JPS6345880B2 - - Google Patents

Info

Publication number
JPS6345880B2
JPS6345880B2 JP13030880A JP13030880A JPS6345880B2 JP S6345880 B2 JPS6345880 B2 JP S6345880B2 JP 13030880 A JP13030880 A JP 13030880A JP 13030880 A JP13030880 A JP 13030880A JP S6345880 B2 JPS6345880 B2 JP S6345880B2
Authority
JP
Japan
Prior art keywords
gas
sludge
dry distillation
dry
dehydrated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13030880A
Other languages
Japanese (ja)
Other versions
JPS5756097A (en
Inventor
Akira Suzuki
Yasumi Shiotani
Keiichi Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Air Conditioning Co Ltd
Original Assignee
Shinryo Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Air Conditioning Co Ltd filed Critical Shinryo Air Conditioning Co Ltd
Priority to JP13030880A priority Critical patent/JPS5756097A/en
Priority to GB8127078A priority patent/GB2087054B/en
Priority to DE19813137227 priority patent/DE3137227A1/en
Priority to FR8117632A priority patent/FR2490783A1/en
Priority to US06/303,988 priority patent/US4398476A/en
Publication of JPS5756097A publication Critical patent/JPS5756097A/en
Publication of JPS6345880B2 publication Critical patent/JPS6345880B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、下水処理により発生する余剰汚泥を
脱水して得られる脱水汚泥の灰化処理法、更に詳
しくは脱水汚泥を非酸化性雰囲気中で乾溜ガス化
し、発生したガスを汚泥の乾燥及びその他の熱源
として利用し、脱水汚泥を灰化処理する方法に関
するものである。 下水汚泥については、そのほとんど埋立て、海
洋投棄、焼却処分とされている。最近、都市廃棄
物等の焼却処分において、クロムの酸化反応によ
る6価クロムの生成、燃焼ガス中にNOx,SOx
の発生等の二次公害を防止する為に非酸化性雰囲
気中で乾溜することが一部に行なわれている。し
かしながらこれらの方法においては、乾溜の熱源
として重油等の補助燃料を使用しており下水汚
泥、都市廃棄物のエネルギーを充分回収している
とはいえない。 本発明の目的は、下水処理による脱水汚泥を補
助燃料を使用することなく回収される自己の熱源
により乾溜し、得られる乾溜ガスを脱水汚泥の乾
燥その他の熱源として有効に利用し、脱水汚泥を
灰化処理する方法を提供するにある。 本発明による下水汚泥の灰化処理法は、下水処
理により発生する余剰汚泥を脱水して得られる含
水率70〜75%の脱水汚泥を造粒し、後記の乾溜ガ
ス及びガス化ガスを燃焼して得られる熱源により
乾燥した後、後記のガス化ガスの顕熱により乾溜
し、得られた乾溜ガスの一部を前記の燃焼工程
に、残部を後記のガス化工程に使用し、乾溜残渣
を灰として排出すると共に、得られるガス化ガス
を前記乾燥工程に使用し、補助燃料を使用するこ
となく脱水汚泥を灰化処理することを特徴とする
方法である。 以下、本発明の方法を第1図の工程図に基づい
て詳述する。 下水処理により発生する余剰汚泥を脱水して得
られる脱水汚泥は一般に含水率70〜75%である。
本発明の方法においては含水率70〜75%の脱水汚
泥をそのまま使用して、補助燃料を使用すること
なく、脱水汚泥を灰化処理することができる。勿
論、脱水汚泥の含水率が更に低化していても差支
えなく、むしろ好ましい。この場合は、得られる
ガス化ガスを自からの灰化処理に全部使用するこ
となく、排熱ボイラに使用したり、ガスホルダー
に一時貯留し、他に利用することができる。 脱水汚泥は先ず造粒される。造粒には一般に押
出成形型造粒装置が使用される。造粒々径は乾溜
炉内の熱効率をよくする為に10mm以下とすること
が望ましく、また生成乾溜ガスに同伴されること
を防止する為に1mm以上とすることが好ましい。
具体的実施例としては、3mmφの粒又は5mmφ×
10mmLの筒状体とした。 造粒された脱水汚泥は乾燥装置に送られる。乾
燥装置としては、一般に汚泥乾燥に用いられてい
るどのような乾燥機も使用することができる。熱
風吹込式撹拌、乾燥装置を使用し、乾溜ガス及び
ガス化ガスを燃焼して得られる約400℃の熱風を
熱風吹込口より送入し、撹拌機により撹拌されて
いる脱水汚泥と向流に熱交換させ、含水率約75%
の脱水汚泥を含水率約10%まで乾燥させた。出口
脱水汚泥の温度は約150℃であつた。 乾燥を終えた脱水汚泥は次に乾溜される。乾溜
装置の一例として堅型多段乾溜炉があげられる。
該炉は、次工程のガス化工程で発生する高温のガ
ス化ガスにより周囲より加熱される堅型炉で、中
心に0.5〜3rpmで回転する中心軸を有し、該中心
軸には羽根(仕切板)を有する円板が多段に取付
けられてあり、中心軸の回転により、炉上方から
供給される乾燥汚泥が最上段の円板より、その回
転及び羽根の作用により交互に内側及び外側に送
られることにより、逐次下段の円板に、それらの
内側及び外側に設けた落下口を通り落下し、この
間で乾燥汚泥は約450℃に加熱されて熱分解し、
その約63重量%がガス化され、乾溜ガスとし炉上
部より取出される。約37重量%のものは固定炭
素、未分解有機物、灰分を含む乾溜残渣として炉
底部より取出され、次工程のガス化工程に送られ
る。 ガス化工程においては、乾溜残渣中の固定炭素
のガス化が行なわれる。熱源として乾溜ガスが使
用される。乾溜ガスの燃焼によつて生じた炭酸ガ
ス、水蒸気、空気中の酸素、乾溜残渣中の固定炭
素が次の如き反応によりガス化ガスが発生する。 C+1/2O2=CO+29400kcal/kmol C+CO2=2CO−38200kcal/kmol C+H2O=CO+H2−28200kcal/kmol このほか乾溜残渣中の未分解有機物及び乾溜ガ
ス中に含まれる炭化水素が水蒸気、酸素と反応し
て(二次)ガス化ガスが発生する。 CmHn+mH2O→mCO+2m+n/2H2 CmHn+m/2O2→mCO+n/2H2 発生したガス化ガスは乾溜工程でその顕熱を与
えた後、乾燥工程における乾燥熱源として燃焼さ
れる。脱水汚泥の灰化工程全体として熱の余剰が
あるときは、ガス化ガスの一部はホルダに貯えら
れ他に使用される。ガス化残渣の灰は炉底より取
出される。 次に、本発明の方法の実施例を述べる。 埼玉県某所の下水処理場の汚泥濃縮槽より濃縮
された汚泥(固形分2〜3%)をロールプレスタ
イプの脱水機により固形分25%まで脱水し、本発
明の方法の実施例に使用する脱水汚泥とした。脱
水汚泥の元素分析結果は第1表の通りであつた。
The present invention relates to a method for ashing dehydrated sludge obtained by dewatering surplus sludge generated in sewage treatment, and more specifically, to drying and gasifying dehydrated sludge in a non-oxidizing atmosphere, and using the generated gas to dry the sludge and other purposes. The present invention relates to a method for ashing dehydrated sludge by using it as a heat source. Most sewage sludge is disposed of by landfill, ocean dumping, or incineration. Recently, in the incineration of municipal waste, etc., hexavalent chromium is produced due to the oxidation reaction of chromium, and NOx and SOx are contained in the combustion gas.
In order to prevent secondary pollution such as the generation of carbon dioxide, dry distillation in a non-oxidizing atmosphere is sometimes carried out. However, these methods use auxiliary fuel such as heavy oil as a heat source for dry distillation, and it cannot be said that the energy from sewage sludge and municipal waste is sufficiently recovered. The purpose of the present invention is to dry distill dehydrated sludge from sewage treatment using its own heat source, which is recovered without using auxiliary fuel, and to effectively use the resulting dry distilled gas as a heat source for drying the dehydrated sludge and other purposes. To provide a method for ashing. The method for ashing sewage sludge according to the present invention involves granulating dehydrated sludge with a moisture content of 70 to 75% obtained by dewatering excess sludge generated during sewage treatment, and burning the dry distilled gas and gasified gas described below. After drying with a heat source obtained from the process, dry distillation is performed using the sensible heat of the gasified gas described below, and a part of the resulting dry distilled gas is used in the combustion process described above, the remainder is used in the gasification process described later, and the dry distillation residue is used. This method is characterized in that the dehydrated sludge is discharged as ash, and the obtained gasified gas is used in the drying step to ash the dehydrated sludge without using auxiliary fuel. Hereinafter, the method of the present invention will be explained in detail based on the process diagram of FIG. Dehydrated sludge obtained by dewatering surplus sludge generated during sewage treatment generally has a water content of 70 to 75%.
In the method of the present invention, dehydrated sludge with a moisture content of 70 to 75% can be used as it is, and the dehydrated sludge can be incinerated without using any auxiliary fuel. Of course, there is no problem even if the water content of the dehydrated sludge is further lowered, and it is even preferable. In this case, the obtained gasified gas does not need to be used entirely for the ashing process itself, but can be used in a waste heat boiler or temporarily stored in a gas holder for other uses. The dewatered sludge is first granulated. For granulation, an extrusion type granulation device is generally used. The diameter of the granules is preferably 10 mm or less in order to improve the thermal efficiency in the dry distillation furnace, and preferably 1 mm or more in order to prevent them from being entrained in the produced dry distillation gas.
As a specific example, 3mmφ grains or 5mmφ×
It was made into a cylindrical body of 10 mmL. The granulated dewatered sludge is sent to a drying device. As the drying device, any dryer commonly used for drying sludge can be used. Using a hot air blowing type stirring and drying device, hot air of approximately 400°C obtained by burning dry distilled gas and gasified gas is sent through the hot air blowing port, and flows countercurrently to the dehydrated sludge being stirred by the stirrer. Heat exchange, moisture content approximately 75%
The dehydrated sludge was dried to a moisture content of approximately 10%. The temperature of the dewatered sludge at the outlet was approximately 150°C. After drying, the dehydrated sludge is then dry distilled. An example of a dry distillation device is a vertical multistage dry distillation furnace.
This furnace is a vertical furnace that is heated from the surroundings by the high-temperature gasification gas generated in the next gasification step, and has a central shaft that rotates at 0.5 to 3 rpm, and a blade ( Discs with partition plates) are installed in multiple stages, and by the rotation of the central axis, the dry sludge supplied from above the furnace is alternately moved inside and outside from the top disc by the rotation of the central shaft and the action of the blades. As the sludge is fed, it sequentially falls to the lower discs through the drop ports provided on the inside and outside of the discs, during which time the dried sludge is heated to about 450°C and thermally decomposed.
Approximately 63% by weight of it is gasified and taken out from the upper part of the furnace as dry distilled gas. Approximately 37% by weight of the residue is removed from the bottom of the furnace as a dry distillation residue containing fixed carbon, undecomposed organic matter, and ash, and sent to the next gasification step. In the gasification step, fixed carbon in the dry distillation residue is gasified. Dry distillation gas is used as a heat source. Gasified gas is generated by the following reaction between carbon dioxide, water vapor, oxygen in the air, and fixed carbon in the dry distillation residue produced by combustion of the dry distillation gas. C+1/2O 2 = CO + 29400kcal/kmol C+CO 2 = 2CO-38200kcal/kmol C+H 2 O=CO+H 2 -28200kcal/kmol In addition, undecomposed organic matter in the dry distillation residue and hydrocarbons contained in the dry distillation gas react with water vapor and oxygen. (secondary) gasification gas is generated. CmHn+mH 2 O→mCO+2m+n/2H 2 CmHn+m/2O 2 →mCO+n/2H 2The generated gasified gas gives its sensible heat in the dry distillation process and is then burned as a drying heat source in the drying process. When there is a surplus of heat throughout the dewatered sludge ashing process, a portion of the gasified gas is stored in a holder and used for other purposes. The ash of gasification residue is taken out from the bottom of the furnace. Next, examples of the method of the present invention will be described. Sludge (solid content 2-3%) concentrated from a sludge thickening tank at a sewage treatment plant in Saitama Prefecture was dehydrated to a solid content of 25% using a roll press type dehydrator, and used in an example of the method of the present invention. It was made into dehydrated sludge. The results of elemental analysis of the dehydrated sludge are shown in Table 1.

【表】 この脱水汚泥を押し出出造粒機により粒径3mm
の粒状に成形し、ガス化ガスと乾溜ガスを燃焼し
て得られた400℃の熱風を使用し、熱風吹込式撹
拌装置で乾燥し、含水率10%の乾燥汚泥を得た。 次にこの乾燥汚泥を乾溜装置に入れ、450℃で
20分乾溜を行い、乾溜ガス、固定炭素及び灰を得
た。脱水汚泥無水物1Kg当りの乾溜ガス量及び各
成分ガス量は第2表の通りであつた。爾後の数値
(分析百分率を除く。)はすべて脱水汚泥1Kgを基
準とした数値で示す。また乾溜ガス出口温度は
200℃であつた。第3表に乾溜実験結果を示す。
[Table] This dehydrated sludge is processed using an extrusion granulator with a particle size of 3 mm.
The sludge was molded into granules and dried with a hot air blowing stirring device using 400°C hot air obtained by burning gasified gas and dry distilled gas to obtain dried sludge with a moisture content of 10%. Next, this dried sludge was put into a dry distillation equipment and heated at 450℃.
Dry distillation was performed for 20 minutes to obtain dry distilled gas, fixed carbon, and ash. The amount of dry distillation gas and the amount of each component gas per 1 kg of anhydrous dehydrated sludge were as shown in Table 2. All subsequent values (excluding analytical percentages) are based on 1 kg of dehydrated sludge. In addition, the dry distillation gas outlet temperature is
It was 200℃. Table 3 shows the results of the dry distillation experiment.

【表】【table】

【表】 得られた乾溜ガスの発熱量を次の3式で算出す
ると第4表の如くなる。また乾溜ガス(713)
の燃焼に必要な空気量は2500となる。 CO+1/2O2=CO2+68.2kcal/mol H2+1/2O2=H2O+57.6kcal/mol CmHn+(m+n/4)O2
=mCO2+n/2H2O+Hg (Hg:総発熱量)
[Table] Table 4 shows the calorific value of the obtained dry distilled gas when calculated using the following three formulas. Also dry distilled gas (713)
The amount of air required for combustion is 2500. CO+1/2O 2 = CO 2 +68.2kcal/mol H 2 +1/2O 2 = H 2 O+57.6kcal/mol CmHn+(m+n/4)O 2
= mCO 2 + n/2H 2 O + Hg (Hg: total calorific value)

【表】 次に乾溜残渣中の固定炭素234gに対して水蒸
気180g及び炭酸ガス440gの割合で1000℃の下で
30分反応させ固定炭素のガス化を行つた。この時
の反応は水性ガス反応 C+H2O=CO+H2−28.2kcal/mol と発生炉ガス反応 C+CO2=2CO−38.2kcal/mol とが同時に行なわれる。 ガス化ガスは3573/無水汚泥Kg得られ、その
分析結果及び発熱量を第5表及び第6表に示す。
なお、ガス化ガスの発熱量の算出には乾溜ガスに
おけると同じ反応式を用いた。全排出灰分中の六
価クロムの生成量は、0.8mg/無水汚泥Kgであつ
た。
[Table] Next, 180g of water vapor and 440g of carbon dioxide were added to 234g of fixed carbon in the dry distillation residue at 1000℃.
The reaction was carried out for 30 minutes to gasify the fixed carbon. In this reaction, a water gas reaction C+H 2 O=CO+H 2 -28.2 kcal/mol and a generator gas reaction C+CO 2 =2CO-38.2 kcal/mol are carried out simultaneously. Gasification gas was obtained in an amount of 3573 kg/kg of anhydrous sludge, and the analysis results and calorific value are shown in Tables 5 and 6.
Note that the same reaction equation as for dry distillation gas was used to calculate the calorific value of gasified gas. The amount of hexavalent chromium produced in the total discharged ash was 0.8 mg/Kg of anhydrous sludge.

【表】【table】

【表】 実施例における各工程及び全体の熱収支は次の
如くなる。基準は無水汚泥1Kg当りのkcalであ
る。
[Table] The heat balance for each step and the whole in the example is as follows. The standard is kcal per 1 kg of anhydrous sludge.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 全体の熱収支を熱流れ図(単位kcal/無水汚泥
Kg)で示すと第2図の如くなる。 本発明の方法は以上の如く構成されているの
で、汚泥の保有熱を有効に利用し、外部から熱の
供給を受けることなく脱水汚泥を灰化処理するこ
とができる。また、脱水汚泥の含水率が低下した
場合など、回収熱に余剰を生じるので、ガス化ガ
スを貯留して他に転用することもできる。
[Table] Heat flow diagram showing the overall heat balance (unit: kcal/anhydrous sludge
When expressed in kg), it is shown in Figure 2. Since the method of the present invention is configured as described above, it is possible to effectively utilize the heat retained in the sludge and to incinerate dehydrated sludge without receiving heat from the outside. In addition, when the water content of dehydrated sludge decreases, a surplus of recovered heat is generated, so the gasified gas can be stored and used for other purposes.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の方法の一実施例を示すもので、
第1図は工程図、第2図は熱流れ図である。
The drawing shows an embodiment of the method of the invention,
Figure 1 is a process diagram, and Figure 2 is a heat flow diagram.

Claims (1)

【特許請求の範囲】[Claims] 1 下水処理により発生する余剰汚泥を脱水して
得られる含水率70〜75%の脱水汚泥を造粒し、後
記の乾溜ガス及びガス化ガスを燃焼して得られる
熱源により乾燥した後、後記のガス化ガスの顕熱
により乾溜し、得られた乾溜ガスの一部を前記の
乾燥工程に、残部を後記のガス化工程に使用し、
乾溜残渣を前記の乾溜ガスの残部及び空気により
ガス化し、残渣を灰として排出すると共に、得ら
れるガス化ガスを前記乾燥工程に使用し、補助燃
料を使用することなく脱水汚泥を灰化処理するこ
とを特徴とする下水汚泥の灰化処理法。
1 Dehydrated sludge with a water content of 70 to 75% obtained by dewatering surplus sludge generated by sewage treatment is granulated, dried using a heat source obtained by burning the dry distillation gas and gasification gas described later, and then Dry distillation is performed using sensible heat of the gasified gas, and a part of the obtained dry distilled gas is used in the drying process described above, and the remainder is used in the gasification process described later,
Gasifying the dry distillation residue with the remainder of the dry distillation gas and air, discharging the residue as ash, and using the obtained gasified gas in the drying process to ash the dehydrated sludge without using auxiliary fuel. An ashing method for sewage sludge characterized by the following.
JP13030880A 1980-09-19 1980-09-19 Method for laying in ashes of sewer sludge Granted JPS5756097A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP13030880A JPS5756097A (en) 1980-09-19 1980-09-19 Method for laying in ashes of sewer sludge
GB8127078A GB2087054B (en) 1980-09-19 1981-09-08 Method and apparatus for incinerating sewage sludge
DE19813137227 DE3137227A1 (en) 1980-09-19 1981-09-18 METHOD AND DEVICE FOR ASHING CLEANING SLUDGE
FR8117632A FR2490783A1 (en) 1980-09-19 1981-09-18 PROCESS AND APPARATUS FOR THE INCINERATION OF RESIDUAL SLUDGE
US06/303,988 US4398476A (en) 1980-09-19 1981-09-21 Method for incinerating sewage sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13030880A JPS5756097A (en) 1980-09-19 1980-09-19 Method for laying in ashes of sewer sludge

Publications (2)

Publication Number Publication Date
JPS5756097A JPS5756097A (en) 1982-04-03
JPS6345880B2 true JPS6345880B2 (en) 1988-09-12

Family

ID=15031207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13030880A Granted JPS5756097A (en) 1980-09-19 1980-09-19 Method for laying in ashes of sewer sludge

Country Status (1)

Country Link
JP (1) JPS5756097A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108073U (en) * 1990-02-19 1991-11-07

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136197A (en) * 1983-01-25 1984-08-04 Tsuneo Okamoto Thermal decomposing device for activated sludge
JPS6044096A (en) * 1983-08-19 1985-03-08 Tsuneo Okamoto Thermal decomposition apparatus of activated sludge
JPH059483U (en) * 1991-07-18 1993-02-09 富士車輌株式会社 Distiller for dry cleaning machine
JP5846728B2 (en) * 2010-09-03 2016-01-20 株式会社御池鐵工所 Carbonization method and carbonization plant for organic waste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03108073U (en) * 1990-02-19 1991-11-07

Also Published As

Publication number Publication date
JPS5756097A (en) 1982-04-03

Similar Documents

Publication Publication Date Title
US4398476A (en) Method for incinerating sewage sludge
RU2270849C2 (en) System producing electric power with the help of gasification of combustibles
US3729298A (en) Solid refuse disposal process and apparatus
JPH10156314A (en) Method of recovering energy from waste
US20140309475A1 (en) Waste to Energy By Way of Hydrothermal Decomposition and Resource Recycling
US20060260190A1 (en) Method and apparatus for treating organic matter
WO2006053020A2 (en) Slurry dewatering and conversion of biosolids to a renewable fuel
CN106938881A (en) A kind of processing system and method for carbonaceous solids discarded object
JP5385396B2 (en) Method for producing hydrogen-containing gas
WO2008014645A1 (en) An environment protection and energy source recovery type waste treatment equipment
JPS6345880B2 (en)
WO2001023806A1 (en) Process and system for recovering energy from carbon-containing materials
JP2010149079A (en) Treatment method of waste containing highly hydrous waste and treatment device used for the same
CN107746729A (en) A kind of full gasifying electricity generation technique of rubbish and sludge
JP2009228958A (en) Gasification power generating device
CN106830588A (en) A kind of convenient innoxious thermoelectricity method of disposal and process system for city sludge
JP2001241624A (en) Waste-incinerating plant
CN206970441U (en) The processing system of carbonaceous solids discarded object
JP2005265273A (en) Sludge gasifying and melting method and device therefor
US7063026B1 (en) Waste carbonizing and energy utilizing system
CN112254136A (en) Method and device for drying high-humidity material and recycling solid waste
JPS6152883B2 (en)
RU2631456C1 (en) Method for producing electricity from sub-standart (wet) fuel biomass and device for its implementation
JPH0224597B2 (en)
CN213930940U (en) High wet material drying and solid waste resource utilization device