JPS6345848A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6345848A
JPS6345848A JP61188539A JP18853986A JPS6345848A JP S6345848 A JPS6345848 A JP S6345848A JP 61188539 A JP61188539 A JP 61188539A JP 18853986 A JP18853986 A JP 18853986A JP S6345848 A JPS6345848 A JP S6345848A
Authority
JP
Japan
Prior art keywords
oxide film
corner
thermal
silicon
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61188539A
Other languages
Japanese (ja)
Inventor
Kiyotarou Imai
馨太郎 今井
Kikuo Yamabe
紀久夫 山部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61188539A priority Critical patent/JPS6345848A/en
Publication of JPS6345848A publication Critical patent/JPS6345848A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Local Oxidation Of Silicon (AREA)

Abstract

PURPOSE:To form a third thermal oxide film in even thickness with a rugged corner rounded by a method wherein a first thermal oxide film is formed on the rugged surface of Si and after partially removing the oxide film by etching process, a second thermal oxide film is formed. CONSTITUTION:The first thermal oxide film 5 is formed on the rugged surface of Si 1 to be partly removed by etching process. At this time, the thermal oxide film at a corner A becomes extremely thin or the Si surface at the same part is exposed to atmosphere. Next, when another oxide film 6 is formed below the film 5 by the second thermal oxidation, the thermal oxidation at the corner A is accelerated making the angular part A round. After entirely removing the oxide films 5, 6, the third thermal oxide film can be formed on the surface of Si 1 to form the other oxide film in even thickness on the rugged surface of Si 1. When this oxide film is applied to the oxide film formed into a grooved type capacitor of a DRAM, the breakdown strength at the corner can be prevented from deteriorating, enabling a MOS capacitor with the least leakage current to be produced.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は半導体fciltの製造方法に係り、特に凹凸
を有するシリコン層表面に絶縁性に優れた熱酸化膜を形
成する方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a semiconductor fcilt, and in particular to a method for forming a thermal oxide film with excellent insulation properties on the surface of a silicon layer having unevenness. Regarding.

(従来の技術) MO8ダイナンツクメモリ(d RAM )は比例縮小
則に従って素子の微細化、高集債化が進められている。
(Prior Art) MO8 dynamic memory (dRAM) is undergoing miniaturization of elements and higher debt collection according to the law of proportional reduction.

dRAMの構成g1素であるM O8キヤパシタも例外
ではなく、ゲート酸化膜厚tox及び面積8の縮小が進
んでいる。スケ−りング係数をαとすると、ゲート酸化
膜厚はtoX/αに面積はS/α冨になる。へ108キ
ャパシタの容tcti、誘電率をgとして、C−gs/
lowと表わされる九め、比例縮小後の容量C″は、C
′−C/αとなり。
The MO8 capacitor, which is the component g1 of dRAM, is no exception, and the gate oxide film thickness tox and area 8 are being reduced. When the scaling coefficient is α, the gate oxide film thickness is toX/α and the area is S/α. 108 Capacitance tcti of capacitor, dielectric constant g, C-gs/
The ninth capacitance C″ after proportional reduction, expressed as low, is C
'-C/α.

l/α に小さくなる。こうしてMO8キャパシタの容
量が小さくなると、アルファ線飛来によるソフトエラー
が起り易くなり、またビット線の容量との比が小さくな
ってセンス余裕が小さくなる結果、誤動作を生じる原因
になりたりする。このため一般にMO8キャパシタの面
積はS/α8ではなく、8/αの縮小に止めることが行
われていた。
It becomes smaller to l/α. If the capacitance of the MO8 capacitor is reduced in this way, soft errors due to alpha rays are likely to occur, and the ratio with the capacitance of the bit line becomes smaller, resulting in a smaller sensing margin, which may cause malfunctions. For this reason, the area of the MO8 capacitor has generally been reduced by 8/α instead of S/α8.

しかし1世代毎に寸法縮小は進み、信y4件の高いdR
AMを得ることは限界に近づきつつある。
However, the dimensions have been reduced with each generation, resulting in a high dR
Obtaining AM is approaching its limits.

MO8キャパシタの容量を大きくする手段として、誘1
!率の大きい絶縁gl!、例えばTa、O,膜等を用い
ることも検討されているが、未だ実用になっていない、
を九10nm以下の極めて薄い信頼性の高いシリコン酸
化膜の適用が検討されているが、これも極めて高純度の
岬水や薬品を必要とし、まt清浄度の高いクリーンルー
ムを必要とする1等の理由で実用になっていない。
As a means to increase the capacitance of MO8 capacitor, dielectric
! High rate insulation GL! For example, the use of Ta, O, films, etc. is being considered, but it has not been put into practical use yet.
The application of extremely thin and highly reliable silicon oxide films of 10 nm or less is being considered, but this also requires extremely high purity water and chemicals, and requires a highly clean room. It has not been put into practical use for several reasons.

そcで現在、MO8キャパシタの容it増大する有力な
方法として、半導体表面に溝を掘り、占有面積を増大さ
せることなく実質的にキャパシタ面積の増大を図る方法
が検討されている。ところがこのようなr8 t’、反
応性イオンエツチング(几IB)のような異方性エツチ
ング法により垂直の側壁をもって形成すると、次のよう
な間Uが生じる。即ちこの様な溝(凹部)の上部或いF
i底部のコーナーの部分(角部)は曲率半径が極めて小
さく、熱酸化によりゲート膜を形成した時、この角部に
おいて平坦部より酸化膜厚が薄くなる。この現象は次の
ように説明されている。コーナ一部のシリコンを酸化す
ると、既に生成された酸化膜は引き続いて生成された酸
化膜によって押し上げられるため形状の変化全余儀なく
される。この之め酸化が進むとシリコン−酸化膜界面の
酸化膜側では圧縮応力が働き%喧述の角部では応力の集
中が起こる結果、酸化が抑制されるものと考えられる。
Therefore, currently, as an effective method for increasing the capacity of MO8 capacitors, a method is being considered in which trenches are dug in the semiconductor surface to substantially increase the capacitor area without increasing the occupied area. However, when r8t' is formed with vertical side walls by an anisotropic etching method such as reactive ion etching (IB), the following gap U occurs. In other words, the upper part of such a groove (recess) or F
The corner portion (corner portion) of the i bottom has an extremely small radius of curvature, and when a gate film is formed by thermal oxidation, the oxide film thickness is thinner at this corner portion than at a flat portion. This phenomenon is explained as follows. When the silicon in a part of the corner is oxidized, the oxide film that has already been produced is pushed up by the oxide film that is subsequently produced, forcing the shape to change completely. As this oxidation progresses, compressive stress acts on the oxide film side of the silicon-oxide film interface, and as a result, stress concentration occurs at the corners of the silicon-oxide film interface, and as a result, oxidation is thought to be suppressed.

このように溝の底部或いは上部の角部で酸化膜厚が平坦
部より薄くなると、この部分は耐圧が低い電界で大きい
リーク電流が流れる原因となる。
If the oxide film thickness is thinner at the bottom or upper corner of the groove than at the flat area, a large leakage current will flow in this area due to an electric field with a low withstand voltage.

使用電圧でのリーク電流を十分小さく保り九めにゲート
酸化膜厚を厚くすると、平坦部では厚くなシずぎ、溝を
掘って面積を大きくすることによる容量増大の効果が減
殺されることになる。
If the leakage current at the operating voltage is kept sufficiently small and the gate oxide film thickness is made thicker, the effect of increasing the capacitance by increasing the area by digging thick grooves and grooves on flat areas will be reduced. become.

(発明が解決しようとする問題点) 本発明は、四部または凸部を形成した半導体基板表面に
均一な厚さの酸化膜1例えばゲート酸化膜を形成して、
MO8キャパシタ等の信頼性を向上することができる。
(Problems to be Solved by the Invention) The present invention involves forming an oxide film 1, for example, a gate oxide film, with a uniform thickness on the surface of a semiconductor substrate on which four parts or convex parts are formed.
The reliability of MO8 capacitors and the like can be improved.

半導体装置の製造方法を提供することを目的とする。The purpose of the present invention is to provide a method for manufacturing a semiconductor device.

〔発明の構成〕[Structure of the invention]

(問題点を解決する念めの手段) 本発明は、凹凸が形成されたシリコン層表面に対し熱酸
化によりgtの酸化膜を形成し、この第1の酸化膜の一
部を残してエツチング除去した後。
(Preliminary measure to solve the problem) The present invention forms a GT oxide film by thermal oxidation on the surface of a silicon layer on which unevenness is formed, and then removes it by etching, leaving a part of this first oxide film. After.

第1の酸化膜残存状態で熱酸化を行って第1の酸化膜下
のシリコン層表面に第2の酸化膜を形成した後、これら
第1および第2のは化mをエツチング除去し、露出した
シリコン層表面に改めて熱酸化によシ第3の酸化膜を形
成する。
After thermal oxidation is performed with the first oxide film remaining to form a second oxide film on the surface of the silicon layer under the first oxide film, the first and second oxide films are removed by etching and exposed. A third oxide film is again formed on the surface of the silicon layer by thermal oxidation.

(作用) シリコンの凹凸コーナ一部を熱酸化すると酸化膜の形状
変化に伴う応力が酸化膜中に発生する。
(Function) When a portion of the uneven corner of silicon is thermally oxidized, stress is generated in the oxide film due to a change in the shape of the oxide film.

この応力は形状の急峻な変化があるコーナ一部のシリコ
ン−シリコン酸化膜界面に集中する。このような大きな
応力が存在するとシリコンの酸化反応が抑制されること
が見出されている。このため、コーナーでは酸化膜の膜
厚が薄くなる。
This stress is concentrated at the silicon-silicon oxide film interface at a part of the corner where there is a sharp change in shape. It has been found that the presence of such a large stress suppresses the oxidation reaction of silicon. Therefore, the thickness of the oxide film becomes thinner at the corners.

凹凸を有するシリコン表面に対し熱酸化によって@1の
酸化膜を形成するとコーナ一部では平坦部に比べて膜厚
は薄くなる。この第1O′)酸化11!Iを少くともそ
の一部を残してエツチング除去すると。
When a @1 oxide film is formed by thermal oxidation on a silicon surface having irregularities, the film thickness becomes thinner at some corners than at a flat part. This 1st O′) oxidation 11! When I is removed by etching leaving at least a part of it.

コーナ一部では酸化膜厚は十分薄くなる。或いは下地シ
リコン表面が露出することになる。この状態て熱酸化を
行うと、コーナ一部では平坦部に比べて酸化がより進む
ことになり、第2の酸化膜とシリコン界面はコーナ一部
で丸まり會もつ丸形吠となろ、しかる後に、第1及び第
2の酸化膜をエツチング除去すると、コーナ一部で丸み
を帯び九シリコン表面が得られる。このシリコン表面に
対して所望の鹸化mを形成すれば、電界県中の少ない高
品質な酸化膜を得ることができる。
The oxide film thickness becomes sufficiently thin at some corners. Alternatively, the underlying silicon surface will be exposed. If thermal oxidation is performed in this state, the oxidation will proceed more in the corners than in the flat parts, and the interface between the second oxide film and the silicon will become rounded in the corners, and then When the first and second oxide films are removed by etching, a silicon surface with rounded corners is obtained. By forming a desired saponification m on the silicon surface, a high quality oxide film with less electric field concentration can be obtained.

(実施9’lJ ’) 第111(a)〜(−は本発明の一笑施例としてダイナ
きツクランダムアクセスメモリ(DRAM)セルの製造
工橿會示す断面図である。先ず第1図(旬に示すように
、比抵抗lOΩ/ crs梅度のP型8iJIl仮(1
)に、フィールド酸化111(2) を形成し次後、全
面に0、8 tt m Taq(DCV D酸化Ill
 (3) をjtl墳し%a常の写真食刻工程を経てキ
ャパシタ形成領域内に窓を形成する6次に@1[閾(b
)K示すようにCVD酸化膜(3) をマスクとしてd
RAMセルのMO8キャパシタの1#を内に内直璧を有
する深さ2μm程度の溝(4)を形成する。との* (
4)は例えばcp、 @ ai’、 *C0j4等を主
成分とするガス或いはこ九KHが入つ九ガスを用いたa
IE去により形成する。この几IB工礎のマスクは通常
のフォトレジストではそれ自体もエツチングされて消失
する鴨合があるので。
(Embodiment 9'lJ') Nos. 111(a) to 111(-) are cross-sectional views showing a manufacturing process of a dynamic random access memory (DRAM) cell as an example of the present invention. As shown in , P type 8i JIl tentative (1
), field oxide 111(2) is formed, and then 0.8 tt m Taq (DCV D oxidation Ill) is formed on the entire surface.
(3) 6th @1 [threshold (b
) K Using the CVD oxide film (3) as a mask, d
A groove (4) having a depth of about 2 μm and having a vertical wall is formed inside 1# of the MO8 capacitor of the RAM cell. Tono* (
4) is, for example, cp, @ai', *a using a gas whose main component is C0j4, etc., or a gas containing KH.
Formed by IE removal. This mask for IB construction has a sag that is etched away and disappears when using normal photoresist.

Re1ic VDK zルS io、 78i、N、 
7810. m等を用いることが好ましい。
Re1ic VDK Z io, 78i, N,
7810. It is preferable to use m, etc.

こ°の後、一旦熱酸化によシ好ましくは200A以上の
酸化膜を形成し、その後この酸化Sを厚さ方向く一部を
残してエツチング除去し酸化膜(5’ >’を形成する
(第1図(C) )、次に、第1図(d) K示すよう
Kffi化膜(5つの存在下でその下のシリコン層表面
に対し熱酸化により酸化1111[(6) を形成する
。この熱酸化膜(6)は好ましくFixooh以上とす
る。
After this, an oxide film of preferably 200A or more is formed by thermal oxidation, and then this oxide S is etched away leaving a portion in the thickness direction to form an oxide film (5'>'). Then, as shown in FIG. 1(d)K, an oxide 1111 [(6) is formed by thermal oxidation on the surface of the silicon layer underneath in the presence of a Kffi film (5). This thermal oxide film (6) preferably has a thickness of Fixoooh or higher.

@2図(a)〜(e)では1以上の1柱でシリコン基板
lのそれぞれ凸部コーナーAに丸みが形成される様子を
拡大して示している。凸部コーナーAでは。
@2 Figures (a) to (e) show enlarged views of how each convex corner A of the silicon substrate l is rounded by one or more pillars. At the convex corner A.

熱酸化時に応力集中が生じ第2図(a)【示すように酸
化膜(5)はこの部分では平坦部に比べて薄くなる。
Stress concentration occurs during thermal oxidation, and as shown in FIG. 2(a), the oxide film (5) becomes thinner in this area than in the flat area.

この復号化膜5を一部を残してエツチング除去し酸化1
1a5’を形成する(第21iN(b))、このとき酸
化膜5′はコーナ一部でとくに薄くなるため、この状1
で熱酸化を行えば第2図(C)に示すようにコーナ一部
の酸化が促進されシリコン−シリコン酸化膜界面は丸み
を帯びる。凹型コーナーについては酸化膜5を形成し九
段階で丸めが得られることになるが、6凰コーナーの暢
合と同様にしてさらに丸みを増すことができる。
This decoding film 5 is etched away leaving only a part and oxidized 1
1a5' is formed (21iN(b)). At this time, the oxide film 5' becomes particularly thin at the corner part, so this condition 1a5' is formed.
If thermal oxidation is performed in this step, oxidation of a portion of the corner will be promoted and the silicon-silicon oxide film interface will be rounded, as shown in FIG. 2(C). As for the concave corners, the oxide film 5 is formed and rounding can be obtained in nine stages, but the roundness can be further increased in the same way as in the case of the six-fold corners.

コ(7)後、第1図(e)に示すようにCvL)l!!
l!I!化膜5および熱酸化膜6tエツチング除去する
。セして4出したシリコン基板1表面に、第1図(f)
に示すようにn″″型層9を形成し、改めて熱酸化を行
ってキャパシタ絶縁膜となる熱酸化M(第3の酸化膜)
7%−形成し、続いて第1層多結晶シリコン膜を堆積、
パターニングしてキャパシタ電極8M−形さをもって形
成される0次いで第1図(匂に示すように、キャパシタ
領域に隣接する位置にゲート絶縁膜となる熱酸化膜lO
を形成し%第2層多結晶シリコン膜の堆積、パターニン
グによりゲート電極11を形成し、例えばAsイオン注
入によりソ++ −ス、ドレインとなるntJ1層12m13に形成して
スイッチングMO8)ランジスタを形成する。
After (7), as shown in FIG. 1(e), CvL)l! !
l! I! The oxide film 5 and the thermal oxide film 6t are removed by etching. Figure 1 (f)
As shown in the figure, an n'''' type layer 9 is formed, and thermal oxidation is performed again to form a thermally oxidized M (third oxide film) that becomes a capacitor insulating film.
7% - formed, followed by depositing a first layer polycrystalline silicon film,
The capacitor electrode 8M-shaped is formed by patterning.Then, as shown in FIG.
The gate electrode 11 is formed by depositing and patterning a second layer polycrystalline silicon film, and the ntJ1 layer 12m13 which becomes the source and drain is formed by, for example, As ion implantation to form a switching MO8) transistor. .

この後は図示しないが、全面にCVD酸化校倉堆攪し、
コンタクト孔を開けてAI配線を形成して、DRAMを
完成する。
After this, although not shown, CVD oxidation is applied to the entire surface.
Contact holes are opened and AI wiring is formed to complete the DRAM.

この実施例によれば、几IIにより形成されたキャパシ
タ溝のコーナーに効果的に丸みを与えることができ、キ
ャパシタ絶碌膜となる熱電(ヒ膜のコーナ一部での薄寝
化が防止される。またコーナ一部に丸みを与えることに
より、電界集中を緩和することができる。従ってこの実
権例によれば、信頼性の高い高集積化DRAM′を得る
ことができる。
According to this embodiment, the corners of the capacitor groove formed by the capacitor II can be effectively rounded, and thinning at some corners of the thermoelectric film, which is an insulating film for the capacitor, can be prevented. Further, by rounding a portion of the corner, electric field concentration can be alleviated.Therefore, according to this practical example, a highly reliable and highly integrated DRAM' can be obtained.

本発明は上記実権例に限られるものではない。The present invention is not limited to the above-mentioned examples.

例えば以上では専ら溝掘り型D RA Mについて説明
し念が、DRAMK限らず凹凸’rVするシリコン表面
に熱酸化膜を形成する工程を必要とするあらゆる零子に
本発明を適用することができる。
For example, although the above description has focused exclusively on trench type DRAMs, the present invention can be applied not only to DRAMKs but also to any device that requires a step of forming a thermal oxide film on an uneven silicon surface.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、凹部ま之は凸部等の車体形状を有する
半導体不板表面に均一な膜厚のゲート酸化膜全形成する
ことができる。これは本発明の条件に従えば、成長する
酸化膜中に残存する応力の膜厚方向の積分値のばらつき
(即ち、凹部や凸部の平坦部と角部での応力の膜厚方向
の積分値の差)が10係程度以下に呆几れ、この結果[
[;力集中が効果的に防止されるためである。従ってこ
のゲート酸化層を用いて例えば容量が大きく且つリーク
遁流の小さいMOSキャパシタを形成することができる
。ま几このへ108キャパシタを用いて1高集積化D 
H,A M tl−W4成すれば、DRAMのソフトエ
ラーによる誤動作の確率を下げ、ま之センスアンプの動
作余裕を大きいものとすることができる。
According to the present invention, a gate oxide film having a uniform thickness can be formed entirely on the surface of a semiconductor substrate having a vehicle body shape such as a convex portion or the like. According to the conditions of the present invention, this is due to the variation in the integral value of the stress remaining in the growing oxide film in the thickness direction (i.e., the variation in the integral value of the stress in the thickness direction at the flat parts and corners of concave and convex parts). The difference in values) was reduced to less than a factor of 10, and as a result [
[; This is because force concentration is effectively prevented. Therefore, using this gate oxide layer, for example, a MOS capacitor with a large capacitance and a small leakage current can be formed. 1 high integration using 108 capacitors
If H, A M tl-W4 is implemented, the probability of malfunction due to soft errors in the DRAM can be lowered, and the operating margin of the sense amplifier can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第10→−俤は本発明50几AMに6厘用し九−実施的
の製造工程を示す断面口sLr!2図8は41図におけ
るコーナーA部の変化全拡大して示す説明図である。 1・・・シリコン縫仮、2・・・フィールド絶縁膜、3
・CV D c11化&−4・” J’を5# 5’ 
”・熱tkR(F−麟(”fGlの酸化膜)、6・・・
熱咳化腿(第2のは1ヒ膜)、7・・・熱賃化膜(43
の設化膜、キャパシタ絶縁膜)、8・・・キャパシタ電
極、9・”n″″m層、10・・・熱酸化膜(ゲート絶
縁膜)、11・・・ゲート電極、12゜+ 13・−n  型層。 代理人 弁理士  則 近 憲 重 量     竹 花 喜久男 第  1 図 第  3 図
The 10th→-5 is the cross-sectional opening sLr showing the practical manufacturing process for 6 times the 50-liter AM of the present invention! 2. FIG. 8 is an explanatory diagram showing the change in the corner A section in FIG. 41 in an enlarged manner. 1...Silicon sewing temporary, 2...Field insulating film, 3
・CV D c11 conversion &-4・"J' to 5# 5'
"・Heat tkR (F-Rin ("fGl oxide film), 6...
fever cough thigh (second one is 1hi membrane), 7... fever cough membrane (43
formation film, capacitor insulating film), 8... Capacitor electrode, 9・"n""m layer, 10... Thermal oxide film (gate insulating film), 11... Gate electrode, 12° + 13・-n type layer. Agent Patent attorney Noriyuki Chika Weight Kikuo Takehana Figure 1 Figure 3

Claims (5)

【特許請求の範囲】[Claims] (1)凹凸形状を有するシリコン表面を酸化するにあた
り、一旦シリコン表面に対し熱酸化により第1の酸化膜
を形成する工程と、この第1の酸化膜を少くとも一部を
残し、エッチング除去する工程と、前記第1の酸化膜が
存在する状態でその下のシリコン層表面に熱酸化により
第2の酸化膜を形成する工程と、前記第1および第2の
酸化膜をエッチング除去して露出したシリコン層表面に
所望の第3の酸化膜を形成する工程とを備えたことを特
徴とする半導体装置の製造方法。
(1) When oxidizing a silicon surface having an uneven shape, there is a step of first forming a first oxide film on the silicon surface by thermal oxidation, and etching away this first oxide film, leaving at least a part of it. a step of forming a second oxide film by thermal oxidation on the surface of the underlying silicon layer in the presence of the first oxide film; and etching away and exposing the first and second oxide films. forming a desired third oxide film on the surface of the silicon layer.
(2)前記シリコン層表面の凹凸は、異方性ドライエッ
チング法により形成されたものである特許請求の範囲第
1項記載の半導体装置の製造方法。
(2) The method of manufacturing a semiconductor device according to claim 1, wherein the unevenness on the surface of the silicon layer is formed by an anisotropic dry etching method.
(3)前記シリコン層表面の凹部はダイナミックRAM
セルのキャパシタ領域に形成された溝であり、前記第3
の酸化膜はキャパシタ絶縁膜である特許請求の範囲第1
項記載の半導体装置の製造方法。
(3) The recess on the surface of the silicon layer is a dynamic RAM.
a groove formed in the capacitor region of the cell;
Claim 1, wherein the oxide film is a capacitor insulating film.
A method for manufacturing a semiconductor device according to section 1.
(4)前記第1の酸化膜は200Å以上の厚さをもって
形成され、前記第2の酸化膜は100Å以上の厚さをも
って形成される特許請求の範囲第1項記載の半導体装置
の製造方法。
(4) The method of manufacturing a semiconductor device according to claim 1, wherein the first oxide film is formed to have a thickness of 200 Å or more, and the second oxide film is formed to have a thickness of 100 Å or more.
(5)前記第3の酸化膜は50Å以上500Å以下の厚
さをもって形成される特許請求の範囲第1項記載の半導
体装置の製造方法。
(5) The method of manufacturing a semiconductor device according to claim 1, wherein the third oxide film is formed to have a thickness of 50 Å or more and 500 Å or less.
JP61188539A 1986-08-13 1986-08-13 Manufacture of semiconductor device Pending JPS6345848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61188539A JPS6345848A (en) 1986-08-13 1986-08-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61188539A JPS6345848A (en) 1986-08-13 1986-08-13 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6345848A true JPS6345848A (en) 1988-02-26

Family

ID=16225474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61188539A Pending JPS6345848A (en) 1986-08-13 1986-08-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6345848A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5481127A (en) * 1992-11-04 1996-01-02 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device having a capacitor
US5541425A (en) * 1994-01-20 1996-07-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having trench structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5481127A (en) * 1992-11-04 1996-01-02 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device having a capacitor
US5633188A (en) * 1992-11-04 1997-05-27 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor memory device having a capacitor
US5541425A (en) * 1994-01-20 1996-07-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having trench structure
US5795792A (en) * 1994-01-20 1998-08-18 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device having a trench structure

Similar Documents

Publication Publication Date Title
US5472904A (en) Thermal trench isolation
JP3501297B2 (en) Method for manufacturing semiconductor memory device
US4735824A (en) Method of manufacturing an MOS capacitor
TW425699B (en) Semiconductor device and its fabrication method
JP2004006660A (en) Method for manufacturing semiconductor device
JP2523981B2 (en) Method for manufacturing semiconductor device
JPS6345848A (en) Manufacture of semiconductor device
JP2602808B2 (en) Method for manufacturing semiconductor device
KR930001418B1 (en) Method of fabricating semiconductor device
JPH05251637A (en) Semiconductor device and manufacture thereof
JPH0618248B2 (en) Method for manufacturing semiconductor device
JPH04336464A (en) Fabrication of semiconductor memory device
JPS6340362A (en) Semiconductor storage device
JPH0438144B2 (en)
JPH0423467A (en) Manufacture of semiconductor memory
JPH02129956A (en) Manufacture of semiconductor memory device
JPH01216538A (en) Semiconductor device and manufacture thereof
JPH02119135A (en) Semiconductor device and its manufacture
JPH0379072A (en) Semiconductor memory device and manufacturing method
JP2828038B2 (en) Method for manufacturing semiconductor device
JPS6362370A (en) Manufacture of semiconductor device
JPS60115254A (en) Semiconductor device and manufacture thereof
JPH01189949A (en) Manufacture of semiconductor memory device
JP2980651B2 (en) Method for manufacturing semiconductor device
JPS62160731A (en) Manufacture of semiconductor device