JPS6347886B2 - - Google Patents

Info

Publication number
JPS6347886B2
JPS6347886B2 JP21359982A JP21359982A JPS6347886B2 JP S6347886 B2 JPS6347886 B2 JP S6347886B2 JP 21359982 A JP21359982 A JP 21359982A JP 21359982 A JP21359982 A JP 21359982A JP S6347886 B2 JPS6347886 B2 JP S6347886B2
Authority
JP
Japan
Prior art keywords
engine
load
thermostat device
control piece
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21359982A
Other languages
Japanese (ja)
Other versions
JPS59103921A (en
Inventor
Shinichi Nagumo
Yoshifumi Hase
Fumio Jitsuzawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP21359982A priority Critical patent/JPS59103921A/en
Priority to US06/557,884 priority patent/US4560104A/en
Publication of JPS59103921A publication Critical patent/JPS59103921A/en
Publication of JPS6347886B2 publication Critical patent/JPS6347886B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/02Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature
    • G05D23/021Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being a non-metallic solid, e.g. elastomer, paste
    • G05D23/022Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being a non-metallic solid, e.g. elastomer, paste the sensing element being placed within a regulating fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2070/00Details
    • F01P2070/06Using intake pressure as actuating fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Temperature-Responsive Valves (AREA)

Description

【発明の詳細な説明】 この発明は、内燃機関の冷却液温度制御装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coolant temperature control device for an internal combustion engine.

一般に、自動車用内燃機関等においては、燃費
の向上やHCを低減する排気浄化及び出力向上の
ために、機関の冷却液温度を負荷状態に応じて制
御し、低負荷時には高冷却液温度、高負荷時には
低冷却液温度に設定されることが望ましいとされ
ている。
In general, in internal combustion engines for automobiles, the engine coolant temperature is controlled according to the load condition in order to improve fuel efficiency, purify exhaust gas to reduce HC, and increase output. It is said that it is desirable to set the coolant temperature to a low level during load.

従来、この種の冷却液温度制御装置としては、
例えば第1図に示すようなものがある(実開昭54
−142722号公報参照)。
Conventionally, this type of coolant temperature control device is
For example, there is something like the one shown in Figure 1.
-Refer to Publication No. 142722).

これは、まず機関本体に設けられた機関冷却液
通路の一部であるラジエータ入口通路1の途中
に、ワツクスタイプのサーモスタツト装置2が介
装され、冷却液温度に応じて作動する熱応動部材
に固定した弁体の弁座から離れる量を変えてラジ
エータ(図示せず)に流れる冷却液量をコントロ
ールしている。
First, a wax-type thermostat device 2 is installed in the middle of a radiator inlet passage 1, which is a part of the engine coolant passage provided in the engine body, and is a thermally responsive member that operates according to the coolant temperature. The amount of coolant flowing to the radiator (not shown) is controlled by changing the amount by which the fixed valve body moves away from the valve seat.

そして、上記サーモスタツト装置2の熱応動部
材3(特にワークスケース3A内のワツクスと一
体動するシヤフト3B)に対向するようにして制
御片4が設けられる。
A control piece 4 is provided so as to face the thermally responsive member 3 of the thermostat device 2 (particularly the shaft 3B that moves integrally with the wax in the work case 3A).

この制御片4は、サーモスタツト装置2の開弁
温度を決定する上記シヤフト3Bの最大上昇位置
を規制するもので、外設の機関の負荷に応動する
ダイヤフラム装置5に連動されて、その規制位置
つまり上記シヤフト3Bとの当接位置が可変とな
るようになつている。
This control piece 4 regulates the maximum lifting position of the shaft 3B that determines the valve opening temperature of the thermostat device 2, and is linked to a diaphragm device 5 that responds to the load of an external engine to adjust the regulating position. In other words, the position of contact with the shaft 3B is variable.

上記ダイヤフラム装置5は、上述した制御片4
が連結されたダイヤフラム6により負圧室7と大
気室8とに分割され、大気室8は開孔9を介して
常時大気圧に保持される一方、負圧室7には負圧
通路10を介して機関の吸入負圧が導入されると
共にダイヤフラム(リターン)スプリング11が
介装される。
The diaphragm device 5 includes the control piece 4 described above.
is divided into a negative pressure chamber 7 and an atmospheric chamber 8 by a connected diaphragm 6, and the atmospheric chamber 8 is always maintained at atmospheric pressure through an opening 9, while a negative pressure passage 10 is connected to the negative pressure chamber 7. A diaphragm (return) spring 11 is interposed through which engine suction negative pressure is introduced.

尚、上記負圧通路10の途中には負圧遅延弁1
2が設けられる。
Note that a negative pressure delay valve 1 is installed in the middle of the negative pressure passage 10.
2 is provided.

このように構成されるため、機関の高負荷時に
は、負圧室7に導入される吸入負圧が小さいため
に、ダイヤフラム6がダイヤフラムスプリング1
1力により第1図中下方に移動され、これと一体
の制御片4が丁度第1図に示したような位置にお
かれる。この時の制御片4と上述したシヤフト3
Bとの位置関係は第2図に示すように間隙aを有
している。
With this structure, when the engine is under high load, the suction negative pressure introduced into the negative pressure chamber 7 is small, so the diaphragm 6
The control piece 4 is moved downward in FIG. 1 by one force, and the control piece 4 integrated therewith is placed in the position exactly as shown in FIG. At this time, the control piece 4 and the shaft 3 mentioned above
The positional relationship with B has a gap a as shown in FIG.

今この状態で冷却液温が上昇すると熱応動部材
3のワツクスケース3A内のワツクスが膨脹しシ
ヤフト3Bを押し上げる。
When the coolant temperature rises in this state, the wax in the wax case 3A of the thermally responsive member 3 expands and pushes the shaft 3B up.

そして、シヤフト3Bが第2図で示す寸法aだ
け上昇すると、シヤフト3Bは制御片4に当接
し、これ以上シヤフト3Bが上昇できず弁バネ1
3に抗して弁体14を弁座15から引き離してサ
ーモスタツト装置2を開弁する。
Then, when the shaft 3B rises by the dimension a shown in FIG.
3, the valve body 14 is pulled away from the valve seat 15 to open the thermostat device 2.

この際、上記間隙aは機関の特性に応じて、例
えば高負荷時はサーモスタツト装置2が70℃で開
弁するとした場合は、冷却液温が70℃となつたと
きにシヤフト3Bが制御片4に接するように設定
すれば良い。
At this time, the gap a is determined according to the characteristics of the engine. For example, if the thermostat device 2 opens at 70°C under high load, the shaft 3B will open the control valve when the coolant temperature reaches 70°C. It is sufficient to set it so that it is close to 4.

一方、低負荷時には、逆に吸入負圧が増大する
ために、ダイヤフラム6がダイヤフラムスプリン
グ11力に抗して第1図中上方に移動され、これ
と一体の制御片4もシヤフト3Bとの間で第3図
に示したような間隙bを形成する位置まで上方へ
引き上げられる。勿論、上記間隙寸法bはb>a
の関係にある。
On the other hand, when the load is low, the suction negative pressure increases, so the diaphragm 6 is moved upward in FIG. 1 against the force of the diaphragm spring 11, and the control piece 4 integrated therewith also moves between the shaft 3B Then, it is pulled upward to a position where a gap b as shown in FIG. 3 is formed. Of course, the above gap dimension b is b>a
There is a relationship between

従つて、サーモスタツト装置2が開弁するには
高負荷時よりもシヤフト3Bがさらに上動せねば
ならず、その開弁温度が高くなる。
Therefore, in order for the thermostat device 2 to open the valve, the shaft 3B must move further upward than when the load is high, and the valve opening temperature becomes higher.

その際、上記間隙bも低負荷時の開弁温度を例
えば95℃とした場合は、その温度に達したとき
に、シヤフト3Bが制御片4に接するように機関
に応じて任意に設定すれば良い。
In this case, if the valve opening temperature at low load is set to 95°C, the gap b can be arbitrarily set according to the engine so that the shaft 3B comes into contact with the control piece 4 when that temperature is reached. good.

尚、以上のサーモスタツト装置2のリフト特性
を示したのが第4図で、図中実線は高負荷時のリ
フト特性、破線は低負荷時のリフト特性を示し、
A、E点はそれぞれ高負荷、低負荷時にシヤフト
3Bが制御片4に当接する点を示し、B、D点は
ダイヤフラムスプリング11が完全に縮みきつた
状態を示し、B〜C間、C〜D間はワツクスの膨
脹力のみで弁体14が動くことを示す。
Incidentally, FIG. 4 shows the lift characteristics of the thermostat device 2 described above. In the figure, the solid line shows the lift characteristics at high loads, and the broken line shows the lift characteristics at low loads.
Points A and E indicate the points where the shaft 3B comes into contact with the control piece 4 during high load and low load, respectively, points B and D indicate the state where the diaphragm spring 11 is completely compressed, and between B and C, and between C and C. D shows that the valve body 14 moves only by the expansion force of the wax.

このようにして、冷却液の最大設定温度が機関
の負荷状態に応じて可変制御されるのである。
In this way, the maximum set temperature of the coolant is variably controlled depending on the load condition of the engine.

ところが、このような従来の冷却液温度制御装
置にあつては、上述したラジエータ内へ流す冷却
液流量を制御するサーモスタツト装置2がラジエ
ータ入口通路1の途中に設けられ、ウオータポン
プの吐出圧がサーモスタツト装置2に対してその
弁体14を閉じる方向に作用するようになつてい
たため、機関の回転数が高くなるに伴つてウオー
タポンプの回転数も高くなりその吐出圧が上昇す
ると、第4図に示したB、D点(ダイヤフラムス
プリング11が完全に縮みきつた状態になる時
期)がより高温側に移動することになる。
However, in such a conventional coolant temperature control device, the thermostat device 2 that controls the flow rate of the coolant flowing into the radiator is provided in the middle of the radiator inlet passage 1, so that the discharge pressure of the water pump is controlled. Since the valve body 14 of the thermostat device 2 is actuated in the direction of closing, as the rotation speed of the engine increases, the rotation speed of the water pump also increases and its discharge pressure increases. Points B and D shown in the figure (the time when the diaphragm spring 11 becomes completely compressed) move to a higher temperature side.

従つて、同一負荷でも機関高回転域ほど冷却液
温が高めに制御される。
Therefore, even under the same load, the higher the engine speed range, the higher the coolant temperature is controlled.

ところで、冷却液温度を高めることによる燃費
向上や排気浄化の効果は、低回転域ほど大きく高
回転域になるとほとんど無くなつてしまうことが
本発明者等の実験により判明した。また高回転域
ほど機関の耐熱性が悪化することは自明である。
By the way, the inventors' experiments have revealed that the effect of improving fuel efficiency and purifying exhaust gas by increasing the coolant temperature is greater in the lower rotation range and almost disappears in the higher rotation range. Furthermore, it is obvious that the heat resistance of the engine deteriorates as the rotation speed increases.

これらを考え合わせると、従来例の場合には、
回転数の高い運転領域では燃費向上が排気浄化の
効果がないのに耐熱性を悪化させていたという問
題点があつた。
Considering these things together, in the case of the conventional example,
There was a problem in that in the operating range where the rotational speed was high, improving fuel efficiency had no effect on purifying exhaust gas, but instead worsened heat resistance.

そこで、この発明は上述したような冷却液温度
制御装置において、ウオータポンプの吐出圧を感
知してサーモスタツト装置を開弁方向に付勢する
手段を設け、機関の高回転域では低冷却液温度に
制御することにより、上記問題点を解決すること
を目的とする。
Therefore, the present invention provides the above-mentioned coolant temperature control device with means for sensing the discharge pressure of the water pump and biasing the thermostat device in the valve opening direction. The purpose of the present invention is to solve the above-mentioned problems by controlling the

以下、この発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below based on the drawings.

第5図に示すように、まず機関本体のウオータ
アウトレツト16とウオータアウトレツトハウジ
ング17とでラジエータ入口通路1が形成され、
この通路1の途中にサーモスタツト2が介装され
ると共に、該サーモスタツト装置2の熱応動部材
3(シヤフト3B)に対向するようにして、機関
の負荷状態に応動するダイヤフラム装置5により
駆動される制御片4が設けられる。
As shown in FIG. 5, first, a radiator inlet passage 1 is formed by a water outlet 16 of the engine body and a water outlet housing 17.
A thermostat 2 is interposed in the middle of this passage 1, and is driven by a diaphragm device 5 that responds to the load condition of the engine so as to face the thermally responsive member 3 (shaft 3B) of the thermostat device 2. A control piece 4 is provided.

ここまでの構成は従前と同様であるが、本実施
例では更に上述した制御片4に、ウオータポンプ
の吐出圧を感知してサーモスタツト装置を開弁方
向に付勢する手段としてのもう一つのダイヤフラ
ム18が固定され、大気室8の下方に位置して水
圧室19が形成される。
The configuration up to this point is the same as before, but in this embodiment, the above-mentioned control piece 4 is further provided with another means for sensing the discharge pressure of the water pump and biasing the thermostat device in the valve opening direction. A diaphragm 18 is fixed and located below the atmospheric chamber 8 to form a water pressure chamber 19.

上記大気室8と水圧室19とは、制御片4の上
端部に接続した、ダイヤフラム18より小径のベ
ロフラム20を介して隔絶される。
The atmospheric chamber 8 and the water pressure chamber 19 are separated from each other by a bellows 20 connected to the upper end of the control piece 4 and having a smaller diameter than the diaphragm 18 .

そして、上記水圧室19は、大気室8、ウオー
タアウトレツトハウジング17及びウオータアウ
トレツト16等の壁面内部を貫通する通路21A
〜21Cを介して、サーモスタツト装置2上流の
ラジエータ入口通路1に連通され、該ラジエータ
入口通路1に作用するウオータポンプの吐出圧が
導かれるようになつている。
The water pressure chamber 19 has a passage 21A penetrating inside the walls of the atmospheric chamber 8, the water outlet housing 17, the water outlet 16, etc.
-21C, it communicates with the radiator inlet passage 1 upstream of the thermostat device 2, so that the discharge pressure of the water pump acting on the radiator inlet passage 1 is guided.

尚、図中22はウオータアウトレツト16から
分岐し、ラジエータ(図示せず)をバイパスして
ウオータポンプの吸込側に連通されるバイパス通
路である。
In the figure, reference numeral 22 denotes a bypass passage that branches off from the water outlet 16, bypasses a radiator (not shown), and communicates with the suction side of the water pump.

その他の構成は第1図と同様なので第1図と同
一部材には同一符号を付して詳しい説明は省略す
る。
The rest of the configuration is the same as in FIG. 1, so the same members as in FIG. 1 are given the same reference numerals and detailed explanations will be omitted.

このような構成のため、今機関が低回転域でウ
オータポンプの吐出圧もさほど高くない時は、該
吐出圧が通路21A〜21Cを介して作用する水
圧室19の圧力も小さいので、制御片4はダイヤ
フラム装置5により機関の負荷に応動し、従来例
と同様に低負荷時の高吸入負圧時に高温制御、高
負荷時の低吸入負圧時に低温制御となるように切
換制御される。
Because of this configuration, when the engine is in a low rotation range and the discharge pressure of the water pump is not very high, the pressure in the water pressure chamber 19 to which the discharge pressure acts via the passages 21A to 21C is also small, so the control piece 4 is controlled by a diaphragm device 5 in response to the engine load, and similarly to the conventional example, switching control is performed such that high temperature control is performed when the suction negative pressure is high at low load, and low temperature control is performed when the suction negative pressure is low at high load.

一方、機関が高回転域に移行し、これに伴なつ
てウオータポンプの吐出圧が上昇すると、該吐出
圧が導かれる水圧室19の圧力も上昇し、該圧力
が作用するダイヤフラム18の力によつて制御片
4は図中下方に強く付勢されることになる。
On the other hand, when the engine shifts to a high rotation range and the discharge pressure of the water pump increases accordingly, the pressure in the water pressure chamber 19 to which this discharge pressure is introduced also increases, and the force of the diaphragm 18 on which this pressure acts increases. Therefore, the control piece 4 is strongly urged downward in the figure.

従つて、今水圧室19に作用するウオータポン
プの吐出圧が所定値を越えると、機関低負荷時に
おいて負圧室7に大きな負圧が作用したとして
も、該負圧力に打ち勝つて制御片4を図中下方に
引き下げられるように、上述した各ダイヤフラム
6及び18の受圧面積等を設定すれば、機関低負
荷時ではあつても高回転域になるとサーモスタツ
ト装置2の開弁温度が下げられ、冷却液温を低温
側に制御できる。
Therefore, if the discharge pressure of the water pump currently acting on the water pressure chamber 19 exceeds a predetermined value, even if a large negative pressure acts on the negative pressure chamber 7 during low engine load, the control piece 4 will overcome the negative pressure. If the pressure-receiving area of each diaphragm 6 and 18 described above is set so that the pressure can be lowered downward in the figure, the valve opening temperature of the thermostat device 2 can be lowered even when the engine load is low but in the high rotation range. , the coolant temperature can be controlled to the low temperature side.

この結果、機関の耐熱性を悪化することなく効
果的に燃費向上や排気浄化がはかれる。
As a result, fuel efficiency and exhaust purification can be effectively achieved without deteriorating the heat resistance of the engine.

次に、第6図はこの発明の他の実施例を示すも
のである。
Next, FIG. 6 shows another embodiment of the present invention.

これは、第5図と同様の技術思想から水圧室1
9を設ける代わりに、サーモスタツト装置2及び
制御片4をラジエータ入口通路1からウオータポ
ンプ23上流のラジエータ出口通路24に変更し
て設置すると共に、サーモスタツト装置2の弁体
14に対してウオータポンプ23の吐出圧(厳密
にはウオータポンプ23の吐出側と吸込側の差圧
からウオータポンプ23の吐出部からラジエータ
27を経てサーモスタツト装置2の弁体14に至
るまでの抵抗を差し引いた圧力)が開弁方向に作
用するように弁体14の向きを設定するようにし
た例である。また、弁体14が閉じている場合で
も、機関本体25内の冷却液温をサーモスタツト
装置2の熱応動部材3に正しく伝えるために、バ
イパス通路26がラジエータ入口通路1と熱応動
部材3近くのラジエータ出口通路24間に設けら
れる。
This is based on the same technical concept as shown in Figure 5.
9, the thermostat device 2 and the control piece 4 are installed from the radiator inlet passage 1 to the radiator outlet passage 24 upstream of the water pump 23, and the water pump is connected to the valve body 14 of the thermostat device 2. 23 discharge pressure (strictly speaking, the pressure obtained by subtracting the resistance from the discharge part of the water pump 23 to the valve body 14 of the thermostat device 2 via the radiator 27 from the differential pressure between the discharge side and the suction side of the water pump 23) This is an example in which the orientation of the valve body 14 is set so that it acts in the valve opening direction. Furthermore, even when the valve body 14 is closed, the bypass passage 26 is located close to the radiator inlet passage 1 and the thermally responsive member 3 in order to correctly transmit the temperature of the coolant in the engine body 25 to the thermally responsive member 3 of the thermostat device 2. is provided between the radiator outlet passages 24 of the radiator.

これによれば、低負荷時にダイヤフラム装置5
の負圧室7に作用する負圧が大きくなつて制御片
4が図中下方(高温側)に引き下げられても、当
該負圧だけでダイヤフラムスプリング11が完全
に縮みきらない範囲では、機関回転が上昇する
と、これに伴なつてウオータポンプ23の吐出圧
も上昇し、該吐出圧がサーモスタツト装置2の弁
体14に作用するため弁体14の開度が大きくな
り、結局、第5図と同様に低負荷時ではあつても
高回転域になると冷却液温は低温側に制御され
る。
According to this, the diaphragm device 5
Even if the negative pressure acting on the negative pressure chamber 7 becomes large and the control piece 4 is pulled down in the figure (toward the high temperature side), the engine rotation will continue until the diaphragm spring 11 is not completely compressed by the negative pressure alone. When the water pump 23 increases, the discharge pressure of the water pump 23 also increases, and this discharge pressure acts on the valve body 14 of the thermostat device 2, so that the opening degree of the valve body 14 increases, and as a result, as shown in FIG. Similarly, even when the load is low, the coolant temperature is controlled to be low in the high rotation range.

以上説明したようにこの発明によれば、サーモ
スタツト装置の開弁温度を、負荷状態に応動する
制御片を介して、低負荷時ほど高めるようにした
冷却液温度制御装置において、ウオータポンプの
吐出圧をサーモスタツト装置に対してその開弁温
度を低める方向に作用させ、機関の高回転領域で
は低冷却液温度に制御するようにしたので、高回
転域で機関の耐熱性を悪化させることなく低中回
転域で効果的に燃費向上や排気浄化がはかれると
いう効果が得られる。
As explained above, according to the present invention, in the coolant temperature control device in which the valve opening temperature of the thermostat device is increased as the load becomes lower through the control piece that responds to the load condition, the discharge temperature of the water pump is increased. The pressure is applied to the thermostat device in a direction that lowers its valve opening temperature, and the coolant temperature is controlled to be low in the engine's high speed range, so the heat resistance of the engine is not deteriorated in the high speed range. The effect is to effectively improve fuel efficiency and purify exhaust gas in the low and medium rotation range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の断面図、第2図及び第3図は
その異なつた作動状態を示す各々の要部拡大断面
図、第4図は同じくそのリフト特性図、第5図は
この発明の実施例の断面図、第6図はこの発明の
他の実施例の一部切欠き側面図である。 1……ラジエータ入口通路、2……サーモスタ
ツト装置、3……熱応動部材、4……制御片、5
……ダイヤフラム装置、10……負圧通路、14
……弁体、18……ダイヤフラム、19……水圧
室、21A〜21C……通路、23……ウオータ
ポンプ、24……ラジエータ出口通路。
Fig. 1 is a sectional view of the conventional example, Figs. 2 and 3 are enlarged sectional views of the main parts showing different operating states, Fig. 4 is a lift characteristic diagram thereof, and Fig. 5 is a diagram of the present invention. FIG. 6 is a partially cutaway side view of another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Radiator inlet passage, 2...Thermostat device, 3...Thermal response member, 4...Control piece, 5
...Diaphragm device, 10...Negative pressure passage, 14
... Valve body, 18 ... Diaphragm, 19 ... Water pressure chamber, 21A to 21C ... Passage, 23 ... Water pump, 24 ... Radiator outlet passage.

Claims (1)

【特許請求の範囲】[Claims] 1 機関の冷却液通路に介装されラジエータ内へ
流す冷却液流量を制御するサーモスタツト装置の
弁体に固定した熱応動部材に、機関の負荷状態に
応じて位置決めされる制御片を対設し、該制御片
と該熱応動部材の当接時期を変えてサーモスタツ
ト装置の開弁温度を低負荷時には高く、高負荷時
には低くなるように切換制御する冷却液温度制御
装置において、ウオータポンプの吐出圧の上昇に
応じてサーモスタツト装置を開弁方向に付勢する
手段を設けたことを特徴とする内燃機関の冷却液
温度制御装置。
1. A control piece that is positioned according to the load condition of the engine is installed in opposition to a thermally responsive member fixed to the valve body of a thermostat device that is installed in the coolant passage of the engine and controls the flow rate of coolant flowing into the radiator. , in a coolant temperature control device that switches and controls the valve opening temperature of a thermostat device so that it is high at low load and low at high load by changing the contact timing of the control piece and the thermally responsive member; A coolant temperature control device for an internal combustion engine, comprising means for biasing a thermostat device in a valve opening direction in response to a rise in pressure.
JP21359982A 1982-12-06 1982-12-06 Temperature controller of cooling fluid in internal- combustion engine Granted JPS59103921A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21359982A JPS59103921A (en) 1982-12-06 1982-12-06 Temperature controller of cooling fluid in internal- combustion engine
US06/557,884 US4560104A (en) 1982-12-06 1983-12-05 Coolant temperature control system of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21359982A JPS59103921A (en) 1982-12-06 1982-12-06 Temperature controller of cooling fluid in internal- combustion engine

Publications (2)

Publication Number Publication Date
JPS59103921A JPS59103921A (en) 1984-06-15
JPS6347886B2 true JPS6347886B2 (en) 1988-09-26

Family

ID=16641853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21359982A Granted JPS59103921A (en) 1982-12-06 1982-12-06 Temperature controller of cooling fluid in internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS59103921A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095999A1 (en) 2018-11-09 2020-05-14 株式会社セイネン Water treating agent, method for producing water treating agent, method for treating water of interest using water treating agent, and kit for production of water treating agent
US11447405B2 (en) 2019-05-15 2022-09-20 University Of Kentucky Research Foundation Apparatus to remove harmful chemical species from industrial wastewater using iron-based products

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4097118B2 (en) 2001-10-29 2008-06-11 武蔵精密工業株式会社 Ball joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095999A1 (en) 2018-11-09 2020-05-14 株式会社セイネン Water treating agent, method for producing water treating agent, method for treating water of interest using water treating agent, and kit for production of water treating agent
US11447405B2 (en) 2019-05-15 2022-09-20 University Of Kentucky Research Foundation Apparatus to remove harmful chemical species from industrial wastewater using iron-based products

Also Published As

Publication number Publication date
JPS59103921A (en) 1984-06-15

Similar Documents

Publication Publication Date Title
JPS59226225A (en) Apparatus for controlling temperature of cooling water in internal-combustion engine for automobile
US4437311A (en) Apparatus for controlling the flow of exhaust gas in an internal combustion engine with a turbocharger and a catalytic converter
US4560104A (en) Coolant temperature control system of internal combustion engine
US4399775A (en) System for controlling cooling water temperature for a water-cooled engine
JPS6347886B2 (en)
JP3570059B2 (en) Engine cooling system
JPS64571B2 (en)
JPS60128924A (en) Cooler for internal-combustion engine
JPH0124344Y2 (en)
US4224909A (en) Exhaust gas recirculation system for an internal combustion engine
JPS5918127Y2 (en) Engine idle speed control device
JPS6350530B2 (en)
JPS59103922A (en) Temperature controller of cooling fluid in internal- combustion engine
JPH0329547Y2 (en)
JP2001317656A (en) Thermostat
EP0137733B1 (en) Air temperature control device for the intake air of an engine
JP2001027120A (en) Thermostat device
JPS63268924A (en) Intake device for engine
JPS5896120A (en) Control method of temperature of cooling liquid for internal-combustion engine
JPS6221752Y2 (en)
JPS61167155A (en) Pressure regulator for internal-combustion engine
JPS5851370Y2 (en) engine cooling system
JPS609391Y2 (en) Idle speed control device
JPH094514A (en) Valve structure of idling speed control device
JPS60164616A (en) Cooling water temperature controller for internal- combustion engine