C (Japanese Patent Publication No. 30250/1983). This method significantly improves the deposition of tar, carbon, etc. inside the piping compared to the above method, but it cannot completely prevent the deposition of tar, carbon, etc. in the area where the reaction product and low-temperature gas are mixed. If this cannot be prevented and the mixing of the reaction product and low-temperature gas is disrupted, long-term continuous operation may become impossible. In view of these circumstances, the present inventors added polychlorinated substances, tar, etc. to heat exchangers, piping, etc. as described above.
As a result of intensive study to establish a process that does not cause the deposition of carbon, etc., we found that the polychlorinated substances, tar,
It was discovered that the deposition of carbon, etc. occurs significantly when the reaction product comes into contact with iron-containing materials in areas where it is cooled to a temperature of approximately 300 to 150°C, and that such deposition is difficult to occur on nickel material surfaces. The present invention has now been completed. That is, the present invention is a process of cooling the gaseous reaction product produced by reacting propylene and chlorine at high temperature and separating it into unreacted propylene, by-product hydrogen chloride, light fraction, heavy residue, and allyl chloride. In the method for producing allyl chloride consisting of
This is a method for producing allyl chloride, characterized in that the inner surface of the device to be cooled is made of a member made of nickel or a nickel alloy with a nickel content of 30% by weight or more. Substantially no deposition of compounds, tar, carbon, etc. occurs. The method of the present invention will be explained in detail below. In carrying out the process of the invention, propylene and chlorine are reacted at a temperature in the range of about 450 DEG to 510 DEG C. The reaction product is the main component allyl chloride,
Contains unreacted propylene, by-product hydrogen chloride, some polychlorinated substances, tar, carbon, etc. These reaction product gases are sent to a mixing zone with cold gas removed from a heat exchanger or quench tower. When carrying out the method of the present invention, the reaction product is about 300
It is usually this heat exchanger or mixing zone that is cooled to ~150°C, and the present invention configures the inner surface of this part of the device with a member made of nickel or a nickel alloy with a nickel content of 30% by weight or more. It is something. Such nickel or nickel alloys include nickel or nickel alloys having a nickel content of 30% by weight or more, preferably 45% by weight or more, such as Inconel, Incoloy, and Hastelloy alloys. Although it is unclear why the use of nickel or nickel alloys substantially eliminates the deposition of polychlorides, tar, carbon, etc. on heat exchangers, piping, etc., When the material of the cooling device is iron-based, the tar component generated when a specific component in the reaction product turns into tar on the surface of the iron material, or the tar component in the reaction product is highly compatible with the surface of the iron material. polychlorinated products which are precipitated by cooling of the gaseous reaction products;
Tar, etc., accumulate significantly on the inner surface of the equipment, but nickel-based materials, on the other hand, do not fit well due to their corrosion resistance, and as a result, the deposition of polychlorides, tar, carbon, etc. can be virtually eliminated. This is thought to be due to the ability to The inner surface of the apparatus, in which the reaction product is cooled to about 300 to 150 degrees Celsius, is made of nickel or nickel alloy members. Since polychlorides and tar begin to precipitate at ℃, this is prevented by using a nickel-based alloy that does not cause coking, at least in the part where this precipitate starts. The inner surface of the device may be formed entirely of nickel or a nickel alloy, or the inner surface of the device may be clad with nickel or a nickel alloy. Of course, constructing the inner surface of the device from the part where propylene and Cl 2 are reacted at 450 to 510°C to the part where it is cooled to approximately 300 to 150°C with members made of nickel or nickel alloy means that polychlorides, tar, It has the effect of reducing carbon. In carrying out the process of the present invention, the gaseous reaction products from the reactor are introduced into a heat recovery device, preferably made of nickel or nickel alloy, and the energy of the reaction product gases at about 450-510°C is transferred to a temperature of 150-250°C. Collect up to. Energy recovery methods generally include methods such as directly heating water with reaction product gas and recovering it as steam, or heating and recovering propylene, which is a heating medium for allyl chloride, or a heating medium such as Dowsum. In carrying out the method of the present invention, the inner surface of the device to be cooled to about 300 to 150°C is precooled with a part made of nickel or nickel alloy.
The reaction product gas, cooled to ˜250° C., is then sent to a quenching facility for complete or substantially complete precipitation of tar. The quenching equipment may be either a line quencher or a column type. Cooling of the reaction product in quenching equipment is generally about 70~
It is cooled to 50℃ and effectively removes tar. When a line quencher is used, a storage tank is provided after the line quencher, and a portion of the cooled reaction product is used to feed the line quencher, and unreacted propylene from the gas phase of the storage tank, Separate raw hydrogen chloride, low boiling components and allyl chloride as appropriate. On the other hand, a portion of the cooling liquid is appropriately extracted and sent to the concentrator and the evaporated fraction is recycled to the storage tank, while the residue consisting of tar, carbon, etc. is taken out of the system and disposed of. By adopting the method of the present invention as detailed above, in the case of the conventional method, the heat exchanger had to be cleaned after 1 to 2 months, but according to the method of the present invention, the heat exchanger has to be cleaned after about 1 year. Significant industrial benefits can be achieved in that continuous operation is possible. EXAMPLES In order to explain the method of the present invention in more detail, the method will be explained based on examples. Example 1 This will be explained based on FIG. 1. 1.28 mol/H of propylene is supplied from line 1 and 0.32 mol/H of chlorine (C 1 3 /Cl 2 = 4 molar ratio) is continuously supplied from line 2 to the thermal chlorination reactor 18 maintained at approximately 480 to 500°C. be done. The gaseous reaction product from the thermal chlorination reactor 18 is sent via line 3 to a heat exchanger 19 with nickel tubes at approximately 200°C.
cooled down to. Boiler feed water is sent to the heat exchanger 19 through line 4, and is taken out as steam from line 5 and used. The pre-cooled reaction product from the heat exchanger 19 passes through line 8, is pressurized by a pump, and 400 kg/kg of cooled reaction product is supplied from line 9.
It is rapidly cooled by H. Line 6 and line quencher 20 were made of Inconel. The reaction product cooled to 60° C. by the line quencher 20 is sent to the storage tank 21 through the line 7. The gas phase in the storage tank 21 mainly consists of allyl chloride, unreacted propylene, by-product hydrogen chloride, and some polychlorinated substances. The condensate is then recirculated. Uncondensed unreacted propylene, by-product hydrogen chloride, and allyl chloride are sent to the distillation column 23 via line 12, by-product hydrogen chloride and unreacted propylene are extracted from the top of the column through line 13, and allyl chloride is extracted from the bottom of the column at 21 kg/day. It is extracted from line 14 at H. Unreacted propylene is separated from by-product hydrogen chloride and recycled as a raw material for the chlorination reaction. Furthermore, the allyl chloride recovered from the line 14 is further purified by distillation, if necessary. On the other hand, the cooled reaction product from the bottom of the storage tank 21 is sent to the concentrating tank 24 via the line 15, heated by a steam heater, and concentrated heavy components such as polychlorinated substances, tar, and carbon are sent to the concentrating tank 24 through the line 15. 16
It is disposed of outside the system at a rate of 3Kg/Hr. The low-boiling fraction from the concentrator is recycled to storage tank 21 via line 17. As a result of continuous operation for three months under the above conditions, the amount of tar-like deposits in the heat exchanger was as shown in Table 1, Experiment No. 1. In addition, in the above method, the material of the heat exchanger is
The operation was carried out in exactly the same manner except that the materials shown in the table were used. The results are shown in Table 1.

【表】 第1表よりアリルクロライド合成反応生成物を
約300〜150℃に冷却する部分の装置内面にニツケ
ル又はニツケル含有量30重量%以上のニツケル合
金を用いる場合には沈積物の量を著しく低減させ
ることができ、長期間連続的に運転できるという
ことが明らかである。
[Table] Table 1 shows that when nickel or a nickel alloy with a nickel content of 30% by weight or more is used on the inner surface of the equipment in the part where the allyl chloride synthesis reaction product is cooled to approximately 300 to 150°C, the amount of deposits is significantly reduced. It is clear that it can be reduced and operated continuously for long periods of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法によるアリルクロライドの
製造工程図である。 1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,16及び17…
…導管、18……熱塩素化反応器、19……熱交
換器、20……ラインクエンチヤー、21……貯
槽、22……コンデンサー、23……蒸留塔、2
4……濃縮釜。
FIG. 1 is a process diagram for producing allyl chloride according to the method of the present invention. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16 and 17...
... Conduit, 18 ... Thermal chlorination reactor, 19 ... Heat exchanger, 20 ... Line quencher, 21 ... Storage tank, 22 ... Condenser, 23 ... Distillation column, 2
4...Concentration pot.

【特許請求の範囲】[Claims]

1 高められた温度における他のトリクロロベン
ゼン類又はそれらの混合物の異性化による1,
3,5―トリクロロベンゼンの製造方法におい
て、1モルの使用したトリクロロベンゼン当り
0.05〜0.5モルの三塩化アルミニウム及び1モル
の三塩化アルミニウム当り0.9〜1.5モルの蟻酸を
添加した後に異性化を150〜300℃の温度において
実施することを特徴とする方法。 2 1モルの使用したトリクロロベンゼン当り
0.1〜0.2モルの三塩化アルミニウムの存在下で異
性化を実施することを特徴とする、特許請求の範
囲第1項記載の方法。 3 1モルの三塩化アルミニウム当り1.0〜1.2モ
ルの蟻酸の存在下で異性化を実施することを特徴
とする、特許請求の範囲第1又は2項に記載の方
法。 4 純粋な蟻酸の存在下で異性化を実施すること
を特徴とする、特許請求の範囲第1〜3項の何れ
かに記載の方法。 5 異性化を200〜250℃の温度で実施することを
特徴とする、特許請求の範囲第1〜4項の何れか
に記載の方法。
1 by isomerization of other trichlorobenzenes or mixtures thereof at elevated temperatures.
In the method for producing 3,5-trichlorobenzene, per mole of trichlorobenzene used
A process characterized in that the isomerization is carried out at a temperature of 150 to 300° C. after addition of 0.05 to 0.5 mol of aluminum trichloride and 0.9 to 1.5 mol of formic acid per mol of aluminum trichloride. 2 per mole of trichlorobenzene used
2. Process according to claim 1, characterized in that the isomerization is carried out in the presence of 0.1 to 0.2 mol of aluminum trichloride. 3. Process according to claim 1 or 2, characterized in that the isomerization is carried out in the presence of 1.0 to 1.2 mol of formic acid per mol of aluminum trichloride. 4. Process according to any one of claims 1 to 3, characterized in that the isomerization is carried out in the presence of pure formic acid. 5. The method according to any one of claims 1 to 4, characterized in that the isomerization is carried out at a temperature of 200 to 250°C.

JP10732284A 1984-05-25 1984-05-25 Production of allyl chloride Granted JPS60252434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10732284A JPS60252434A (en) 1984-05-25 1984-05-25 Production of allyl chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10732284A JPS60252434A (en) 1984-05-25 1984-05-25 Production of allyl chloride

Publications (2)

Publication Number Publication Date
JPS60252434A JPS60252434A (en) 1985-12-13
JPS6348250B2 true JPS6348250B2 (en) 1988-09-28

Family

ID=14456122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10732284A Granted JPS60252434A (en) 1984-05-25 1984-05-25 Production of allyl chloride

Country Status (1)

Country Link
JP (1) JPS60252434A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217902A (en) * 1991-04-16 1993-08-27 Tsurumi Soda Kk Heat treating apparatus
US6004517A (en) * 1995-05-24 1999-12-21 The Dow Chemical Company Process to make allyl chloride and reactor useful in that process
US5504266A (en) * 1995-05-24 1996-04-02 The Dow Chemical Company Process to make allyl chloride and reactor useful in that process
JP2007332076A (en) * 2006-06-15 2007-12-27 Sumitomo Chemical Co Ltd Method for producing allyl chloride
JP2011105637A (en) * 2009-11-17 2011-06-02 Sumitomo Chemical Co Ltd Method for producing allyl chloride and dichlorohydrin

Also Published As

Publication number Publication date
JPS60252434A (en) 1985-12-13

Similar Documents

Publication Publication Date Title
US3987119A (en) Production of vinyl chloride from ethane
US4764308A (en) Process for the production of phosgene with simultaneous generation of steam
JPS5821909B2 (en) Maron Sanjinitoriruno Seizouhou
US3839475A (en) Process for the production of ethylene dichloride
JPH0246569B2 (en)
US10815198B2 (en) Method for separating and purifying 2-chloro-3-trifluoromethylpyridine
US2480088A (en) Process of producing carbamyl chlorides
CA1165780A (en) Recovery of chlorine values in integrated process for oxychlorination and combustion of chlorinated hydrocarbons
JPS6348250B2 (en)
JPS6396141A (en) Manufacture of vinyl chloride by pyrolysis of 1,2-dichloroethane and apparatus therefor
US2223383A (en) Oxidation of hydrocarbons to phenols
JPS63192729A (en) Manufacture of vinyl chloride by thermal cracking of 1,2-dichloroethane
US3059035A (en) Continuous process for producing methyl chloroform
US4324932A (en) Process for the manufacture of vinyl chloride by the thermal cracking of 1,2-dichloroethane
US5536376A (en) Method for production of 2-chloropyridine and 2,6-dichloropyridine
US2062344A (en) Process for the preparation of aliphatic acid halides
US3227525A (en) Apparatus for pyrolyzing vapors
US3234291A (en) Synthesis of phenols
JP2679557B2 (en) Continuous production of methyl isocyanate
JPS6163519A (en) Production of monosilane
US3969205A (en) Process for producing 2-chloropyridine
US3843736A (en) Process for the production of vinyl chloride from 1,2-dichloroethane
US3920657A (en) Process for the production of 2-chloropyridine
US3378585A (en) Process for the production of urea
US2385505A (en) Production of halides