JPS6347350A - Production of thin amorphous iron alloy strip - Google Patents

Production of thin amorphous iron alloy strip

Info

Publication number
JPS6347350A
JPS6347350A JP18962186A JP18962186A JPS6347350A JP S6347350 A JPS6347350 A JP S6347350A JP 18962186 A JP18962186 A JP 18962186A JP 18962186 A JP18962186 A JP 18962186A JP S6347350 A JPS6347350 A JP S6347350A
Authority
JP
Japan
Prior art keywords
ferroboron
iron
amorphous alloy
low
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18962186A
Other languages
Japanese (ja)
Other versions
JPH0532150B2 (en
Inventor
Shinji Kobayashi
真司 小林
Nobuyuki Morito
森戸 延行
Hisao Hamada
浜田 尚夫
Eiji Katayama
英司 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18962186A priority Critical patent/JPS6347350A/en
Publication of JPS6347350A publication Critical patent/JPS6347350A/en
Publication of JPH0532150B2 publication Critical patent/JPH0532150B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a thin amorphous iron alloy strip having especially improved iron loss characteristics and useful as an iron core material for a transformer at a considerably reduced cost by very rapidly cooling a molten alloy contg. low-Ti ferroboron obtd. by smelting and reduction. CONSTITUTION:When a thin strop of an amorphous iron alloy contg. boron is produced by very rapidly cooling a molten alloy, low-Ti ferroboron obtd. by smelting and reduction is used as starting material for boron in the molten alloy. The low-Ti ferroboron is ferroboron having <=0.04wt% Ti content and obtd. by selecting ferroboron having such a low Ti content and/or carrying out Ti removing treatment. The compsn. of the amorphous iron alloy is preferably represented by formula I or II (where x=1.5-3.5wt%, y=5-12wt% and z<=1wt%).

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は電力用トランスをはじめとして高い磁気特性
を要求される電力変換器の鉄心として適した非晶質合金
に関し、とくに鉄損特性の向上と低価格化を図った鉄系
非晶質合金薄帯の製造方法を提供するものである。
[Detailed Description of the Invention] (Field of Industrial Application) This invention relates to an amorphous alloy suitable as an iron core for power converters such as power transformers that require high magnetic properties, and in particular improves iron loss properties. The present invention provides a method for producing an iron-based amorphous alloy ribbon at a low cost.

Fe基、特にFe−B−Si系およびFe−B−Si−
C系の溶融合金を、単ロール法などの超急冷技術により
105〜b 全く異なる無秩序な原子配列を持つ非晶質合金が得られ
る。
Fe groups, especially Fe-B-Si and Fe-B-Si-
By ultra-quenching a C-based molten alloy using an ultra-quenching technique such as a single roll method, an amorphous alloy having a completely different disordered atomic arrangement can be obtained.

この合金は種々の優れた性質を持つが、特に電磁的性質
が注目を集めている。
This alloy has various excellent properties, but its electromagnetic properties are attracting particular attention.

電カドランスなどの鉄心としては、従来珪素鋼板が専ら
用いられてきたが、省エネルギーの要求の高まりととも
により鉄損の小さな磁気特性の優れた材料が要望され、
非晶質合金が有望視されている。
Traditionally, silicon steel sheets have been exclusively used as iron cores for electric quadramps, etc., but as the demand for energy conservation increases, there is a demand for materials with better magnetic properties and lower iron loss.
Amorphous alloys are seen as promising.

しかしながら原料の1つであるボロンは非常に高価であ
ってとくに、Fe−B−5i系およびFe−B−5i−
C系合金などでは非晶質化が可能でかつ優れた磁気特性
を有するものとしては一般に2重量%以上のボロンを含
んでいるため、結果的に原料コストが上昇して商業化の
ための大きな妨げとなっていた。
However, boron, which is one of the raw materials, is very expensive, especially Fe-B-5i and Fe-B-5i-
C-based alloys that can be made amorphous and have excellent magnetic properties generally contain more than 2% by weight of boron, which results in increased raw material costs and a significant cost for commercialization. It was a hindrance.

(従来の技術) ボロンの低価格化のためには特開昭58−77509号
、同59−38353号公報などに示されているように
電気炉を用いない溶融還元法により製造したフェロボロ
ンの利用が有効である。
(Prior art) In order to reduce the cost of boron, ferroboron produced by a smelting reduction method that does not use an electric furnace is used, as shown in Japanese Patent Application Laid-open Nos. 58-77509 and 59-38353, etc. is valid.

(発明が解決しようとする問題点) 高純度ボロンを原料とした非晶質合金薄帯と比較して上
記の従来技術に従い、溶融還元法によるフェロボロンを
使用した合金薄帯の性能は、磁気特性においてかなりに
劣る場合があり、これについて解決すべき問題がいまな
お残されている。
(Problems to be Solved by the Invention) Compared to an amorphous alloy ribbon made from high-purity boron as a raw material, the performance of an alloy ribbon made using ferroboron produced by the smelting reduction method according to the above-mentioned conventional technology has a lower magnetic property. However, there are still some problems that need to be resolved.

(問題点を解決するための手段) 非晶質合金薄帯の成分分析と詳細な磁気特性測定さらに
はフェロボロン用の原料の分析などの方法により不純物
の効果等を調べた結果フェロボロンを用いるときはその
Ti含有量と磁気特性との相関がきわめて強いことが分
かった。
(Means for solving the problem) As a result of investigating the effects of impurities by methods such as component analysis of amorphous alloy ribbons, detailed magnetic property measurements, and analysis of raw materials for ferroboron, we found that when using ferroboron, It was found that the correlation between the Ti content and magnetic properties is extremely strong.

このような知見に基づいてさらに実験と検討を深めこの
発明の成功が導かれた。
Based on this knowledge, further experiments and studies were carried out, leading to the success of this invention.

この発明は超急冷法により鉄系含ボロン非晶質合金薄帯
を製造するに際し、急冷用溶湯製造のために用いるボロ
ン原料として、溶融還元法により製造したフェロボロン
合金のうち、Ti含有量の小さなものの選別もしくは脱
Ti処理の一方または両方を実施して得たTi含有量0
.04重重量以下の低Tiフェロボロン合金を用いるこ
とを特徴とする鉄系非晶質合金薄帯の製造方法である。
This invention uses a ferroboron alloy produced by a smelting reduction method that has a low Ti content as a boron raw material used to produce a molten metal for rapid cooling when producing an iron-based boron-containing amorphous alloy ribbon by an ultra-quenching method. Ti content 0 obtained by carrying out one or both of sorting and Ti removal treatment
.. This is a method for producing an iron-based amorphous alloy ribbon, characterized by using a low Ti ferroboron alloy having a weight of 0.04 weight or less.

ここに鉄系非晶質合金組成は、重量%であられした成分
範囲に関し、 Fe100−x−y   BXSt。
Here, the iron-based amorphous alloy composition is Fe100-x-y BXSt, with respect to the component range expressed in weight percent.

Ff3roo−t−y−z  BX Siy Czのそ
れぞれについて、1.5≦X≦3.5.5≦y≦12、
z≦1とすることが実施態様としてとくに推奨される。
For each of Ff3roo-t-y-z BX Siy Cz, 1.5≦X≦3.5.5≦y≦12,
It is particularly recommended as an embodiment that z≦1.

(作 用) さて重量%割合において、81.5〜3.5%、Si5
〜12%を含むFe基非晶質合金は優れた磁気特性を示
すが、このFe−B−5i系非晶質合金のTi含有量と
磁気特性(鉄損および磁束密度)の関係について調べた
結果を表1に示した。
(Function) Now, in terms of weight percent, it is 81.5 to 3.5%, Si5
Fe-based amorphous alloy containing ~12% exhibits excellent magnetic properties, but we investigated the relationship between Ti content and magnetic properties (iron loss and magnetic flux density) of this Fe-B-5i-based amorphous alloy. The results are shown in Table 1.

表  1 鉄損  :磁束密度1.3T 、 50Hzでの値磁束
密度:磁場の強さ100^/11での値表1から明らか
なようにTi含有量が増加すると鉄I員も増加し、磁束
密度が減少している。とくに溶融還元フェロボロンを用
いた場合、薄帯中のTi量が0.04%を越えるとかな
り急速に鉄損が増加していることがわかる。なお高純度
ボロンおよび高純度Tiを用いた場合も同様の傾向が見
られる。また特開昭59−64143号公報にもTiの
悪影響が指摘されているけれども高純度ボロンを用いた
場合Ti含有量が0.02%を越えると磁気特性が急激
に低下するが、溶融還元フェロボロンを用いた場合は高
純度ボロンの場合はど著しい低下は見られない。
Table 1 Iron loss: Value at magnetic flux density 1.3T, 50Hz Magnetic flux density: Value at magnetic field strength 100^/11 As is clear from Table 1, as the Ti content increases, the iron I member also increases, and the magnetic flux Density is decreasing. In particular, when melt-reduced ferroboron is used, it can be seen that the iron loss increases quite rapidly when the Ti content in the ribbon exceeds 0.04%. Note that a similar tendency is observed when high-purity boron and high-purity Ti are used. Furthermore, JP-A No. 59-64143 also points out the negative effects of Ti, and when high-purity boron is used, the magnetic properties drop sharply when the Ti content exceeds 0.02%. When using high-purity boron, no significant decrease is observed.

したがって電力を用いず粉鉱石等などの低品質、低品位
の原料も用いることのできる溶融還元法を用いることに
より非晶質薄帯製造の大幅な低コスト化が計れ、またこ
こにTi含有量の低い原料は必ずしも高品位で高価なも
のを意味せず、ただ低Tiのフェロボロン合金を選択す
ること、もしくは脱Ti処理をすることにより磁気特性
の向上が可能となる。
Therefore, by using the smelting reduction method that does not require electricity and can use low-quality and low-grade raw materials such as fine ore, it is possible to significantly reduce the cost of manufacturing amorphous ribbon. A raw material with a low Ti does not necessarily mean a high quality or expensive material, but it is possible to improve the magnetic properties simply by selecting a low Ti ferroboron alloy or by performing Ti removal treatment.

(実施例) (1)  溶融還元法により種々の原料を用いて作成し
たフェロボロンを使用してFe−5i−B系非晶質合金
薄帯を単ロール法により作成し、真空中で375℃にお
いて60分間、200eの磁場中で焼鈍した後の鉄損お
よび磁束密度を表1に示した。 Ti含有量が0.04
重量%以下の場合については、鉄損および磁束密度の両
方において優れている。
(Example) (1) A Fe-5i-B amorphous alloy ribbon was made by a single roll method using ferroboron made from various raw materials by a melt reduction method, and heated at 375°C in a vacuum. Table 1 shows the iron loss and magnetic flux density after annealing in a 200e magnetic field for 60 minutes. Ti content is 0.04
When it is less than % by weight, it is excellent in both iron loss and magnetic flux density.

(2)  上記(1)と同様の方法によりpest、 
l B2.2Sii、s  Co、zの重量組成で示さ
れる非晶質合金を作成し、磁性を調べたところ合金薄帯
中のTi量が0.04重量%以下の場合は(1)の場合
と同様に優れた磁性を示した。
(2) pest, by the same method as in (1) above;
l B2.2 An amorphous alloy having a weight composition of Sii, s Co, and z was prepared and its magnetism was examined. If the Ti amount in the alloy ribbon was 0.04% by weight or less, case (1) was found. It also showed excellent magnetism.

(発明の効果) 本発明によりトランス用鉄心材料として有用な鉄系非晶
質合金の大幅な低価格と特性の向上が可能となる。
(Effects of the Invention) The present invention makes it possible to significantly lower the price and improve the properties of iron-based amorphous alloys useful as core materials for transformers.

Claims (1)

【特許請求の範囲】 1、超急冷法により鉄系含ボロン非晶質合金薄帯を製造
するに際し、急冷用溶湯製造のために用いるボロン原料
として、 溶融還元法により製造したフェロボロン合金のうちTi
含有量の小さなものの選別もしくは脱Ti処理の、一方
または両方を実施して得たTi含有量0.04重量%以
下の低Tiフェロボロン合金を用いることを特徴とする
鉄系非晶質合金薄帯の製造方法。 2、鉄系非晶質合金組成が下記式(1)で表されるもの
である特許請求の範囲1に記載した鉄系非晶質合金薄帯
の製造方法。 Fe_1_0_0_−_x_−_yB_xSi_y(重
量%)・・・(1) ここに 1.5≦x≦3.5、5≦y≦12 3、鉄系非晶質合金組成が下記式(2)で表されるもの
である特許請求の範囲1に記載した鉄系非晶質合金薄帯
の製造方法。 Fe_1_0_0_−_x_−_y_−_zB_xSi
_yC_z(重量%)・・・(2) ここに 1.5≦x≦3.5、5≦y≦12、z≦1
[Scope of Claims] 1. When producing an iron-based boron-containing amorphous alloy ribbon by an ultra-quenching method, Ti of the ferroboron alloy produced by a smelting-reduction method is used as a boron raw material for producing a molten metal for rapid cooling.
An iron-based amorphous alloy ribbon characterized by using a low-Ti ferroboron alloy with a Ti content of 0.04% by weight or less, which is obtained by carrying out one or both of screening for small contents and Ti removal treatment. manufacturing method. 2. The method for producing an iron-based amorphous alloy ribbon according to claim 1, wherein the iron-based amorphous alloy composition is represented by the following formula (1). Fe_1_0_0_-_x_-_yB_xSi_y (wt%)...(1) where 1.5≦x≦3.5, 5≦y≦12 3. The iron-based amorphous alloy composition is expressed by the following formula (2). A method for producing an iron-based amorphous alloy ribbon according to claim 1. Fe_1_0_0_-_x_-_y_-_zB_xSi
_yC_z (weight%)...(2) where 1.5≦x≦3.5, 5≦y≦12, z≦1
JP18962186A 1986-08-14 1986-08-14 Production of thin amorphous iron alloy strip Granted JPS6347350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18962186A JPS6347350A (en) 1986-08-14 1986-08-14 Production of thin amorphous iron alloy strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18962186A JPS6347350A (en) 1986-08-14 1986-08-14 Production of thin amorphous iron alloy strip

Publications (2)

Publication Number Publication Date
JPS6347350A true JPS6347350A (en) 1988-02-29
JPH0532150B2 JPH0532150B2 (en) 1993-05-14

Family

ID=16244361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18962186A Granted JPS6347350A (en) 1986-08-14 1986-08-14 Production of thin amorphous iron alloy strip

Country Status (1)

Country Link
JP (1) JPS6347350A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119806A1 (en) * 2006-04-11 2007-10-25 Nippon Steel Corporation Process for production of iron-base amorphous material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964143A (en) * 1982-10-04 1984-04-12 Nippon Steel Corp Production of light-gage amorphous alloy strip for iron core

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964143A (en) * 1982-10-04 1984-04-12 Nippon Steel Corp Production of light-gage amorphous alloy strip for iron core

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119806A1 (en) * 2006-04-11 2007-10-25 Nippon Steel Corporation Process for production of iron-base amorphous material

Also Published As

Publication number Publication date
JPH0532150B2 (en) 1993-05-14

Similar Documents

Publication Publication Date Title
Ouyang et al. Review of Fe-6.5 wt% Si high silicon steel—A promising soft magnetic material for sub-kHz application
CA2220568C (en) High strength iron-cobalt-vanadium alloy article
EP0020937B1 (en) Method of enhancing the magnetic properties of amorphous metal alloys
US4437907A (en) Amorphous alloy for use as a core
WO2007032531A1 (en) Nanocrystalline magnetic alloy, method for producing same, alloy thin band, and magnetic component
CN102304669A (en) Iron-based nanocrystalline soft magnetic alloy with high saturation magnetic induction and low cost
Wan et al. Surface crystallization and magnetic properties of FeCuSiBNbMo melt-spun nanocrystalline alloys
CN102412045A (en) Iron-based nanocrystalline magnetically soft alloy
CN106636982B (en) A kind of Fe-based amorphous alloy and preparation method thereof
Kurniawan et al. Alloy substituents for cost reduction in soft magnetic materials
AU620353B2 (en) (iron + cobalt + boron) based amorphous alloys
CN101373653A (en) Low Nb nano amorphous and minicrystal soft magnetic material and preparing method thereof
JPH0255499B2 (en)
Tan et al. Magnetic properties of Fe–Co–Nd–Y–B magnet prepared by suction casting
JPS6347350A (en) Production of thin amorphous iron alloy strip
JPH04329846A (en) Manufacture of fe base amorphous alloy
CN107910155A (en) A kind of high saturation and magnetic intensity Fe B Si P Zr amorphous and nanocrystalline soft magnetic alloys
CN108950434B (en) Iron-based amorphous strip with low excitation power and preparation method thereof
JPH05222493A (en) Ferrous high permeability amorphous alloy
He et al. Studies of crystallization and soft magnetic properties of FeNiMoB (Si) alloys
CN109754976A (en) A kind of iron base amorphous magnetically-soft alloy and application
Schwartz et al. The influence of the substitution of metallic elements on the thermal stability and magnetic properties of amorphous Fe B Si alloys
JPS62250122A (en) Reduction of iron loss of directional silicon steel
JPH09263914A (en) Inexpensive iron base master alloy
Deng et al. Texture and inhibitor features of grain-oriented pure iron produced by different cold-rolling processes