JPS634659B2 - - Google Patents

Info

Publication number
JPS634659B2
JPS634659B2 JP55162225A JP16222580A JPS634659B2 JP S634659 B2 JPS634659 B2 JP S634659B2 JP 55162225 A JP55162225 A JP 55162225A JP 16222580 A JP16222580 A JP 16222580A JP S634659 B2 JPS634659 B2 JP S634659B2
Authority
JP
Japan
Prior art keywords
electrode
potential
polymer membrane
ion
sample solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55162225A
Other languages
Japanese (ja)
Other versions
JPS5786037A (en
Inventor
Shotaro Oka
Osamu Tawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP55162225A priority Critical patent/JPS5786037A/en
Priority to PCT/JP1981/000334 priority patent/WO1982001772A1/en
Priority to EP81903068A priority patent/EP0068025B1/en
Priority to DE8181903068T priority patent/DE3176510D1/en
Publication of JPS5786037A publication Critical patent/JPS5786037A/en
Priority to DK317782A priority patent/DK159861C/en
Publication of JPS634659B2 publication Critical patent/JPS634659B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/301Reference electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、イオン選択性電極に用いる電極に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an electrode used as an ion-selective electrode.

(ロ) 従来技術 電気化学分析法のなかでとくにポテンシヨメト
リー(Potentiometry)という名称で分類されて
いる分析方法においては、試料溶液に指示電極
(イオン選択性電極)を挿入し、その電極と溶液
との界面に発生する電位が当該試料溶液の成分と
濃度に関係するという現象に着目して電位計測手
段によつて試料成分濃度を分析している。また、
この手法の実施に当つては、界面電位の直接計測
は不可能であるから、基準電極(Reference
Electrode)を指示電極の対として同じ試料溶液
中に挿入し、基準電極電位は常に一定であるとい
う仮定のもとに、両電極間電位差を測定し、指示
電極電位を推測している。一般に基準電極として
用いられている電極は、甘汞(カロメル)電極、
銀−塩化銀電極などであるが、難溶性の金属塩で
ある甘汞や塩化銀もまたそれが接触する溶液中の
塩素イオン活量によつて電位が変化するので、具
体的にはそれらの電極を塩素イオン濃度が一定で
ある水溶液に浸漬し、その溶液と試料溶液との境
界壁に部分的に液絡部を設け両溶液を接触させ電
位差測定を可能ならしめている。また他の例で
は、基準電極に塩素イオン濃度が一定である水溶
液を小量づつ流し、試料溶液が混入した塩素イオ
ン濃度一定の水溶液が基準電極に接触しないよう
にしている。
(b) Prior art Among electrochemical analysis methods, an analysis method classified under the name potentiometry involves inserting an indicator electrode (ion-selective electrode) into a sample solution, and connecting the electrode and the solution. Focusing on the phenomenon that the potential generated at the interface with the sample solution is related to the component and concentration of the sample solution, the sample component concentration is analyzed using a potential measuring means. Also,
When implementing this method, since it is impossible to directly measure the interfacial potential, a reference electrode (Reference
An indicator electrode is inserted into the same sample solution as a pair of indicator electrodes, and on the assumption that the reference electrode potential is always constant, the potential difference between the two electrodes is measured and the indicator electrode potential is estimated. Calomel electrodes are commonly used as reference electrodes.
Silver-silver chloride electrodes, etc., but the potential of poorly soluble metal salts such as chlorine and silver chloride also changes depending on the chloride ion activity in the solution with which they come into contact, so specifically, these electrodes The electrode is immersed in an aqueous solution with a constant chlorine ion concentration, and a liquid junction is partially provided on the boundary wall between the solution and the sample solution to bring the two solutions into contact, making it possible to measure the potential difference. In another example, a small amount of an aqueous solution with a constant chlorine ion concentration is flowed over the reference electrode, so that the aqueous solution with a constant chlorine ion concentration mixed with the sample solution does not come into contact with the reference electrode.

第3図は従来のポテンシヨメトリー用分析機器
の概要を示す。図において1は指示電極(イオン
選択性電極)であり、2は基準電極であつて、ピ
ンホール形液絡部21を有する容器22内の内部
液中に挿入されている。3は試料液で指示電極1
及び基準電極2の容器22が挿入されている。4
は増幅器で指示電極1と基準電極2との間の電位
差を増幅し、その出力がメータ5によつて表示さ
れる。増幅器4は高入力抵抗の増幅器であるか
ら、指示電極1と増幅器4とを接続するリード線
にはシールド6が施してある。
FIG. 3 shows an outline of a conventional analytical instrument for potentiometry. In the figure, 1 is an indicator electrode (ion-selective electrode), and 2 is a reference electrode, which is inserted into the internal liquid in a container 22 having a pinhole type liquid junction 21. 3 is the sample solution and the indicator electrode 1
and the container 22 of the reference electrode 2 is inserted. 4
The amplifier amplifies the potential difference between the indicator electrode 1 and the reference electrode 2, and the output thereof is displayed by the meter 5. Since the amplifier 4 is an amplifier with high input resistance, a shield 6 is applied to the lead wire connecting the indicator electrode 1 and the amplifier 4.

(ハ) 発明が解決しようとする問題点 しかしこれらの手段は、液絡部に発生する電位
の変動(一般にジヤンクシヨンポテンシアルと呼
ばれている)や、内外両液の交流による塩素イオ
ン活量の変化のために、精密なイオン選択性電極
電位の測定を困難にし、ひいては生化学分析のよ
うな精密な化学分析に誤差を与えている。
(c) Problems to be solved by the invention However, these methods do not deal with fluctuations in potential generated at the liquid junction (generally referred to as junction potential) and changes in chloride ion activity caused by alternating current between the internal and external liquids. These changes make it difficult to measure precise ion-selective electrode potentials and, in turn, introduce errors in precise chemical analyzes such as biochemical analyses.

(ニ) 問題点を解決するための手段 本発明は、特殊な高分子膜によつて、試料溶液
と基準電極の内部液等との間を隔離することによ
つて、液絡部を除外した構造の電極対を可能にし
て、上述した従来の電極系の欠点が根本的に解消
されることを見出し、本発明に想到したものであ
る。
(d) Means for solving the problem The present invention eliminates the liquid junction by isolating the sample solution from the internal liquid of the reference electrode using a special polymer membrane. The inventors have discovered that the drawbacks of the conventional electrode systems described above can be fundamentally eliminated by making it possible to form electrode pairs in this structure, and have conceived the present invention.

具体的には、本発明は、保護管内に基準電極内
部液を収容し、該内部液と試料液とを高分子膜に
より隔離するイオン選択性電極用基準電極におい
て、該高分子膜が無孔性の不活性な分子構造から
なることを特徴とする。
Specifically, the present invention provides a reference electrode for an ion-selective electrode in which a reference electrode internal solution is contained in a protection tube and the internal solution and a sample liquid are separated by a polymer membrane, wherein the polymer membrane is non-porous. It is characterized by consisting of an inert molecular structure.

(ホ) 作用 本発明は、無孔性の不活性高分子膜により対接
部に界面電位の変化を生じないようにするもので
ある。
(e) Effect The present invention prevents changes in interfacial potential between contacting parts using a non-porous inert polymer membrane.

(ヘ) 実施例 以下、実施例によつて本発明について具体的に
説明する。第1図は、本発明の一実施例に係る基
準電極部分の縦断面図を示す。23は保護管で先
端部に高分子膜(通前10〜1000μm)24が気密
に接着してあり、保護管23と高分子膜24とに
よつて基準電極内部液の容器が構成されている。
25はカロメル保持用ガラス管で、下流孔には綿
栓等多孔性栓12がしてあり、管内には下半にカ
ロメル7を充填し、上半に水銀8を充し、上方よ
り水銀8中に白金線9が挿入され、白金線9の上
端にリード線10が接続してある。保護管23内
には一定濃度のkcl(塩化カリ)水溶液11が充し
てあり、ガラス管25はこのkcl水溶液中に浸漬
されており、kcl水溶液は綿栓12を通してカロ
メル7と接触している。このような構造でイオン
不活性高分子膜24の部分が試料液3中に浸漬さ
れる。イオン不活性高分子膜24には孔がなく、
すなわち無孔性のイオン不活性高分子膜で保護管
23内のkcl水溶液11と試料液3とは完全に隔
離されている。
(f) Examples Hereinafter, the present invention will be specifically explained using examples. FIG. 1 shows a longitudinal sectional view of a reference electrode portion according to an embodiment of the present invention. Reference numeral 23 denotes a protective tube, and a polymer membrane (10 to 1000 μm in diameter) 24 is airtightly adhered to the tip thereof, and the protective tube 23 and the polymer membrane 24 constitute a container for the internal liquid of the reference electrode. .
25 is a glass tube for holding calomel, and the downstream hole is equipped with a porous stopper 12 such as a cotton plug. The lower half of the tube is filled with calomel 7, the upper half is filled with mercury 8, and mercury 8 A platinum wire 9 is inserted therein, and a lead wire 10 is connected to the upper end of the platinum wire 9. The protective tube 23 is filled with a KCl (potassium chloride) aqueous solution 11 of a certain concentration, the glass tube 25 is immersed in this KCl aqueous solution, and the KCl aqueous solution is brought into contact with the calomel 7 through a cotton plug 12. . With this structure, a portion of the ion-inactive polymer membrane 24 is immersed in the sample liquid 3. The ion-inactive polymer membrane 24 has no pores;
That is, the KCl aqueous solution 11 and the sample liquid 3 in the protection tube 23 are completely isolated by a non-porous ion-inactive polymer membrane.

このイオン不活性高分子膜24は少くとも試料
溶液と接触する外面と試料溶液との界面には、試
料溶液中のイオン種やそれらの活量によつて界面
電位が発生しないか、あるいは電位が発生しても
変化しない無孔性の不活性な分子構造を有する高
分子膜であつて(たとえば、表面のイオン解離基
密度の小さい物質はこれに属する)その抵抗値は
10MΩないし5000MΩ程度のものが多い。このよ
うな性質の高分子膜は、たとえば、弗素樹脂、ポ
リスチレン樹脂、ポリ塩化ビニールなどを高純度
のテトラヒドロフランのような溶媒にて溶解して
成形したのち、高純度不活性気体中にて溶媒を蒸
発乾固してえられる。膜のこの製法は任意の形状
の高純度膜を形成するため非常に好適であるが、
本発明はこの製法による膜に限定されるものでは
ない。なお高分子膜に多孔性処理を施したものを
液絡部に用いることも提案されているが、このよ
うな膜は本発明の趣旨と合致しない。すなわち、
本発明の高分子膜は無孔性に限定される。
At least at the interface between the outer surface of the ion-inert polymer membrane 24 that comes into contact with the sample solution and the sample solution, no interfacial potential is generated or no potential is generated depending on the ionic species in the sample solution and their activities. It is a polymer membrane with a non-porous and inert molecular structure that does not change even when generated (for example, substances with a small density of ionic dissociative groups on the surface belong to this category), and its resistance value is
Most of them are around 10MΩ to 5000MΩ. Polymer membranes with such properties can be formed by dissolving fluororesin, polystyrene resin, polyvinyl chloride, etc. in a high-purity solvent such as tetrahydrofuran, and then dissolving the solvent in a high-purity inert gas. Obtained by evaporation to dryness. This method of manufacturing membranes is very suitable for forming high-purity membranes of arbitrary shapes;
The present invention is not limited to membranes produced by this method. Although it has been proposed to use a porous polymer membrane for the liquid junction, such a membrane does not meet the spirit of the present invention. That is,
The polymer membrane of the present invention is limited to non-porous properties.

第1図の構造において保護管23内の水溶液1
1と不活性高分子膜24の内面との間の界面電位
は外面と同様の理由によつて一定である。また不
活性高分子膜24の外面と試料液3との間の界面
電位は、上記手段によつて試料溶液3に含まれる
イオンに対して一定となる。保護管23内は無孔
性のイオン不活性高分子膜でシヤツトアウトされ
ていることから試料液に対して完全に閉じている
ので試料溶液が動いたり、内外圧力差や温度差が
生じてもそのために試料溶液が保護管内に侵入し
てkcl水溶液11の濃度を変えて基準電位を変動
させるとか、保護管内のkcl水溶液11が試料液
中に漏出して試料液を汚染すると云うようなこと
も完全に防止されている。
In the structure shown in FIG. 1, the aqueous solution 1 in the protective tube 23
The interfacial potential between 1 and the inner surface of the inert polymer film 24 is constant for the same reason as the outer surface. Further, the interfacial potential between the outer surface of the inert polymer membrane 24 and the sample solution 3 becomes constant with respect to the ions contained in the sample solution 3 by the above-mentioned means. The inside of the protective tube 23 is shut out with a non-porous, ion-inert polymer membrane, so it is completely closed to the sample solution, so even if the sample solution moves or there is a pressure difference or temperature difference between the inside and outside, it will not be affected. There is no possibility that the sample solution may enter the protection tube and change the concentration of the KCl aqueous solution 11 and fluctuate the reference potential, or that the KCl aqueous solution 11 inside the protection tube leaks into the sample solution and contaminates the sample solution. is prevented.

第2図は、第1図の実施例装置による不活性高
分子膜電極について、実際に得られた電位応答に
関する性能を示すデータである。電位応答の性能
は不活性であることに主眼をおいて、従来形の液
絡部を有する銀−塩化銀基準電極と、本発明にも
とづく無孔性の不活性高分子膜電極とを対にして
両電極間の電位差を測定した。
FIG. 2 shows data showing the performance regarding the potential response actually obtained for the inert polymer membrane electrode produced by the example device shown in FIG. Focusing on inert potential response performance, we paired a conventional silver-silver chloride reference electrode with a liquid junction with a non-porous inert polymer membrane electrode based on the present invention. The potential difference between both electrodes was measured.

第2図において、データ31はポリ塩化ビニー
ルをテトラハイドロフランで溶解後薄膜成形して
固化した無孔性の膜に関するもので、内部極にも
銀塩化銀電極を使用している。データ32は弗素
樹脂膜に関するものである。いづれも、試料溶液
中のk+濃度に無関係に一定の電位を与えること
がわかる。図はk+に対する一例を示したが、
Na+、Cl-、HCo3 -など通常の工業的あるいは生
化学的用途の試料溶液中に存在する一般的な物質
に対しても不活性であつた。これに対し、ポリ塩
化ビニールに、K+活性物質であるバリノマイシ
ンと適当な補助剤であるジオクチルセバシン酸と
の混合物質をテトラハイドロフランで溶解し薄膜
成形して固化した膜を同様の手法で測定した電位
応答はデータ33のようであつて、この膜を具備
した電極は明らかにK+に対するイオン選択性電
極となる。また不適当な溶媒や微量の不純物ある
いは不適切な補助剤の混入は、本発明の要点であ
る不活性化を防害する。
In FIG. 2, data 31 relates to a non-porous membrane made by dissolving polyvinyl chloride in tetrahydrofuran, forming a thin film, and solidifying it, and a silver-silver chloride electrode is also used for the internal electrode. Data 32 relates to the fluororesin film. It can be seen that in both cases, a constant potential is given regardless of the k + concentration in the sample solution. The figure shows an example for k + ,
It was also inactive against common substances such as Na + , Cl - , and HCo 3 - that are present in sample solutions for common industrial and biochemical applications. In contrast, a film obtained by dissolving a mixture of valinomycin, a K + active substance, and dioctyl sebacic acid, an appropriate adjuvant, in polyvinyl chloride with tetrahydrofuran, forming a thin film, and solidifying it was measured using the same method. The potential response is as shown in data 33, and the electrode equipped with this membrane clearly becomes an ion-selective electrode for K + . Furthermore, the incorporation of unsuitable solvents, trace amounts of impurities, or unsuitable auxiliaries prevents inactivation, which is the key point of the present invention.

第2図のデータ30は不活性膜としてガラスを
用いた場合の電極特性を示しており、活性電極3
3に比しかなり不活性ではあるが、本発明により
不活性高分子膜を用いた電極の場合データ31,
32は目的のイオン濃度の変化に対してほとんど
変化がなく、基準電極としてきわめて安定である
ことを示している。
Data 30 in FIG. 2 shows the electrode characteristics when glass is used as the inactive film, and the active electrode 3
Although it is considerably inert compared to data 31, in the case of an electrode using an inert polymer membrane according to the present invention, data 31,
No. 32 shows almost no change with respect to changes in the target ion concentration, indicating that it is extremely stable as a reference electrode.

次に、上記不活性高分子膜電極を実用するため
の測定システムを説明する。
Next, a measurement system for putting the inert polymer membrane electrode into practical use will be explained.

通常この高分子膜は比較的高い固有抵抗を有す
るので、一般の電圧測定法ではノイズや不安定性
のために精密な電極間電位差を測定することがで
きない。本発明はこのような困難を排除するため
に微小な第3電極を試料溶液内に挿入し、しかも
試料溶液の種類に応じて変動する第3電極の電極
電位を差動電気計測によつて自動的に補正する方
法を採用する。
Since this polymer membrane usually has a relatively high resistivity, common voltage measurement methods cannot accurately measure the potential difference between the electrodes due to noise and instability. In order to eliminate such difficulties, the present invention inserts a minute third electrode into the sample solution, and automatically measures the electrode potential of the third electrode, which varies depending on the type of sample solution, by differential electrical measurement. Adopt a method to correct the situation.

第4図は、この三電極示差測定システムの概要
を示す。図においてイオン選択的活性電極71は
指示電極として作動し、任意の第3電極73(た
とえば微小白金電極)との電位差が第1差動増幅
器74によつて増幅される。一方、上記のイオン
不活性高分子膜電極72と第3電極73との電位
差が第2差動増幅器75によつて増幅される。い
ま指示電極71がK+イオン選択的活性電極であ
る場合、その電極電位E1は E1=E0+RT/F2.303log aK + ……(1) である。式中aK +は試料溶液中のK+の活量、E0
標準酸化還元電位系によつて決まる定数、F、R
およびTはそれぞれフアラデ−定数、ガス定数お
よび絶対温度である。イオン不活性高分子膜電極
72の電位E2は既述のように や他の共存イオ
ンに無関係に一定であるから E2=E0′ ……(2) となる。第3電極73の白金電極はそれ自身内部
抵抗は小さいけれども、その電位E3は試料溶液
中に存在するイオンによつて電位が変化し、一般
に E3=E0″+ 〓i RT/niF2.303log{ai
FIG. 4 shows an overview of this three-electrode differential measurement system. In the figure, the ion-selective active electrode 71 operates as an indicator electrode, and the potential difference with an arbitrary third electrode 73 (for example, a minute platinum electrode) is amplified by a first differential amplifier 74. On the other hand, the potential difference between the ion-inactive polymer membrane electrode 72 and the third electrode 73 is amplified by the second differential amplifier 75. When the indicator electrode 71 is a K + ion selective active electrode, its electrode potential E 1 is E 1 =E 0 +RT/F2.303log a K + (1). In the formula, a K + is the activity of K + in the sample solution, E 0 is a constant determined by the standard redox potential system, F, R
and T are Faraday's constant, gas constant, and absolute temperature, respectively. Since the potential E 2 of the ion-inactive polymer membrane electrode 72 is constant regardless of and other coexisting ions, E 2 =E 0 ' (2). Although the platinum electrode of the third electrode 73 itself has a small internal resistance, its potential E 3 changes depending on the ions present in the sample solution, and generally E 3 =E 0 ″+ 〓 i RT/n i F2.303log{a i

Claims (1)

【特許請求の範囲】[Claims] 1 保護管内に基準電極内部液を収容し、該内部
液と試料液とを高分子膜により隔離するイオン選
択性電極用基準電極において、該高分子膜が無孔
性の不活性な分子構造からなることを特徴とする
イオン選択性電極用基準電極。
1. In a reference electrode for an ion-selective electrode in which a reference electrode internal solution is contained in a protection tube and the internal solution and sample solution are separated by a polymer membrane, the polymer membrane has a non-porous and inert molecular structure. A reference electrode for an ion-selective electrode characterized by:
JP55162225A 1980-11-17 1980-11-17 Electrode for electrochemical analysis applied apparatus Granted JPS5786037A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP55162225A JPS5786037A (en) 1980-11-17 1980-11-17 Electrode for electrochemical analysis applied apparatus
PCT/JP1981/000334 WO1982001772A1 (en) 1980-11-17 1981-11-16 Reference electrode
EP81903068A EP0068025B1 (en) 1980-11-17 1981-11-16 Reference electrode
DE8181903068T DE3176510D1 (en) 1980-11-17 1981-11-16 Reference electrode
DK317782A DK159861C (en) 1980-11-17 1982-07-15 REFERENCE ELECTRODE WITH INACTIVE POLYMER MEMBRANE AND PROCEDURE FOR PREPARING IT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55162225A JPS5786037A (en) 1980-11-17 1980-11-17 Electrode for electrochemical analysis applied apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP61180678A Division JPS6276448A (en) 1986-07-30 1986-07-30 Method and instrument for continuous analysis of liquid

Publications (2)

Publication Number Publication Date
JPS5786037A JPS5786037A (en) 1982-05-28
JPS634659B2 true JPS634659B2 (en) 1988-01-29

Family

ID=15750341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55162225A Granted JPS5786037A (en) 1980-11-17 1980-11-17 Electrode for electrochemical analysis applied apparatus

Country Status (1)

Country Link
JP (1) JPS5786037A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365127A (en) * 1989-08-01 1991-03-20 Kobayashi Kankyo Kagaku Kenkyusho:Kk Sanitary water culture
JPH03297331A (en) * 1990-04-13 1991-12-27 Kyushu Kagaku:Kk Medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505196A (en) * 1966-07-15 1970-04-07 Ibm Reference electrode
JPS5481897A (en) * 1977-12-12 1979-06-29 Kuraray Co Fet comparison electrode
JPS54128791A (en) * 1978-03-30 1979-10-05 Shingijutsu Kaihatsu Jigyodan Ion sensor using semiconductor field effect

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505196A (en) * 1966-07-15 1970-04-07 Ibm Reference electrode
JPS5481897A (en) * 1977-12-12 1979-06-29 Kuraray Co Fet comparison electrode
JPS54128791A (en) * 1978-03-30 1979-10-05 Shingijutsu Kaihatsu Jigyodan Ion sensor using semiconductor field effect

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365127A (en) * 1989-08-01 1991-03-20 Kobayashi Kankyo Kagaku Kenkyusho:Kk Sanitary water culture
JPH03297331A (en) * 1990-04-13 1991-12-27 Kyushu Kagaku:Kk Medium

Also Published As

Publication number Publication date
JPS5786037A (en) 1982-05-28

Similar Documents

Publication Publication Date Title
US4933048A (en) Reference electrode, method of making and method of using same
US8961758B2 (en) Ion-selective electrode
CA2085322C (en) Graphite based solid state polymeric membrane ion-selective electrodes
JP2005505778A (en) Ion-selective electrodes for direct organic drug analysis of saliva, sweat, and surface-wiping elements
CN105823814B (en) Potentiometric sensor
US4495050A (en) Temperature insensitive potentiometric electrode system
US3830718A (en) Ammonia sensor
Kataoka et al. A liquid membrane type perchlorate ion-selective electrode
US3803006A (en) Method of determining sulfur dioxide and sensing cell therefor
US5312537A (en) Electrochemical cell, reference electrode and electrochemical method
WO2011007384A1 (en) Sensitive membrane for ion selective electrode
SE460623B (en) ION SELECTIVE POTENTIOMETRIC MEASURING DEVICE
US3357908A (en) Electrolytic sensor with water diffusion compensation
Soleymanpour et al. Development of a new coated graphite phenylephrine potentiometric sensor and its applications to pharmaceutical and biological analysis
JPS634659B2 (en)
Lemke et al. Multisensor array for pH, K+, Na+ and Ca2+ measurements based on coated-film electrodes
EP0833149A1 (en) Method for measuring ion concentration
US9863908B2 (en) Low drift ion selective electrode sensors
Oyama et al. Ion-selective electrodes based on bilayer film coating
KR20180044040A (en) Ion sensors for sensing multiple ions in blood
Wang et al. Nanomolar detection of amitriptyline by potentiometry with ion exchanger based PVC membrane ISEs
Durst Ion-selective electrode response in biologic fluids
Mertens et al. Mechanistic studies on lanthanum fluoride crystal electrodes
EP1038172A1 (en) Sensor devices and analytical method
CA1093641A (en) Ion-selective electrode