JPS6347950A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6347950A
JPS6347950A JP19310686A JP19310686A JPS6347950A JP S6347950 A JPS6347950 A JP S6347950A JP 19310686 A JP19310686 A JP 19310686A JP 19310686 A JP19310686 A JP 19310686A JP S6347950 A JPS6347950 A JP S6347950A
Authority
JP
Japan
Prior art keywords
film
melting point
high melting
point metal
silicide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19310686A
Other languages
Japanese (ja)
Inventor
Katsuhiro Hirata
勝弘 平田
Junichi Arima
純一 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19310686A priority Critical patent/JPS6347950A/en
Publication of JPS6347950A publication Critical patent/JPS6347950A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent a high melting point metal silicide film or a high melting point metal film from being disconnected at the time of heat-treating the electrode wirings of a polycide structure thereby to be able to suppress the rise in a wiring resistance by setting the thickness of the silicide film or the metal film for wiring electrode formed on a step to a specified value or lower. CONSTITUTION:The thickness of a high melting point metal silicide film 53 or a high melting point metal film for wiring an electrode formed on a step is set to 0.2mum or less. For example, a base step pattern 2 and a silicon dioxide film 3 are formed on a substrate 11, a polysilicon film having 0.2-0.3mum of thickness is formed thereon and doped with phosphorus to reduce a wiring resistance. Then, a molybdenum silicide film 52 having 0.2mum or less of thickness is formed by a sputtering method on the polysilicon film 41. At this time, a mismatched part 71 is formed on the film 52 of the step. Then, the electrode wirings of the polycide structure is heat treated at approx. 1000 deg.C. At this time, the crystal grain size of the film 52 is increased to several 100Angstrom to several 1000Angstrom .

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は半導体装置に関し、特にポリサイド構造の電
極配線形成技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to semiconductor devices, and more particularly to a technique for forming electrode wiring having a polycide structure.

[従来の技術] 従来より、半導体装置の電極配線用として高融点金属シ
リサイドおよび高融点金属が用いられてきた。特に、M
O3型半導体デバイスにおいては、高融点金属シリサイ
ドまたは高融点金属とポリシリコンとの2層構造(ポリ
サイド構造)がゲート電極として用いられている。
[Prior Art] Refractory metal silicides and refractory metals have conventionally been used for electrode wiring of semiconductor devices. In particular, M
In O3 type semiconductor devices, a two-layer structure (polycide structure) of refractory metal silicide or refractory metal and polysilicon is used as a gate electrode.

第2A図および第2B図は、従来のポリサイド構造の電
極配線を有する半導体装置を示す断面図である。
FIGS. 2A and 2B are cross-sectional views showing a semiconductor device having a conventional electrode wiring having a polycide structure.

第2A図において、半導体基板1表面にポリシリコン膜
や酸化膜などの下地段差パターン2、および二酸化シリ
コン膜3が形成されており、下地段差パターン2と二酸
化シリコン膜3間に段差部が形成されている。下地段差
パターン2表面および二酸化シリコン膜3表面にポリシ
リコン膜41が形成されている。このポリシリコン膜4
1は、高融点金属シリサイド膜または高融点金属膜との
2層構造(ポリサイド構造)として用いられるもので、
通常0.2〜0.3μmの膜厚のものが用いられる。ま
た、このポリシリコン膜41は配線抵抗を下げる目的で
燐(P)がドープされている。
In FIG. 2A, a base step pattern 2 such as a polysilicon film or an oxide film, and a silicon dioxide film 3 are formed on the surface of a semiconductor substrate 1, and a step portion is formed between the base step pattern 2 and the silicon dioxide film 3. ing. A polysilicon film 41 is formed on the surface of the underlying step pattern 2 and the silicon dioxide film 3. This polysilicon film 4
1 is used as a two-layer structure (polycide structure) with a high melting point metal silicide film or a high melting point metal film,
Usually, a film thickness of 0.2 to 0.3 μm is used. Further, this polysilicon film 41 is doped with phosphorus (P) for the purpose of lowering wiring resistance.

ポリシリコン膜41表面にスパッタリング法により電極
配線用の高融点金属シリサイド膜または高融点金属膜、
たとえばモリブデンシリサイド膜50が形成されている
。素子の高速化に伴い配線の低抵抗化が要求され、配線
のシート抵抗を下げる目的で、このモリブデンシリサイ
ド膜50の膜厚としては0.2μm以上の膜厚が=般に
用いられている。そして、モリブデンシリサイド膜50
をスパッタリング法で形成した場合、段差部において膜
の成長の仕方が異なることによりこのモリブデンシリサ
イド膜50に不整合部70が生じる。
A high melting point metal silicide film or a high melting point metal film for electrode wiring is formed on the surface of the polysilicon film 41 by sputtering.
For example, a molybdenum silicide film 50 is formed. As the speed of devices increases, there is a demand for lower wiring resistance, and for the purpose of lowering the sheet resistance of wiring, the thickness of the molybdenum silicide film 50 is generally 0.2 μm or more. And molybdenum silicide film 50
When the molybdenum silicide film 50 is formed by sputtering, a mismatch portion 70 occurs in the molybdenum silicide film 50 due to the difference in the way the film grows at the stepped portion.

第2B図は、第2A図のポリサイド構造の電極配線を熱
処理した後の状態を示したもので、この熱処理によりモ
リブデンシリサイド膜50の結晶51は熱処理後のモリ
ブデンシリサイド膜を示している。
FIG. 2B shows the state after the electrode wiring having the polycide structure shown in FIG. 2A has been heat-treated. As a result of this heat treatment, the crystals 51 of the molybdenum silicide film 50 show the molybdenum silicide film after the heat treatment.

[発明が解決しようとする問題点コ ところで、モリブデンシリサイド膜50を厚く形成する
場合、電極配線形成後の熱処理により、第2B図に示す
ようにモリブデンシリサイド膜51に断線8が生じるこ
とがある。その理由は、熱処理によるモリブデンシリサ
イド膜50の結晶粒径の増大に伴ってこの膜の体積収縮
が起こりこの膜に強い内部応力が発生し、この内部応力
によって膜強度の弱い不整合部70が断線8に至ると考
えられている。モリブデンシリサイド膜51に断線8が
発生すれば、ポリサイド構造の電極配線の電気伝導が阻
害されて配線抵抗が上昇し、このため、半導体装置の製
造の歩留りや信頼性の低下が発生するなどの問題点があ
った。
[Problems to be Solved by the Invention] By the way, when the molybdenum silicide film 50 is formed to be thick, a disconnection 8 may occur in the molybdenum silicide film 51 as shown in FIG. 2B due to heat treatment after forming the electrode wiring. The reason for this is that as the crystal grain size of the molybdenum silicide film 50 increases due to heat treatment, the volume of this film shrinks and a strong internal stress is generated in the film. It is thought that it will reach 8. If a disconnection 8 occurs in the molybdenum silicide film 51, the electrical conduction of the electrode wiring of the polycide structure is inhibited and the wiring resistance increases, resulting in problems such as a decrease in the yield and reliability of semiconductor device manufacturing. There was a point.

この発明は」1記のような問題点を解消するためになさ
れもので、ポリサイド構造の電極配線の熱処理時におい
て、高融点金属シリサイド膜または高融点金属膜の断線
を防いで配線抵抗の上昇を抑えることができる半導体装
置を得ることを目的とする。
This invention was made in order to solve the problem mentioned in item 1 above, and it prevents the increase in wiring resistance by preventing disconnection of the high-melting point metal silicide film or the high-melting point metal film during heat treatment of electrode wiring having a polycide structure. The purpose is to obtain a semiconductor device that can suppress the noise.

[問題点を解決するための手段] この発明に係る半導体装置は、段差部に形成される電極
配線用の高融点金属シリサイド膜または高融点金属膜の
膜厚を0.2μm以下にしたものである。
[Means for Solving the Problems] A semiconductor device according to the present invention is such that the film thickness of the high melting point metal silicide film or the high melting point metal film for electrode wiring formed in the stepped portion is 0.2 μm or less. be.

[作用コ この発明においては、高融点金属シリサイド膜または高
融点金属膜の膜厚を0.2μm以下にするので、電極配
線の熱処理時にこれらの膜に発生する内部応力が低下し
、このため、高融点金属シリサイド膜または高融点金属
膜の不整合部に断線が生じなくなる。
[Function] In this invention, since the film thickness of the high melting point metal silicide film or the high melting point metal film is set to 0.2 μm or less, the internal stress generated in these films during heat treatment of the electrode wiring is reduced. No disconnection occurs in the mismatched portion of the high melting point metal silicide film or the high melting point metal film.

[実施例] 以下、この発明の実施例を図について説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

なお、この実施例の説明において、従来の技術の説明と
重複する部分については適宜その説明を省略する。
In the description of this embodiment, the description of parts that overlap with the description of the conventional technology will be omitted as appropriate.

第1A図〜第1F図は、この発明の実施例であるポリサ
イド構造の電極配線を宵する半導体装置の製造方法を説
明するための工程断面図である。
FIGS. 1A to 1F are process cross-sectional views for explaining a method of manufacturing a semiconductor device using electrode wiring having a polycide structure, which is an embodiment of the present invention.

この製造方法について説明すると、まず、シリコン2!
!i21表面に下地段差パターン2および二酸化シリコ
ン膜3を形成する(第1A図)。次に、下地段差パター
ン2表面および二酸化シリコン膜3表面に0.2〜0.
3μmの膜厚のポリシリコン膜40を形成する(第1B
図)。次に、配線抵抗を下げる目的でポリシリコン膜4
0に燐(P)をドープする。41は燐がドープされたポ
リシリコン膜を示している(第1C図)。次に、ポリシ
リコン膜41表面にスパッタリング法により膜厚が0.
 2μm以下の高融点金属シリサイド膜または高融点金
属膜、たとえばモリブデンシリサイド膜52を形成する
。このとき、段差部において膜の成長の仕方が異なるこ
とによりモリブデンシリサイド膜52に不整合部71が
生じる。次に、ポリサイド構造の電極配線を1000℃
前後の温度て熱処理する。このとき、従来技術で述べた
ようにモリブデンシリサイド膜52の結晶粒径は数10
0Aから数1000Aに増大する。53は熱処理後のモ
リブデンシリサイド膜を示している。モリブデンシリサ
イド膜52の結晶粒径の増大に伴ってこの膜の体積収縮
が起こりこの膜に内部応力が発生するが、この実施例で
は、モリブデンシリサイド膜52の膜厚を0. 2μm
以下にしているため、この内部応力は小さくなり、不整
合部71で断線が生じない(第1E図)。次に、モリブ
デンシリイド膜53表面にBPSGからなるスムースコ
ート膜を形成し、この後、スムースコート膜をリフロー
する。6はリフロー後のスムースコート膜を示している
(第1F図)。
To explain this manufacturing method, first, Silicon 2!
! A base step pattern 2 and a silicon dioxide film 3 are formed on the i21 surface (FIG. 1A). Next, the surface of the base step pattern 2 and the silicon dioxide film 3 are coated with 0.2-0.
A polysilicon film 40 with a thickness of 3 μm is formed (first B).
figure). Next, in order to lower the wiring resistance, a polysilicon film 4
0 is doped with phosphorus (P). Reference numeral 41 indicates a polysilicon film doped with phosphorus (FIG. 1C). Next, the surface of the polysilicon film 41 is coated with a sputtering method to reduce the film thickness to 0.
A refractory metal silicide film or a refractory metal film of 2 μm or less, for example, a molybdenum silicide film 52 is formed. At this time, a mismatched portion 71 is generated in the molybdenum silicide film 52 due to the difference in the way the film grows at the stepped portion. Next, the electrode wiring of the polycide structure was heated to 1000°C.
Heat treatment at different temperatures. At this time, as described in the prior art, the crystal grain size of the molybdenum silicide film 52 is several 10
It increases from 0A to several thousand A. 53 indicates a molybdenum silicide film after heat treatment. As the crystal grain size of the molybdenum silicide film 52 increases, the volume of this film shrinks and internal stress is generated in the film, but in this embodiment, the thickness of the molybdenum silicide film 52 is set to 0. 2μm
Since the internal stress is set as below, this internal stress is reduced and no wire breakage occurs at the mismatched portion 71 (FIG. 1E). Next, a smooth coat film made of BPSG is formed on the surface of the molybdenum silide film 53, and then the smooth coat film is reflowed. 6 shows the smooth coat film after reflow (Fig. 1F).

なお、上記実施例では、ポリシリコン膜とモリブデンシ
リサイド膜とからなるポリサイド構造の電極配線につい
て示したが、モリブデンシリサイド膜の代わりに、タン
グステンシリサイド膜、チタンシリサイド膜、タンタル
シリサイド膜などの高融点金属シリサイド膜を用いても
よく、また、モリブデン膜、タングステン膜、チタン膜
、タンタル膜などの高融点金属膜を用いてもよい。
In addition, in the above embodiment, an electrode wiring having a polycide structure consisting of a polysilicon film and a molybdenum silicide film was shown, but instead of the molybdenum silicide film, a high melting point metal such as a tungsten silicide film, a titanium silicide film, a tantalum silicide film, etc. A silicide film may be used, or a high melting point metal film such as a molybdenum film, a tungsten film, a titanium film, or a tantalum film may be used.

[発明の効果コ 以上のようにこの発明によれば、段差部に形成される電
極配線用の高融点金属シリサイド膜または高融点金属膜
の膜厚を0. 2μm以下にしたので、ポリサイド構造
の電極配線の熱処理時において、高融点金属シリサイド
膜または高融点金属膜の断線を防いで配線抵抗の上昇を
抑えるこができる半導体装置を得ることができる。この
ため、半導体装置の製造の歩留りや信頓性が向上する。
[Effects of the Invention] As described above, according to the present invention, the film thickness of the high melting point metal silicide film or the high melting point metal film for electrode wiring formed in the stepped portion is reduced to 0. Since the thickness is set to 2 μm or less, it is possible to obtain a semiconductor device in which disconnection of the high melting point metal silicide film or the high melting point metal film can be prevented and an increase in wiring resistance can be suppressed during heat treatment of the electrode wiring having a polycide structure. Therefore, the yield and reliability of manufacturing semiconductor devices are improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図〜第1F図は、この発明の実施例であるポリサ
イド構造の電極配線を何する半導体装置の製造方法を説
明するための工程断面図である。 第2A図および第2B図は、従来のポリサイド構造の電
極配線を有する半導体装置を示す断面図である。 図において、1はシリコン基板、2は下地段差パターン
、3は二酸化シリコン膜、40.41はポリシリコン膜
、50.51,52.53はモリブデンシリサイド膜、
6はスムースコート膜、70.71は不整合部、8は断
線である。 なお、各図中同一符号は同一または相当部分を示す。
FIGS. 1A to 1F are process cross-sectional views for explaining a method of manufacturing a semiconductor device for forming electrode wiring of a polycide structure according to an embodiment of the present invention. FIGS. 2A and 2B are cross-sectional views showing a semiconductor device having a conventional electrode wiring having a polycide structure. In the figure, 1 is a silicon substrate, 2 is a base step pattern, 3 is a silicon dioxide film, 40.41 is a polysilicon film, 50.51, 52.53 are molybdenum silicide films,
6 is a smooth coat film, 70 and 71 are mismatched portions, and 8 is a disconnection. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)段差部に形成される電極配線用の高融点金属シリ
サイド膜または高融点金属膜の膜厚を0.2μm以下に
したことを特徴とする半導体装置。
(1) A semiconductor device characterized in that the film thickness of a high melting point metal silicide film or a high melting point metal film for electrode wiring formed in a stepped portion is 0.2 μm or less.
(2)前記高融点金属シリサイド膜は、モリブデンシリ
サイド膜、タングステンシリサイド膜、チタンシリサイ
ド膜およびタンタルシリサイド膜からなる群から選ばれ
た1つの膜である特許請求の範囲第1項記載の半導体装
置。
(2) The semiconductor device according to claim 1, wherein the high melting point metal silicide film is one film selected from the group consisting of a molybdenum silicide film, a tungsten silicide film, a titanium silicide film, and a tantalum silicide film.
(3)前記高融点金属膜は、モリブデン膜、タングステ
ン膜、チタン膜およびタンタル膜からなる群から選ばれ
た1つの膜である特許請求の範囲第1項記載の半導体装
置。
(3) The semiconductor device according to claim 1, wherein the high melting point metal film is one film selected from the group consisting of a molybdenum film, a tungsten film, a titanium film, and a tantalum film.
(4)前記高融点金属シリサイド膜または高融点金属膜
は、スパッタリング法により形成される特許請求の範囲
第1項ないし第3項のいずれかに記載の半導体装置。
(4) The semiconductor device according to any one of claims 1 to 3, wherein the high melting point metal silicide film or the high melting point metal film is formed by a sputtering method.
JP19310686A 1986-08-18 1986-08-18 Semiconductor device Pending JPS6347950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19310686A JPS6347950A (en) 1986-08-18 1986-08-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19310686A JPS6347950A (en) 1986-08-18 1986-08-18 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6347950A true JPS6347950A (en) 1988-02-29

Family

ID=16302342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19310686A Pending JPS6347950A (en) 1986-08-18 1986-08-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6347950A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479330A (en) * 1990-07-23 1992-03-12 Matsushita Electron Corp Method of forming laminated wiring
KR100260524B1 (en) * 1997-06-27 2000-08-01 김영환 Method for forming a metal line in a semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609160A (en) * 1983-06-28 1985-01-18 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPS6057975A (en) * 1983-09-09 1985-04-03 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS6184831A (en) * 1984-10-02 1986-04-30 Nec Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609160A (en) * 1983-06-28 1985-01-18 Matsushita Electric Ind Co Ltd Semiconductor device and manufacture thereof
JPS6057975A (en) * 1983-09-09 1985-04-03 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPS6184831A (en) * 1984-10-02 1986-04-30 Nec Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479330A (en) * 1990-07-23 1992-03-12 Matsushita Electron Corp Method of forming laminated wiring
KR100260524B1 (en) * 1997-06-27 2000-08-01 김영환 Method for forming a metal line in a semiconductor device

Similar Documents

Publication Publication Date Title
JPS61142739A (en) Manufacture of semiconductor device
JPS639925A (en) Manufacture of semiconductor device
JPS6347950A (en) Semiconductor device
JPS6312152A (en) Semiconductor device and manufacture thereof
JPH10214833A (en) Semiconductor-device wiring structure and its manufacture
JP2806757B2 (en) Method for manufacturing semiconductor device
JPS62291146A (en) Manufacture of semiconductor device
JPH0621241A (en) Manufacture of semiconductor device
KR100222124B1 (en) Method for forming metalization in semiconductor device
JPH0766203A (en) Manufacture of semiconductor device
JPH10223561A (en) Manufacture of semiconductor device
JPH01248643A (en) Manufacture of semiconductor integrated circuit device
JPS62165328A (en) Method of alloying metal after oxidization
JPH05166937A (en) Wiring formation
JPH0274031A (en) Manufacture of semiconductor device
JPH04288834A (en) Manufacturing for semiconductor device
JPH01202860A (en) Semiconductor device
JPS63110749A (en) Semiconductor device
JPH0513364A (en) Manufacture of semiconductor device
JPS63202040A (en) Manufacture of semiconductor device
JPH02128425A (en) Manufacture of semiconductor device
JPS60219772A (en) Manufacture of semiconductor device
JPS63119548A (en) Manufacture of semiconductor device
JPS61256718A (en) Manufacture of semiconductor integrated circuit device
JPS62248238A (en) Manufacture of semiconductor device