JPS6347955B2 - - Google Patents

Info

Publication number
JPS6347955B2
JPS6347955B2 JP15280281A JP15280281A JPS6347955B2 JP S6347955 B2 JPS6347955 B2 JP S6347955B2 JP 15280281 A JP15280281 A JP 15280281A JP 15280281 A JP15280281 A JP 15280281A JP S6347955 B2 JPS6347955 B2 JP S6347955B2
Authority
JP
Japan
Prior art keywords
valve
solenoid coil
current
transistor
control voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15280281A
Other languages
Japanese (ja)
Other versions
JPS5854282A (en
Inventor
Shinichi Murashige
Taiji Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP15280281A priority Critical patent/JPS5854282A/en
Publication of JPS5854282A publication Critical patent/JPS5854282A/en
Publication of JPS6347955B2 publication Critical patent/JPS6347955B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)

Description

【発明の詳細な説明】 この発明は比例弁の開度を任意に調整設定する
駆動回路の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a drive circuit that arbitrarily adjusts and sets the opening degree of a proportional valve.

比例弁はソレノイドコイルに流れる弁電流に応
じてその弁開度がアナログ的に変化するもので、
例えば、燃焼機器に供給されるガス等の流体の流
量をアナログ的に調節し、その燃焼量を制御する
のに使用されている。
A proportional valve changes its valve opening in an analog manner depending on the valve current flowing through the solenoid coil.
For example, it is used to adjust the flow rate of fluid such as gas supplied to combustion equipment in an analog manner and control the amount of combustion thereof.

この種比例弁を利用した装置の一例として、比
例弁にて燃焼ガス量を連続的に制御するようにし
たガス瞬間湯沸器の基体構成を第1図に示してあ
る。このガス瞬間湯沸器1の動作を概略説明する
と、蛇口を開けて出湯しようとすると、熱交換器
4の取水口に設けられたフロースイツチ5が流水
を検出し、その検出信号が燃焼制御装置2に入力
されるので、燃焼制御装置2は、ガス管路に設け
られた元バルブ6を開にし、ガスをガスガバナ
7、比例弁3を介してバーナ8に供給する。バー
ナ8にガスが供給開始されると同時に、点火トラ
ンス9が駆動され、点火電極棒10がスパーク
し、バーナ8に着火させる。着火後の湯温の上昇
は、熱交換器4の出湯口に設けられたサーミスタ
11で検出される。この検出信号と、燃焼制御装
置2での設定温度及び上記フロースイツチ5の検
出信号等から湯温と設定温度との温度差に対応し
た所定レベルの制御電圧が作成され、この制御電
圧が後述の駆動回路に入力されると、比例弁3は
この駆動回路によつて制御電圧のレベルに対応し
た所定の弁電流が供給され、その弁開度がアナロ
グ的に変化し、湯温を一定とするようにバーナ8
での燃焼量が制御される。
As an example of a device using this type of proportional valve, FIG. 1 shows the basic structure of a gas instantaneous water heater in which the amount of combustion gas is continuously controlled by a proportional valve. Briefly explaining the operation of this gas instantaneous water heater 1, when the faucet is opened to dispense hot water, the flow switch 5 installed at the water intake of the heat exchanger 4 detects running water, and the detection signal is sent to the combustion control device. 2, the combustion control device 2 opens the main valve 6 provided in the gas pipe line and supplies gas to the burner 8 via the gas governor 7 and the proportional valve 3. At the same time that gas starts to be supplied to the burner 8, the ignition transformer 9 is driven, the ignition electrode 10 sparks, and the burner 8 is ignited. An increase in the temperature of the hot water after ignition is detected by a thermistor 11 provided at the outlet of the heat exchanger 4. A control voltage at a predetermined level corresponding to the temperature difference between the hot water temperature and the set temperature is created from this detection signal, the set temperature in the combustion control device 2, the detection signal from the flow switch 5, etc., and this control voltage is used as described below. When input to the drive circuit, the proportional valve 3 is supplied with a predetermined valve current corresponding to the level of the control voltage by the drive circuit, and the valve opening changes in an analog manner to keep the water temperature constant. like burner 8
The amount of combustion is controlled.

なお、バーナ8の着火を検出する着火検出棒1
2が設けられ、着火ミスがあつたときには警報機
13で外部に通報するようになつている。
Note that the ignition detection rod 1 detects the ignition of the burner 8.
2 is provided, and when an ignition error occurs, an alarm 13 is provided to notify the outside.

第2図は上記比例弁3を制御する駆動回路であ
る。
FIG. 2 shows a drive circuit for controlling the proportional valve 3.

この駆動回路は上記制御電圧とソレノイドコイ
ル14に流れる弁電流を検出する抵抗15の端子
電圧との差を差動増幅器16で増幅し、その出力
でトランジスタ17のベース電流を調節する。そ
の結果、ソレノイドコイル14の弁電流が制御電
圧のレベルに応じて制御され、比例弁の弁開度が
アナログ的に変化するのである。
This drive circuit uses a differential amplifier 16 to amplify the difference between the control voltage and the terminal voltage of a resistor 15 that detects the valve current flowing through the solenoid coil 14, and uses its output to adjust the base current of the transistor 17. As a result, the valve current of the solenoid coil 14 is controlled according to the level of the control voltage, and the valve opening of the proportional valve changes in an analog manner.

しかしながら、このような駆動回路の回路構成
では、トランジスタ17は常時電流が流れている
ため、そのコレクタ損失が大きく、通常放熱器を
必要とする。そのため、プリント基板の設計に際
し、トランジスタ及びその放熱器の近傍には耐熱
温度の低い電子部品の配置ができない等の制約が
生じている。また、このようなプリント基板を装
置に実装すると、装置内の温度上昇を招き、他の
電子部品に悪影響を与えるので、そのために特別
な放熱対策が必要となり、これがコストアツプの
要因となるとともに、装置の小圭化を困難にして
いた。
However, in such a circuit configuration of the drive circuit, current always flows through the transistor 17, so its collector loss is large, and a heat sink is usually required. Therefore, when designing a printed circuit board, there are restrictions such as the inability to place electronic components with low heat resistance near the transistors and their heat sinks. Furthermore, when such a printed circuit board is mounted on a device, the temperature inside the device increases and has an adverse effect on other electronic components, so special heat dissipation measures are required, which increases costs and reduces the cost of the device. This made it difficult for children to become small-minded.

この発明は、このような従来の問題点に鑑みて
なされたものであり、駆動回路をスイツチング方
式とすることにより、比例弁を駆動するトランジ
スタのコレクタ損失を極端に低減するとともに、
装置実装時の装置内温度の上昇を抑え、特別の放
熱器を不要とし、装置の小形化に寄与することの
できる駆動回路を提供することを目的としてい
る。
This invention was made in view of these conventional problems, and by adopting a switching system for the drive circuit, the collector loss of the transistor that drives the proportional valve is extremely reduced, and
The object of the present invention is to provide a drive circuit that can suppress the rise in temperature inside the device when the device is mounted, eliminate the need for a special radiator, and contribute to miniaturization of the device.

以下、この発明の実施例を図面に基づいて詳細
に説明する。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第3図において、演算増幅器で構成されるコン
パレータ21は非反転入力端子に上述した制御電
圧VAが、反転入力端子にソレノイドコイル22
に流れる弁電流を検出する抵抗23の端子電圧
VBがそれぞれ入力され、両電圧VA,VBの大小
関係によつてその出力を反転し、トランジスタ2
4をON・OFFするようになつている。なお、通
常のコンパレータ回路はその動作を安定なものと
するために、ヒステリシス回路を設けるのである
が、この実施例では特に設けず、演算増幅器自身
の入出力応答遅れを利用して所定のヒステリシス
特性を得るようにしている。
In FIG. 3, a comparator 21 composed of an operational amplifier has a non-inverting input terminal connected to the control voltage VA, and an inverting input terminal connected to a solenoid coil 22.
The terminal voltage of resistor 23 that detects the valve current flowing in
VB is input, and the output is inverted depending on the magnitude relationship of both voltages VA and VB, and the transistor 2
4 can be turned on and off. Note that a normal comparator circuit is provided with a hysteresis circuit in order to stabilize its operation, but this embodiment does not provide a hysteresis circuit, and uses the input/output response delay of the operational amplifier itself to achieve a predetermined hysteresis characteristic. I'm trying to get it.

トランジスタ24のコレクタは抵抗25を介し
てトランジスタ26のベースに入力され、トラン
ジスタ26はトランジスタ24のON・OFFに伴
つて、ON・OFFし、ソレノイドコイル22に断
続した電流を直接供給するようにしている。ま
た、ソレノイドコイル22と弁電流検出抵抗23
とからなる直列回路にはダイオード27が並列に
接続され、これによつて一つの閉回路が構成され
ている。
The collector of the transistor 24 is input to the base of a transistor 26 via a resistor 25, and the transistor 26 turns on and off as the transistor 24 turns on and off, directly supplying an intermittent current to the solenoid coil 22. There is. In addition, the solenoid coil 22 and the valve current detection resistor 23
A diode 27 is connected in parallel to the series circuit consisting of the above, thereby forming one closed circuit.

このように構成した駆動回路の動作を説明す
る。今、制御電圧VAと弁電流検出用抵抗23の
端子電圧VBの大小関係はVA>VBであると、コ
ンパレータ21の出力は高レベルとなり、トラン
ジスタ24とトランジスタ26とが順次ONし、
電源V+がソレノイドコイル22に印加される結
果、トランジスタ26を介してソレノイドコイル
22に弁電流が流れ、抵抗23の端子電圧VBが
制御電圧VAに向かつて上昇する。このとき、ソ
レノイドコイル22と抵抗23とからなる直列回
路には、ソレノイドコイル22のインダクタンス
をL、その抵抗値をRおよび抵抗23の抵抗値を
R23とすると、T=L/(R+R23)な時定数T
が存在する結果、弁電流はこの時定数Tに従つて
暫増するから、比例弁はその開度をゆつくり増し
ていくとともに、端子電圧VBも穏やかなカーブ
を描いて上昇する。そして、端子電圧VBが制御
電圧VAより大きくなると、コンパレータ21の
出力が反転し、低レベルとなるから、トランジス
タ24とトランジスタ26とが順次OFFされ、
ソレノイドコイル22への電流供給が断たれる。
ところが周知の通りインダクタンスには電流持続
性があり、この電流持続性によつてソレノイドコ
イル22には電流が継続して流れようとするが、
この電流は上記閉回路に流れ、上記時定数Tに従
つて暫減する。その結果比例弁はその開度をゆつ
くり減少し、端子電圧VBが穏やかなカーブを描
いて制御電圧VAに向かつて下降する。そして、
端子電圧VBが制御電圧VAよりも低下すると、
コンパレータ21が反転動作し、上述の動作に戻
る。
The operation of the drive circuit configured in this way will be explained. Now, when the magnitude relationship between the control voltage VA and the terminal voltage VB of the valve current detection resistor 23 is VA>VB, the output of the comparator 21 becomes a high level, and the transistors 24 and 26 are turned ON in sequence.
As a result of the power supply V+ being applied to the solenoid coil 22, a valve current flows through the solenoid coil 22 via the transistor 26, and the terminal voltage VB of the resistor 23 increases toward the control voltage VA. At this time, in the series circuit consisting of the solenoid coil 22 and the resistor 23, the inductance of the solenoid coil 22 is L, its resistance value is R, and the resistance value of the resistor 23 is set.
If R23, T=L/(R+R23) time constant T
As a result of the existence of , the valve current temporarily increases according to this time constant T, so that the proportional valve gradually increases its opening degree, and the terminal voltage VB also rises in a gentle curve. Then, when the terminal voltage VB becomes larger than the control voltage VA, the output of the comparator 21 is inverted and becomes a low level, so the transistor 24 and the transistor 26 are sequentially turned off.
The current supply to the solenoid coil 22 is cut off.
However, as is well known, inductance has current continuity, and due to this current continuity, current tends to continue flowing through the solenoid coil 22.
This current flows through the closed circuit and gradually decreases according to the time constant T. As a result, the proportional valve gradually decreases its opening, and the terminal voltage VB follows a gentle curve and decreases toward the control voltage VA. and,
When the terminal voltage VB drops below the control voltage VA,
The comparator 21 performs an inversion operation and returns to the above-described operation.

以上の動作を繰り返す結果、弁電流は第4図に
示すようにリツプルを含んだ波形となるが、この
リツプルの大きさおよびトランジスタ26のスイ
ツチング周波数は演算増幅器の入出力応答遅れお
よび時定数Tによつて定まる。そして、上述した
比例弁の弁開度の増減はこのリツプル部分におけ
る現象であるが、トランジスタ26のスイツチン
グ周波数は比例弁の応答限界周波数よりも充分大
きいから、このリツプル部分における弁開度の増
減は殆ど無視できる。従つて、弁電流は、図示破
線で示すように、平均化された一定電流とみなさ
れ、比例弁は制御電圧VAで定まる所定の弁開度
を保持することになる。
As a result of repeating the above operation, the valve current becomes a waveform containing ripples as shown in FIG. It is determined accordingly. The above-mentioned increase or decrease in the valve opening of the proportional valve is a phenomenon in this ripple portion, but since the switching frequency of the transistor 26 is sufficiently higher than the response limit frequency of the proportional valve, the increase or decrease in the valve opening in this ripple portion is a phenomenon. It can be almost ignored. Therefore, the valve current is regarded as an averaged constant current, as shown by the broken line in the figure, and the proportional valve maintains a predetermined valve opening determined by the control voltage VA.

そして、比例弁の弁開度の変更は制御電圧VA
の大きさを変えることでなされるが、上述の如
く、弁電流は略定電流とみなされるから、制御電
圧VAの変化にともなつて弁電流はアナログ的に
変化し、比例弁の弁開度が従来と同様にスムーズ
に変えられる。
The valve opening of the proportional valve is changed using the control voltage VA.
However, as mentioned above, since the valve current is considered to be a substantially constant current, the valve current changes in an analog manner as the control voltage VA changes, and the valve opening of the proportional valve changes. can be changed smoothly as before.

なお、トランジスタ26がOFFからONに反転
するときダイオード27がONからOFFに回復す
るが、このときの回復時間内にダイオードを通し
て短絡電流が流れ、電源の効率が悪化するので、
ダイオード27は高速性のものを使用すると良
い。
Note that when the transistor 26 is reversed from OFF to ON, the diode 27 recovers from ON to OFF, but a short-circuit current flows through the diode during this recovery time, deteriorating the efficiency of the power supply.
It is preferable to use a high-speed diode 27.

以上詳細に説明したように、この発明に係る比
例弁の駆動回路はスイツチング方式としたので、
比例弁を駆動するトランジスタのコレクタ損失は
スイツチング時の損失だけとなり、その損失は小
さく、従来のに比べて約10分の1程度とすること
ができる。
As explained in detail above, since the drive circuit of the proportional valve according to the present invention is of the switching type,
The collector loss of the transistor that drives the proportional valve is only the loss during switching, and this loss is small and can be reduced to about one-tenth of that of the conventional one.

その結果、プリント基板設計時の制約条件が大
幅に緩和されるとともに、装置実装時の装置内温
度の上昇が抑制される。
As a result, constraints on printed circuit board design are significantly relaxed, and an increase in internal temperature of the device during device mounting is suppressed.

よつて、電子部品の耐熱性の問題は解消し、寿
命や信頼性の向上が期待でき、装置の小形化が可
能となる。
Therefore, the problem of heat resistance of electronic components can be solved, the lifespan and reliability can be expected to be improved, and the device can be made smaller.

更に、スイツチング時のヒステリシス特性はコ
ンパレータとしての演算増幅器自身の応答遅れを
利用するようにしているので、回路の簡素化が可
能となり、コストダウンを図ることができるとい
う効果も得られる。
Furthermore, since the hysteresis characteristic during switching utilizes the response delay of the operational amplifier itself as a comparator, the circuit can be simplified and costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は比例弁の適用例を示す燃焼機器のブロ
ツク図、第2図は従来の比例弁駆動回路を示す回
路図、第3図はこの発明に係る比例弁の駆動回路
を示す回路図、第4図はソレノイドコイルの弁電
流の状態を説明する概略図である。 3……比例弁、21……コンパレータ、22…
…ソレノイドコイル、23……弁電流検出抵抗、
26……トランジスタ、27……ダイオード。
FIG. 1 is a block diagram of a combustion device showing an application example of a proportional valve, FIG. 2 is a circuit diagram showing a conventional proportional valve drive circuit, and FIG. 3 is a circuit diagram showing a proportional valve drive circuit according to the present invention. FIG. 4 is a schematic diagram illustrating the state of the valve current of the solenoid coil. 3...Proportional valve, 21...Comparator, 22...
... Solenoid coil, 23 ... Valve current detection resistor,
26...transistor, 27...diode.

Claims (1)

【特許請求の範囲】[Claims] 1 制御電圧を受けてソレノイドコイルに流れる
弁電流を制御し、比例弁の弁開度をアナログ的に
変化させる駆動回路にして、一方の入力端子に上
記制御電圧が、他方の入力端子に上記弁電流を検
出する抵抗の端子電圧がそれぞれ入力されるコン
パレータと、電源間に上記ソレノイドコイルと直
列に接続され、上記コンパレータの出力によつて
ON・OFF駆動されるトランジスタと、該トラン
ジスタがOFFしたとき、上記ソレノイドコイル
と上記弁電流検出用抵抗とともに直列閉回路を構
成し、上記ソレノイドコイルに流れる弁電流を維
持させるダイオードとを備え、上記ソレノイドコ
イルのインピーダンスと上記弁電流検出用抵抗と
から定まる時定数により、上記弁電流が等価的に
上記制御電圧に対応した大きさのアナログ電流と
なるようにしたことを特徴とする比例弁の駆動回
路。
1 A drive circuit that controls the valve current flowing through the solenoid coil in response to a control voltage and changes the valve opening of the proportional valve in an analog manner, with the control voltage applied to one input terminal and the valve current applied to the other input terminal. The solenoid coil is connected in series between the comparator, into which the terminal voltage of the resistor that detects the current is input, and the power supply, and the output of the comparator
The transistor includes a transistor that is driven ON and OFF, and a diode that forms a series closed circuit with the solenoid coil and the valve current detection resistor when the transistor is turned OFF, and maintains the valve current flowing through the solenoid coil. Driving a proportional valve, characterized in that the valve current becomes an analog current equivalent to a magnitude corresponding to the control voltage by a time constant determined from the impedance of the solenoid coil and the valve current detection resistor. circuit.
JP15280281A 1981-09-26 1981-09-26 Driving circuit for proportional valve Granted JPS5854282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15280281A JPS5854282A (en) 1981-09-26 1981-09-26 Driving circuit for proportional valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15280281A JPS5854282A (en) 1981-09-26 1981-09-26 Driving circuit for proportional valve

Publications (2)

Publication Number Publication Date
JPS5854282A JPS5854282A (en) 1983-03-31
JPS6347955B2 true JPS6347955B2 (en) 1988-09-27

Family

ID=15548469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15280281A Granted JPS5854282A (en) 1981-09-26 1981-09-26 Driving circuit for proportional valve

Country Status (1)

Country Link
JP (1) JPS5854282A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280375A (en) * 1985-10-01 1987-04-13 Hanshin Electric Co Ltd Proportional valve control circuit
JPH0468485U (en) * 1990-10-23 1992-06-17

Also Published As

Publication number Publication date
JPS5854282A (en) 1983-03-31

Similar Documents

Publication Publication Date Title
JPS6347955B2 (en)
EP0111517A1 (en) Proximity switch circuit
JPS5854283A (en) Driving circuit for proportional valve
JPS5994322A (en) Circuit device for electromagnetic switching operation
US4496898A (en) Vehicle A.C. generator with constant output power
JPS58162799A (en) Temperature following direct current fan speed controller
JP3255805B2 (en) Switching power supply
JPS6053882B2 (en) temperature control device
JPS5942961B2 (en) Magnet drive circuit
WO1999060345A1 (en) Fluid flow sensor
JPS599299Y2 (en) Constant energy supply control circuit
JPS5940732Y2 (en) Proportional control device for electromagnetic actuators
JPH08312940A (en) Proportional control valve-driving device for gas of gas burner
JPH087637B2 (en) Electronic equipment power supply
JP2760028B2 (en) Temperature control circuit
JPS6124694Y2 (en)
JPS62210215A (en) Overheat preventer for automobile
JPS58115730A (en) Constant power relay drive circuit
JPH0520980Y2 (en)
JPS6225907B2 (en)
JPH1055729A (en) Power source circuit
JPS5926848B2 (en) gas water heater
JPS58168813A (en) Proportional combustion controlling device
JPS59185873A (en) Ignition system
JPH0475494A (en) Motor speed control circuit