JPS6347941B2 - - Google Patents

Info

Publication number
JPS6347941B2
JPS6347941B2 JP54057657A JP5765779A JPS6347941B2 JP S6347941 B2 JPS6347941 B2 JP S6347941B2 JP 54057657 A JP54057657 A JP 54057657A JP 5765779 A JP5765779 A JP 5765779A JP S6347941 B2 JPS6347941 B2 JP S6347941B2
Authority
JP
Japan
Prior art keywords
conical
protrusion
transmission
retainer
trochanter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54057657A
Other languages
Japanese (ja)
Other versions
JPS55152949A (en
Inventor
Manabu Kashiwabara
Kikuo Okamura
Tadao Nakatsuka
Shigeo Mizusawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINHO KOGYO KK
Original Assignee
SHINHO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINHO KOGYO KK filed Critical SHINHO KOGYO KK
Priority to JP5765779A priority Critical patent/JPS55152949A/en
Publication of JPS55152949A publication Critical patent/JPS55152949A/en
Publication of JPS6347941B2 publication Critical patent/JPS6347941B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Friction Gearing (AREA)

Description

【発明の詳細な説明】 本発明は、次記形式の摩擦無段変速機、すなわ
ち、「三つの要素に摩擦係合しつつ遊星運動を行
う複数の円錐形転子が共通の中心軸線をもつ入力
軸と出力軸との間の伝動系上に設けられ、外接状
態において円錐形転子の円錐面に摩擦係合させら
れていて変速操作装置により上記中心軸線の方向
に移動させられる変速リングが上記三つの要素中
の一つの要素とされる形式の摩擦無段変速機」に
つき、その伝動効率を向上させることを目的とす
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a frictionally continuously variable transmission of the following type, in which a plurality of conical rotors that perform planetary motion while being frictionally engaged with three elements have a common central axis. A speed change ring is provided on a transmission system between an input shaft and an output shaft, is frictionally engaged with a conical surface of a conical rotor in a circumscribed state, and is moved in the direction of the central axis by a speed change operating device. The purpose of this invention is to improve the transmission efficiency of a continuously variable friction transmission, which is one of the three elements mentioned above.

摩擦無段変速機においては、摩擦係合点におい
てスリツプが生じないようにする大きさの圧接力
が加えられる。この圧接力を可及的に小さくする
ことは伝動効率の向上につながるので、本願発明
者は、先ず、出力トルクに応じて変化する推力を
発生する圧接力発生装置の存在を前提としつつ、
円錐形転子の形状の改善を行い、それによつて、
変速範囲の全域に亘り、過大の圧接力が加わらな
いようにする構成のものを開発したのであるが、
この構成のものについての実験過程において、前
記形式のものにおいては、避け得ない工作誤差が
円錐形転子とリテナーとの間の相対的位置関係を
変更させるように作用し、この変更を禁止するよ
うなリテナーは伝動効率の低下の原因を与えてい
ることを見出したのである。結果的に言えば、本
発明は、以下図面に関連して説明する如く、円錐
形転子に対し、円錐面が設けられている側とは反
対の側の面の中心に突出部を設け、この突出部の
断面積より充分大きな面積をもつ一連の孔をあけ
られたリテナーの孔に上記突出部を進入させるも
ので、それによつて、リテナーの存在が変速機の
効率低下の原因とならないようにするものであ
る。
In a friction continuously variable transmission, a pressing force of a magnitude that prevents slippage is applied at the frictional engagement point. Since reducing this pressure contact force as much as possible leads to an improvement in transmission efficiency, the inventor of the present application first assumes the existence of a pressure contact force generation device that generates a thrust force that changes depending on the output torque, and
Improved the shape of the conical trochanter, thereby
We developed a structure that prevents excessive pressure from being applied throughout the entire gear shifting range.
In the course of experiments with this configuration, in the case of the type described above, unavoidable machining errors act to change the relative positional relationship between the conical trochanter and the retainer, and this change is prohibited. It was discovered that such a retainer causes a decrease in transmission efficiency. As a result, the present invention provides a conical trochanter with a protrusion at the center of the surface opposite to the side on which the conical surface is provided, as will be explained below with reference to the drawings. The protrusion is inserted into a retainer hole, which has a series of holes with an area sufficiently larger than the cross-sectional area of the protrusion, so that the presence of the retainer does not cause a reduction in the efficiency of the transmission. It is meant to be.

以下においては上記本発明による摩擦無段変速
機の1例を示し図に関連して本発明によるものの
作用効果の説明を行うこととする。
In the following, one example of the friction continuously variable transmission according to the present invention will be shown and the effects of the present invention will be explained with reference to the drawings.

第1図において、1は入力軸、2は出力軸、3
は円錐形転子、4は変速リングである。入力軸1
と出力軸2とは共通の中心軸線をもち、それらの
間の伝動系上には、入力軸の側の伝動要素5、円
錐形転子3、出力軸の側の伝動要素6および出力
トルクに応じる大きさの推力を発生する圧接力発
生装置7が介在させられる。図示のものの円錐形
転子3は、135゜±10゜の範囲の頂角をもつ円錐面
8と、入力軸の側の伝動要素5に係合する凸の環
状伝動面9と、出力軸の側の伝動要素6に係合す
る平坦な環状伝動面10とをもつ。円錐形転子3
に与えたこの形状は、円錐形転子3と変速リング
4との間に作用する圧接力と、円錐形転子3と伝
動要素6との間に作用する圧接力との差を、変速
範囲の全域に亘つて小さく保たせ、それによつ
て、過大の圧接力を加えないですむようにする。
In Figure 1, 1 is the input shaft, 2 is the output shaft, and 3 is the input shaft.
is a conical trochanter, and 4 is a speed change ring. Input shaft 1
and the output shaft 2 have a common center axis, and the transmission system between them includes a transmission element 5 on the input shaft side, a conical rotor 3, a transmission element 6 on the output shaft side, and a transmission element 5 on the output shaft side. A pressing force generating device 7 is interposed that generates a thrust of a corresponding magnitude. The illustrated conical rotor 3 has a conical surface 8 with an apex angle in the range of 135°±10°, a convex annular transmission surface 9 that engages the transmission element 5 on the input shaft side, and a convex annular transmission surface 9 on the output shaft side. It has a flat annular transmission surface 10 which engages the side transmission element 6. conical trochanter 3
This shape, which is given to The contact pressure is kept small over the entire range, thereby avoiding the need to apply excessive pressure.

円錐形転子3には、円錐面8が設けられている
側とは反対の側の面の中心に突出部12が設けら
れる。11はリテナーで、円錐形転子3に設けら
れた上記の突出部12が進入させられる一連の孔
13をもつ。孔13の面積は突出部12の断面積
より充分大きい。図示のものの場合、孔13は長
孔である。
The conical trochanter 3 is provided with a protrusion 12 at the center of the surface opposite to the side on which the conical surface 8 is provided. Reference numeral 11 denotes a retainer having a series of holes 13 into which the above-mentioned projections 12 provided on the conical trochanter 3 are inserted. The area of the hole 13 is sufficiently larger than the cross-sectional area of the protrusion 12. In the case shown, the hole 13 is a long hole.

第3図乃至第5図は孔13の面積を大きくした
理由およびそれによる作用効果の説明図で、これ
らの図のうち、第3図は変速リング4の傾き角α
を示し、第4図は入力軸1の中心軸線と出力軸2
の中心軸線との間の傾き角βとを示す。α,βは
工作誤差に基因するもので、実際的には極めて小
さいが、図中にはそれを拡大して示す。変速リン
グ4に対する円錐形転子3の有効半径をaとすれ
ば、傾き角αはこの有効半径aを複数の円錐形転
子3について不均一のものとする。第3図につい
て言えば、有効半径aは円錐形転子3がこの図の
上部に示す位置にきたときに小さく、下部に示す
位置にきたときに大きい。有効半径aに生じるこ
の変動は円錐形転子3の公転速度の変動として現
われるので、すべての円錐形転子の公転速度を一
様に保たせようとしている従来のリテナーは、例
えば3%と云うような可成り大きい伝動効率の低
下をもたらしていたのである。第5図は、本発明
に従つてリテナーによる円錐形転子の拘束を解除
した場合において生じる円錐形転子の位置の変化
を示す図面で、この図に示すものの場合、円錐形
転子の数は7である。この図は孔13の中心軸線
と突出部12の中心軸線との間の角εが、円錐形
転子の公転に伴なつて変化する有様を示す。出力
が1で円錐形転子の公転半径が90mmのものの場
合、角εの変化による突出部12のずれの最大値
は2mm−3mmの程度である。リテナーが円錐形転
子の相互間位置を正確に規正している従来のもの
においてはこの現象は起らないのであるが、反面
において、リテナーと円錐形転子の突出部との間
に大きな力が作用する状態において円錐形転子が
それに摩擦係合する3要素との間のスリツプを生
じる伝動が行われ、結果的には伝動効率の低下を
招く原因を与えているのである。この種の無段変
速機においては、円錐形転子の相対的位置を規正
するためにリテナーを設けることは必要である。
しかしながら、これは大略の規正でよく、変速リ
ングと入力側および出力側の伝動要素とに対する
摩擦係合により逸出のおそれなく保持される円錐
形転子は工作誤差の存在に影響されないようにし
て自由に動き得るようにすることが伝動効率の向
上の上において重要なことである。従来において
は、円錐形転子とそれに摩擦係合する3要素との
間には伝達トルクに応じた大きさの圧接力を加え
ればよいと云う考え方の下に疑問の余地なく処理
されていたのであるが、実際的には避け得られな
い工作誤差の存在のために円錐形転子の相対的位
置が周期的に変化させられようとし、この変化を
起させないようにするリテナーが、圧接力の大き
さに無関係に、スリツプを増大させ、増大させら
れたスリツプと、円錐形転子上の突出部に加わる
側圧とが伝動効率低下の原因を与えていたのであ
る。なお、本発明に係る形式の摩擦無段変速機に
おける円錐形転子とそれに摩擦係合する3要素と
は円錐形転子の逸出を許さないもので、円錐形転
子の逸出防止と云う点においてはリテナーはそれ
に無関係のものである。
3 to 5 are explanatory diagrams of the reason for increasing the area of the hole 13 and the effect thereof. Among these figures, FIG. 3 shows the inclination angle α of the speed change ring 4
Figure 4 shows the center axis of input shaft 1 and output shaft 2.
The inclination angle β between the central axis of α and β are due to machining errors and are actually extremely small, but they are shown enlarged in the figure. If the effective radius of the conical rotor 3 with respect to the speed change ring 4 is a, the inclination angle α makes this effective radius a non-uniform for the plurality of conical rotors 3. Referring to FIG. 3, the effective radius a is small when the conical rotor 3 is in the position shown at the top of the figure, and large when it is in the position shown at the bottom of the figure. This variation that occurs in the effective radius a appears as a variation in the revolution speed of the conical rotor 3, so a conventional retainer that attempts to keep the revolution speed of all the conical rotors uniform is, for example, 3%. This resulted in a considerable reduction in transmission efficiency. FIG. 5 is a drawing showing the change in the position of the conical trochanter that occurs when the conical trochanter is released from its restraint by the retainer according to the present invention. is 7. This figure shows how the angle ε between the central axis of the hole 13 and the central axis of the protrusion 12 changes as the conical trochanter revolves. When the output is 1 and the radius of revolution of the conical trochanter is 90 mm, the maximum deviation of the protrusion 12 due to a change in angle ε is about 2 mm to 3 mm. This phenomenon does not occur in conventional systems in which the retainer accurately regulates the mutual position of the conical trochanter, but on the other hand, there is a large force between the retainer and the protrusion of the conical trochanter. In the state in which the conical rotor acts, transmission occurs that causes slippage between the conical rotor and the three elements that are frictionally engaged with it, resulting in a decrease in transmission efficiency. In this type of continuously variable transmission, it is necessary to provide a retainer to regulate the relative position of the conical rotor.
However, this is only a rough regulation, and the conical rotor, which is held without fear of slipping out due to the frictional engagement between the speed change ring and the transmission elements on the input and output sides, is not affected by the presence of machining errors. Being able to move freely is important in improving transmission efficiency. In the past, problems were handled without question based on the idea that it was sufficient to apply a pressing force of a magnitude corresponding to the transmitted torque between the conical trochanter and the three elements that frictionally engaged with it. However, in reality, due to the existence of unavoidable machining errors, the relative position of the conical rotor tends to change periodically, and a retainer that prevents this change from occurring is required to control the pressure contact force. Regardless of the size, the slip was increased, and the increased slip and the lateral pressure applied to the protrusion on the conical trochanter caused a reduction in transmission efficiency. In addition, the conical rotor and the three elements frictionally engaged with it in the friction continuously variable transmission of the type according to the present invention do not allow the conical rotor to escape. In this respect, retainers are irrelevant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による摩擦無段変速機の縦断面
図、第2図は第1図に示すものにおける円錐形転
子のリテナーを示す断面図である。第3図および
第4図は工作誤差の説明図、第5図は工作誤差に
基因して起る円錐形転子の動きを許容するリテナ
ーを示す図面である。 1……入力軸、2……出力軸、3……円錐形転
子、4……変速リング、5……入力軸側の伝動要
素、6……出力軸側の伝動要素、7……圧接力発
生装置、9,10……環状伝動面、11……リテ
ナー、12……円錐形転子上の突出部、13……
リテナー上の孔。
FIG. 1 is a longitudinal cross-sectional view of a friction continuously variable transmission according to the present invention, and FIG. 2 is a cross-sectional view showing a retainer of a conical rotor in the transmission shown in FIG. 3 and 4 are explanatory diagrams of machining errors, and FIG. 5 is a drawing showing a retainer that allows movement of the conical trochanter caused by machining errors. 1... Input shaft, 2... Output shaft, 3... Conical trochanter, 4... Speed change ring, 5... Transmission element on the input shaft side, 6... Transmission element on the output shaft side, 7... Pressure welding Force generator, 9, 10... Annular transmission surface, 11... Retainer, 12... Projection on conical trochanter, 13...
Hole on retainer.

Claims (1)

【特許請求の範囲】[Claims] 1 三つの要素に摩擦係合しつつ遊星運動を行う
複数の円錐形転子が共通の中心軸線をもつ入力軸
と出力軸との間の伝動系上に設けられ、外接状態
において円錐形転子の円錐面に摩擦係合させられ
ていて変速操作装置により上記中心軸線の方向に
移動させられる変速リングが上記三つの要素中の
一つの要素とされる形式のものにおいて、円錐形
転子に対し、円錐面が設けられている側とは反対
の側の面の中心に突出部を設け、この突出部の断
面積より充分大きな面積をもつ一連の孔をあけら
れたリテナーの孔に上記突出部を進入させたこと
を特徴とする摩擦無段変速機。
1 A plurality of conical trochanters that perform planetary motion while frictionally engaging three elements are installed on a transmission system between an input shaft and an output shaft that have a common central axis, and in a circumscribed state, the conical trochanters In a type in which a speed change ring that is frictionally engaged with the conical surface of the conical trochanter and is moved in the direction of the central axis by the speed change operating device is one of the three elements described above, , a protrusion is provided at the center of the side opposite to the side where the conical surface is provided, and the protrusion is inserted into the hole of the retainer, which has a series of holes with a sufficiently larger area than the cross-sectional area of the protrusion. A continuously variable friction transmission characterized by the following:
JP5765779A 1979-05-11 1979-05-11 Friction stepless transmission Granted JPS55152949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5765779A JPS55152949A (en) 1979-05-11 1979-05-11 Friction stepless transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5765779A JPS55152949A (en) 1979-05-11 1979-05-11 Friction stepless transmission

Publications (2)

Publication Number Publication Date
JPS55152949A JPS55152949A (en) 1980-11-28
JPS6347941B2 true JPS6347941B2 (en) 1988-09-27

Family

ID=13061962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5765779A Granted JPS55152949A (en) 1979-05-11 1979-05-11 Friction stepless transmission

Country Status (1)

Country Link
JP (1) JPS55152949A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02274632A (en) * 1989-04-14 1990-11-08 Kubota Corp Front wheel power transmitting clutch for four-wheel drive vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5441030B2 (en) * 2009-06-25 2014-03-12 学校法人同志社 Automatic transmission

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545164A (en) * 1977-06-14 1979-01-16 Shinpo Kogyo Kk Friction-type stepless change gear

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545164A (en) * 1977-06-14 1979-01-16 Shinpo Kogyo Kk Friction-type stepless change gear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02274632A (en) * 1989-04-14 1990-11-08 Kubota Corp Front wheel power transmitting clutch for four-wheel drive vehicle

Also Published As

Publication number Publication date
JPS55152949A (en) 1980-11-28

Similar Documents

Publication Publication Date Title
JP4588333B2 (en) Rotating cam pressure regulator
US4065191A (en) Roller skew control for tapered roller bearings
US4232561A (en) Stepless speed change gear
US4693351A (en) Reversible freewheel device
US8740743B2 (en) Continuously variable transmission device and method
JP2010025237A (en) Traction drive mechanism
JPH0338448B2 (en)
US4257495A (en) Damping device
US3765257A (en) Contact pressure transmitting system of a stepless speed change gear
US3964806A (en) Thrust devices
JPS6347941B2 (en)
US2806366A (en) Slipping clutch having wavelike contours on the clutch faces
JPS583966Y2 (en) bellows device
JP2002195307A (en) Two-way clutch
JPS58160662A (en) Fixed-ratio traction roller transmission with tapered torque transmission means
JP2002276749A (en) Electric driving device
JPH0470504B2 (en)
JPS6125941B2 (en)
JPS5852092B2 (en) ITSUPOKURATSUCHI
JPH01108417A (en) Overload clutch
JPS62127555A (en) Pre-load mechanism for rolling friction transmission
US5060773A (en) Single-action freewheel clutch with substantially large central diameter
JPH0440036Y2 (en)
JPH0223889Y2 (en)
JPH01316550A (en) Planetary gear type reduction gear